llvm-mirror/utils/TableGen/TGParser.cpp
David Greene 88abfb940e [AVX] Create Inits Via Factory Method
Replace uses of new *Init with *Init::get.  This hides the allocation
implementation so that we can unique Inits in various ways.

llvm-svn: 136486
2011-07-29 19:07:07 +00:00

2154 lines
64 KiB
C++

//===- TGParser.cpp - Parser for TableGen Files ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implement the Parser for TableGen.
//
//===----------------------------------------------------------------------===//
#include "TGParser.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
#include <sstream>
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Support Code for the Semantic Actions.
//===----------------------------------------------------------------------===//
namespace llvm {
struct SubClassReference {
SMLoc RefLoc;
Record *Rec;
std::vector<const Init*> TemplateArgs;
SubClassReference() : Rec(0) {}
bool isInvalid() const { return Rec == 0; }
};
struct SubMultiClassReference {
SMLoc RefLoc;
MultiClass *MC;
std::vector<const Init*> TemplateArgs;
SubMultiClassReference() : MC(0) {}
bool isInvalid() const { return MC == 0; }
void dump() const;
};
void SubMultiClassReference::dump() const {
errs() << "Multiclass:\n";
MC->dump();
errs() << "Template args:\n";
for (std::vector<const Init *>::const_iterator i = TemplateArgs.begin(),
iend = TemplateArgs.end();
i != iend;
++i) {
(*i)->dump();
}
}
} // end namespace llvm
bool TGParser::AddValue(Record *CurRec, SMLoc Loc, const RecordVal &RV) {
if (CurRec == 0)
CurRec = &CurMultiClass->Rec;
if (RecordVal *ERV = CurRec->getValue(RV.getName())) {
// The value already exists in the class, treat this as a set.
if (ERV->setValue(RV.getValue()))
return Error(Loc, "New definition of '" + RV.getName() + "' of type '" +
RV.getType()->getAsString() + "' is incompatible with " +
"previous definition of type '" +
ERV->getType()->getAsString() + "'");
} else {
CurRec->addValue(RV);
}
return false;
}
/// SetValue -
/// Return true on error, false on success.
bool TGParser::SetValue(Record *CurRec, SMLoc Loc, const std::string &ValName,
const std::vector<unsigned> &BitList, const Init *V) {
if (!V) return false;
if (CurRec == 0) CurRec = &CurMultiClass->Rec;
RecordVal *RV = CurRec->getValue(ValName);
if (RV == 0)
return Error(Loc, "Value '" + ValName + "' unknown!");
// Do not allow assignments like 'X = X'. This will just cause infinite loops
// in the resolution machinery.
if (BitList.empty())
if (const VarInit *VI = dynamic_cast<const VarInit*>(V))
if (VI->getName() == ValName)
return false;
// If we are assigning to a subset of the bits in the value... then we must be
// assigning to a field of BitsRecTy, which must have a BitsInit
// initializer.
//
if (!BitList.empty()) {
const BitsInit *CurVal = dynamic_cast<const BitsInit*>(RV->getValue());
if (CurVal == 0)
return Error(Loc, "Value '" + ValName + "' is not a bits type");
// Convert the incoming value to a bits type of the appropriate size...
const Init *BI = V->convertInitializerTo(BitsRecTy::get(BitList.size()));
if (BI == 0) {
V->convertInitializerTo(BitsRecTy::get(BitList.size()));
return Error(Loc, "Initializer is not compatible with bit range");
}
// We should have a BitsInit type now.
const BitsInit *BInit = dynamic_cast<const BitsInit*>(BI);
assert(BInit != 0);
SmallVector<const Init *, 16> NewBits(CurVal->getNumBits());
// Loop over bits, assigning values as appropriate.
for (unsigned i = 0, e = BitList.size(); i != e; ++i) {
unsigned Bit = BitList[i];
if (NewBits[Bit])
return Error(Loc, "Cannot set bit #" + utostr(Bit) + " of value '" +
ValName + "' more than once");
NewBits[Bit] = BInit->getBit(i);
}
for (unsigned i = 0, e = CurVal->getNumBits(); i != e; ++i)
if (NewBits[i] == 0)
NewBits[i] = CurVal->getBit(i);
V = BitsInit::get(NewBits);
}
if (RV->setValue(V))
return Error(Loc, "Value '" + ValName + "' of type '" +
RV->getType()->getAsString() +
"' is incompatible with initializer '" + V->getAsString() +"'");
return false;
}
/// AddSubClass - Add SubClass as a subclass to CurRec, resolving its template
/// args as SubClass's template arguments.
bool TGParser::AddSubClass(Record *CurRec, SubClassReference &SubClass) {
Record *SC = SubClass.Rec;
// Add all of the values in the subclass into the current class.
const std::vector<RecordVal> &Vals = SC->getValues();
for (unsigned i = 0, e = Vals.size(); i != e; ++i)
if (AddValue(CurRec, SubClass.RefLoc, Vals[i]))
return true;
const std::vector<std::string> &TArgs = SC->getTemplateArgs();
// Ensure that an appropriate number of template arguments are specified.
if (TArgs.size() < SubClass.TemplateArgs.size())
return Error(SubClass.RefLoc, "More template args specified than expected");
// Loop over all of the template arguments, setting them to the specified
// value or leaving them as the default if necessary.
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
if (i < SubClass.TemplateArgs.size()) {
// If a value is specified for this template arg, set it now.
if (SetValue(CurRec, SubClass.RefLoc, TArgs[i], std::vector<unsigned>(),
SubClass.TemplateArgs[i]))
return true;
// Resolve it next.
CurRec->resolveReferencesTo(CurRec->getValue(TArgs[i]));
// Now remove it.
CurRec->removeValue(TArgs[i]);
} else if (!CurRec->getValue(TArgs[i])->getValue()->isComplete()) {
return Error(SubClass.RefLoc,"Value not specified for template argument #"
+ utostr(i) + " (" + TArgs[i] + ") of subclass '" +
SC->getName() + "'!");
}
}
// Since everything went well, we can now set the "superclass" list for the
// current record.
const std::vector<Record*> &SCs = SC->getSuperClasses();
for (unsigned i = 0, e = SCs.size(); i != e; ++i) {
if (CurRec->isSubClassOf(SCs[i]))
return Error(SubClass.RefLoc,
"Already subclass of '" + SCs[i]->getName() + "'!\n");
CurRec->addSuperClass(SCs[i]);
}
if (CurRec->isSubClassOf(SC))
return Error(SubClass.RefLoc,
"Already subclass of '" + SC->getName() + "'!\n");
CurRec->addSuperClass(SC);
return false;
}
/// AddSubMultiClass - Add SubMultiClass as a subclass to
/// CurMC, resolving its template args as SubMultiClass's
/// template arguments.
bool TGParser::AddSubMultiClass(MultiClass *CurMC,
SubMultiClassReference &SubMultiClass) {
MultiClass *SMC = SubMultiClass.MC;
Record *CurRec = &CurMC->Rec;
const std::vector<RecordVal> &MCVals = CurRec->getValues();
// Add all of the values in the subclass into the current class.
const std::vector<RecordVal> &SMCVals = SMC->Rec.getValues();
for (unsigned i = 0, e = SMCVals.size(); i != e; ++i)
if (AddValue(CurRec, SubMultiClass.RefLoc, SMCVals[i]))
return true;
int newDefStart = CurMC->DefPrototypes.size();
// Add all of the defs in the subclass into the current multiclass.
for (MultiClass::RecordVector::const_iterator i = SMC->DefPrototypes.begin(),
iend = SMC->DefPrototypes.end();
i != iend;
++i) {
// Clone the def and add it to the current multiclass
Record *NewDef = new Record(**i);
// Add all of the values in the superclass into the current def.
for (unsigned i = 0, e = MCVals.size(); i != e; ++i)
if (AddValue(NewDef, SubMultiClass.RefLoc, MCVals[i]))
return true;
CurMC->DefPrototypes.push_back(NewDef);
}
const std::vector<std::string> &SMCTArgs = SMC->Rec.getTemplateArgs();
// Ensure that an appropriate number of template arguments are
// specified.
if (SMCTArgs.size() < SubMultiClass.TemplateArgs.size())
return Error(SubMultiClass.RefLoc,
"More template args specified than expected");
// Loop over all of the template arguments, setting them to the specified
// value or leaving them as the default if necessary.
for (unsigned i = 0, e = SMCTArgs.size(); i != e; ++i) {
if (i < SubMultiClass.TemplateArgs.size()) {
// If a value is specified for this template arg, set it in the
// superclass now.
if (SetValue(CurRec, SubMultiClass.RefLoc, SMCTArgs[i],
std::vector<unsigned>(),
SubMultiClass.TemplateArgs[i]))
return true;
// Resolve it next.
CurRec->resolveReferencesTo(CurRec->getValue(SMCTArgs[i]));
// Now remove it.
CurRec->removeValue(SMCTArgs[i]);
// If a value is specified for this template arg, set it in the
// new defs now.
for (MultiClass::RecordVector::iterator j =
CurMC->DefPrototypes.begin() + newDefStart,
jend = CurMC->DefPrototypes.end();
j != jend;
++j) {
Record *Def = *j;
if (SetValue(Def, SubMultiClass.RefLoc, SMCTArgs[i],
std::vector<unsigned>(),
SubMultiClass.TemplateArgs[i]))
return true;
// Resolve it next.
Def->resolveReferencesTo(Def->getValue(SMCTArgs[i]));
// Now remove it
Def->removeValue(SMCTArgs[i]);
}
} else if (!CurRec->getValue(SMCTArgs[i])->getValue()->isComplete()) {
return Error(SubMultiClass.RefLoc,
"Value not specified for template argument #"
+ utostr(i) + " (" + SMCTArgs[i] + ") of subclass '" +
SMC->Rec.getName() + "'!");
}
}
return false;
}
//===----------------------------------------------------------------------===//
// Parser Code
//===----------------------------------------------------------------------===//
/// isObjectStart - Return true if this is a valid first token for an Object.
static bool isObjectStart(tgtok::TokKind K) {
return K == tgtok::Class || K == tgtok::Def ||
K == tgtok::Defm || K == tgtok::Let || K == tgtok::MultiClass;
}
static std::string GetNewAnonymousName() {
static unsigned AnonCounter = 0;
return "anonymous."+utostr(AnonCounter++);
}
/// ParseObjectName - If an object name is specified, return it. Otherwise,
/// return an anonymous name.
/// ObjectName ::= ID
/// ObjectName ::= /*empty*/
///
std::string TGParser::ParseObjectName() {
if (Lex.getCode() != tgtok::Id)
return GetNewAnonymousName();
std::string Ret = Lex.getCurStrVal();
Lex.Lex();
return Ret;
}
/// ParseClassID - Parse and resolve a reference to a class name. This returns
/// null on error.
///
/// ClassID ::= ID
///
Record *TGParser::ParseClassID() {
if (Lex.getCode() != tgtok::Id) {
TokError("expected name for ClassID");
return 0;
}
Record *Result = Records.getClass(Lex.getCurStrVal());
if (Result == 0)
TokError("Couldn't find class '" + Lex.getCurStrVal() + "'");
Lex.Lex();
return Result;
}
/// ParseMultiClassID - Parse and resolve a reference to a multiclass name.
/// This returns null on error.
///
/// MultiClassID ::= ID
///
MultiClass *TGParser::ParseMultiClassID() {
if (Lex.getCode() != tgtok::Id) {
TokError("expected name for ClassID");
return 0;
}
MultiClass *Result = MultiClasses[Lex.getCurStrVal()];
if (Result == 0)
TokError("Couldn't find class '" + Lex.getCurStrVal() + "'");
Lex.Lex();
return Result;
}
Record *TGParser::ParseDefmID() {
if (Lex.getCode() != tgtok::Id) {
TokError("expected multiclass name");
return 0;
}
MultiClass *MC = MultiClasses[Lex.getCurStrVal()];
if (MC == 0) {
TokError("Couldn't find multiclass '" + Lex.getCurStrVal() + "'");
return 0;
}
Lex.Lex();
return &MC->Rec;
}
/// ParseSubClassReference - Parse a reference to a subclass or to a templated
/// subclass. This returns a SubClassRefTy with a null Record* on error.
///
/// SubClassRef ::= ClassID
/// SubClassRef ::= ClassID '<' ValueList '>'
///
SubClassReference TGParser::
ParseSubClassReference(Record *CurRec, bool isDefm) {
SubClassReference Result;
Result.RefLoc = Lex.getLoc();
if (isDefm)
Result.Rec = ParseDefmID();
else
Result.Rec = ParseClassID();
if (Result.Rec == 0) return Result;
// If there is no template arg list, we're done.
if (Lex.getCode() != tgtok::less)
return Result;
Lex.Lex(); // Eat the '<'
if (Lex.getCode() == tgtok::greater) {
TokError("subclass reference requires a non-empty list of template values");
Result.Rec = 0;
return Result;
}
Result.TemplateArgs = ParseValueList(CurRec, Result.Rec);
if (Result.TemplateArgs.empty()) {
Result.Rec = 0; // Error parsing value list.
return Result;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' in template value list");
Result.Rec = 0;
return Result;
}
Lex.Lex();
return Result;
}
/// ParseSubMultiClassReference - Parse a reference to a subclass or to a
/// templated submulticlass. This returns a SubMultiClassRefTy with a null
/// Record* on error.
///
/// SubMultiClassRef ::= MultiClassID
/// SubMultiClassRef ::= MultiClassID '<' ValueList '>'
///
SubMultiClassReference TGParser::
ParseSubMultiClassReference(MultiClass *CurMC) {
SubMultiClassReference Result;
Result.RefLoc = Lex.getLoc();
Result.MC = ParseMultiClassID();
if (Result.MC == 0) return Result;
// If there is no template arg list, we're done.
if (Lex.getCode() != tgtok::less)
return Result;
Lex.Lex(); // Eat the '<'
if (Lex.getCode() == tgtok::greater) {
TokError("subclass reference requires a non-empty list of template values");
Result.MC = 0;
return Result;
}
Result.TemplateArgs = ParseValueList(&CurMC->Rec, &Result.MC->Rec);
if (Result.TemplateArgs.empty()) {
Result.MC = 0; // Error parsing value list.
return Result;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' in template value list");
Result.MC = 0;
return Result;
}
Lex.Lex();
return Result;
}
/// ParseRangePiece - Parse a bit/value range.
/// RangePiece ::= INTVAL
/// RangePiece ::= INTVAL '-' INTVAL
/// RangePiece ::= INTVAL INTVAL
bool TGParser::ParseRangePiece(std::vector<unsigned> &Ranges) {
if (Lex.getCode() != tgtok::IntVal) {
TokError("expected integer or bitrange");
return true;
}
int64_t Start = Lex.getCurIntVal();
int64_t End;
if (Start < 0)
return TokError("invalid range, cannot be negative");
switch (Lex.Lex()) { // eat first character.
default:
Ranges.push_back(Start);
return false;
case tgtok::minus:
if (Lex.Lex() != tgtok::IntVal) {
TokError("expected integer value as end of range");
return true;
}
End = Lex.getCurIntVal();
break;
case tgtok::IntVal:
End = -Lex.getCurIntVal();
break;
}
if (End < 0)
return TokError("invalid range, cannot be negative");
Lex.Lex();
// Add to the range.
if (Start < End) {
for (; Start <= End; ++Start)
Ranges.push_back(Start);
} else {
for (; Start >= End; --Start)
Ranges.push_back(Start);
}
return false;
}
/// ParseRangeList - Parse a list of scalars and ranges into scalar values.
///
/// RangeList ::= RangePiece (',' RangePiece)*
///
std::vector<unsigned> TGParser::ParseRangeList() {
std::vector<unsigned> Result;
// Parse the first piece.
if (ParseRangePiece(Result))
return std::vector<unsigned>();
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // Eat the comma.
// Parse the next range piece.
if (ParseRangePiece(Result))
return std::vector<unsigned>();
}
return Result;
}
/// ParseOptionalRangeList - Parse either a range list in <>'s or nothing.
/// OptionalRangeList ::= '<' RangeList '>'
/// OptionalRangeList ::= /*empty*/
bool TGParser::ParseOptionalRangeList(std::vector<unsigned> &Ranges) {
if (Lex.getCode() != tgtok::less)
return false;
SMLoc StartLoc = Lex.getLoc();
Lex.Lex(); // eat the '<'
// Parse the range list.
Ranges = ParseRangeList();
if (Ranges.empty()) return true;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of range list");
return Error(StartLoc, "to match this '<'");
}
Lex.Lex(); // eat the '>'.
return false;
}
/// ParseOptionalBitList - Parse either a bit list in {}'s or nothing.
/// OptionalBitList ::= '{' RangeList '}'
/// OptionalBitList ::= /*empty*/
bool TGParser::ParseOptionalBitList(std::vector<unsigned> &Ranges) {
if (Lex.getCode() != tgtok::l_brace)
return false;
SMLoc StartLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
// Parse the range list.
Ranges = ParseRangeList();
if (Ranges.empty()) return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit list");
return Error(StartLoc, "to match this '{'");
}
Lex.Lex(); // eat the '}'.
return false;
}
/// ParseType - Parse and return a tblgen type. This returns null on error.
///
/// Type ::= STRING // string type
/// Type ::= BIT // bit type
/// Type ::= BITS '<' INTVAL '>' // bits<x> type
/// Type ::= INT // int type
/// Type ::= LIST '<' Type '>' // list<x> type
/// Type ::= CODE // code type
/// Type ::= DAG // dag type
/// Type ::= ClassID // Record Type
///
RecTy *TGParser::ParseType() {
switch (Lex.getCode()) {
default: TokError("Unknown token when expecting a type"); return 0;
case tgtok::String: Lex.Lex(); return StringRecTy::get();
case tgtok::Bit: Lex.Lex(); return BitRecTy::get();
case tgtok::Int: Lex.Lex(); return IntRecTy::get();
case tgtok::Code: Lex.Lex(); return CodeRecTy::get();
case tgtok::Dag: Lex.Lex(); return DagRecTy::get();
case tgtok::Id:
if (Record *R = ParseClassID()) return RecordRecTy::get(R);
return 0;
case tgtok::Bits: {
if (Lex.Lex() != tgtok::less) { // Eat 'bits'
TokError("expected '<' after bits type");
return 0;
}
if (Lex.Lex() != tgtok::IntVal) { // Eat '<'
TokError("expected integer in bits<n> type");
return 0;
}
uint64_t Val = Lex.getCurIntVal();
if (Lex.Lex() != tgtok::greater) { // Eat count.
TokError("expected '>' at end of bits<n> type");
return 0;
}
Lex.Lex(); // Eat '>'
return BitsRecTy::get(Val);
}
case tgtok::List: {
if (Lex.Lex() != tgtok::less) { // Eat 'bits'
TokError("expected '<' after list type");
return 0;
}
Lex.Lex(); // Eat '<'
RecTy *SubType = ParseType();
if (SubType == 0) return 0;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of list<ty> type");
return 0;
}
Lex.Lex(); // Eat '>'
return ListRecTy::get(SubType);
}
}
}
/// ParseIDValue - Parse an ID as a value and decode what it means.
///
/// IDValue ::= ID [def local value]
/// IDValue ::= ID [def template arg]
/// IDValue ::= ID [multiclass local value]
/// IDValue ::= ID [multiclass template argument]
/// IDValue ::= ID [def name]
///
const Init *TGParser::ParseIDValue(Record *CurRec) {
assert(Lex.getCode() == tgtok::Id && "Expected ID in ParseIDValue");
std::string Name = Lex.getCurStrVal();
SMLoc Loc = Lex.getLoc();
Lex.Lex();
return ParseIDValue(CurRec, Name, Loc);
}
/// ParseIDValue - This is just like ParseIDValue above, but it assumes the ID
/// has already been read.
const Init *TGParser::ParseIDValue(Record *CurRec,
const std::string &Name, SMLoc NameLoc) {
if (CurRec) {
if (const RecordVal *RV = CurRec->getValue(Name))
return VarInit::get(Name, RV->getType());
std::string TemplateArgName = CurRec->getName()+":"+Name;
if (CurRec->isTemplateArg(TemplateArgName)) {
const RecordVal *RV = CurRec->getValue(TemplateArgName);
assert(RV && "Template arg doesn't exist??");
return VarInit::get(TemplateArgName, RV->getType());
}
}
if (CurMultiClass) {
std::string MCName = CurMultiClass->Rec.getName()+"::"+Name;
if (CurMultiClass->Rec.isTemplateArg(MCName)) {
const RecordVal *RV = CurMultiClass->Rec.getValue(MCName);
assert(RV && "Template arg doesn't exist??");
return VarInit::get(MCName, RV->getType());
}
}
if (Record *D = Records.getDef(Name))
return DefInit::get(D);
Error(NameLoc, "Variable not defined: '" + Name + "'");
return 0;
}
/// ParseOperation - Parse an operator. This returns null on error.
///
/// Operation ::= XOperator ['<' Type '>'] '(' Args ')'
///
const Init *TGParser::ParseOperation(Record *CurRec) {
switch (Lex.getCode()) {
default:
TokError("unknown operation");
return 0;
break;
case tgtok::XHead:
case tgtok::XTail:
case tgtok::XEmpty:
case tgtok::XCast: { // Value ::= !unop '(' Value ')'
UnOpInit::UnaryOp Code;
RecTy *Type = 0;
switch (Lex.getCode()) {
default: assert(0 && "Unhandled code!");
case tgtok::XCast:
Lex.Lex(); // eat the operation
Code = UnOpInit::CAST;
Type = ParseOperatorType();
if (Type == 0) {
TokError("did not get type for unary operator");
return 0;
}
break;
case tgtok::XHead:
Lex.Lex(); // eat the operation
Code = UnOpInit::HEAD;
break;
case tgtok::XTail:
Lex.Lex(); // eat the operation
Code = UnOpInit::TAIL;
break;
case tgtok::XEmpty:
Lex.Lex(); // eat the operation
Code = UnOpInit::EMPTY;
Type = IntRecTy::get();
break;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after unary operator");
return 0;
}
Lex.Lex(); // eat the '('
const Init *LHS = ParseValue(CurRec);
if (LHS == 0) return 0;
if (Code == UnOpInit::HEAD
|| Code == UnOpInit::TAIL
|| Code == UnOpInit::EMPTY) {
const ListInit *LHSl = dynamic_cast<const ListInit*>(LHS);
const StringInit *LHSs = dynamic_cast<const StringInit*>(LHS);
const TypedInit *LHSt = dynamic_cast<const TypedInit*>(LHS);
if (LHSl == 0 && LHSs == 0 && LHSt == 0) {
TokError("expected list or string type argument in unary operator");
return 0;
}
if (LHSt) {
ListRecTy *LType = dynamic_cast<ListRecTy*>(LHSt->getType());
StringRecTy *SType = dynamic_cast<StringRecTy*>(LHSt->getType());
if (LType == 0 && SType == 0) {
TokError("expected list or string type argumnet in unary operator");
return 0;
}
}
if (Code == UnOpInit::HEAD
|| Code == UnOpInit::TAIL) {
if (LHSl == 0 && LHSt == 0) {
TokError("expected list type argumnet in unary operator");
return 0;
}
if (LHSl && LHSl->getSize() == 0) {
TokError("empty list argument in unary operator");
return 0;
}
if (LHSl) {
const Init *Item = LHSl->getElement(0);
const TypedInit *Itemt = dynamic_cast<const TypedInit*>(Item);
if (Itemt == 0) {
TokError("untyped list element in unary operator");
return 0;
}
if (Code == UnOpInit::HEAD) {
Type = Itemt->getType();
} else {
Type = ListRecTy::get(Itemt->getType());
}
} else {
assert(LHSt && "expected list type argument in unary operator");
ListRecTy *LType = dynamic_cast<ListRecTy*>(LHSt->getType());
if (LType == 0) {
TokError("expected list type argumnet in unary operator");
return 0;
}
if (Code == UnOpInit::HEAD) {
Type = LType->getElementType();
} else {
Type = LType;
}
}
}
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in unary operator");
return 0;
}
Lex.Lex(); // eat the ')'
return (UnOpInit::get(Code, LHS, Type))->Fold(CurRec, CurMultiClass);
}
case tgtok::XConcat:
case tgtok::XSRA:
case tgtok::XSRL:
case tgtok::XSHL:
case tgtok::XEq:
case tgtok::XStrConcat: { // Value ::= !binop '(' Value ',' Value ')'
tgtok::TokKind OpTok = Lex.getCode();
SMLoc OpLoc = Lex.getLoc();
Lex.Lex(); // eat the operation
BinOpInit::BinaryOp Code;
RecTy *Type = 0;
switch (OpTok) {
default: assert(0 && "Unhandled code!");
case tgtok::XConcat: Code = BinOpInit::CONCAT;Type = DagRecTy::get(); break;
case tgtok::XSRA: Code = BinOpInit::SRA; Type = IntRecTy::get(); break;
case tgtok::XSRL: Code = BinOpInit::SRL; Type = IntRecTy::get(); break;
case tgtok::XSHL: Code = BinOpInit::SHL; Type = IntRecTy::get(); break;
case tgtok::XEq: Code = BinOpInit::EQ; Type = BitRecTy::get(); break;
case tgtok::XStrConcat:
Code = BinOpInit::STRCONCAT;
Type = StringRecTy::get();
break;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after binary operator");
return 0;
}
Lex.Lex(); // eat the '('
SmallVector<const Init*, 2> InitList;
InitList.push_back(ParseValue(CurRec));
if (InitList.back() == 0) return 0;
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // eat the ','
InitList.push_back(ParseValue(CurRec));
if (InitList.back() == 0) return 0;
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in operator");
return 0;
}
Lex.Lex(); // eat the ')'
// We allow multiple operands to associative operators like !strconcat as
// shorthand for nesting them.
if (Code == BinOpInit::STRCONCAT) {
while (InitList.size() > 2) {
const Init *RHS = InitList.pop_back_val();
RHS = (BinOpInit::get(Code, InitList.back(), RHS, Type))
->Fold(CurRec, CurMultiClass);
InitList.back() = RHS;
}
}
if (InitList.size() == 2)
return (BinOpInit::get(Code, InitList[0], InitList[1], Type))
->Fold(CurRec, CurMultiClass);
Error(OpLoc, "expected two operands to operator");
return 0;
}
case tgtok::XIf:
case tgtok::XForEach:
case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')'
TernOpInit::TernaryOp Code;
RecTy *Type = 0;
tgtok::TokKind LexCode = Lex.getCode();
Lex.Lex(); // eat the operation
switch (LexCode) {
default: assert(0 && "Unhandled code!");
case tgtok::XIf:
Code = TernOpInit::IF;
break;
case tgtok::XForEach:
Code = TernOpInit::FOREACH;
break;
case tgtok::XSubst:
Code = TernOpInit::SUBST;
break;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after ternary operator");
return 0;
}
Lex.Lex(); // eat the '('
const Init *LHS = ParseValue(CurRec);
if (LHS == 0) return 0;
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' in ternary operator");
return 0;
}
Lex.Lex(); // eat the ','
const Init *MHS = ParseValue(CurRec);
if (MHS == 0) return 0;
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' in ternary operator");
return 0;
}
Lex.Lex(); // eat the ','
const Init *RHS = ParseValue(CurRec);
if (RHS == 0) return 0;
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in binary operator");
return 0;
}
Lex.Lex(); // eat the ')'
switch (LexCode) {
default: assert(0 && "Unhandled code!");
case tgtok::XIf: {
// FIXME: The `!if' operator doesn't handle non-TypedInit well at
// all. This can be made much more robust.
const TypedInit *MHSt = dynamic_cast<const TypedInit*>(MHS);
const TypedInit *RHSt = dynamic_cast<const TypedInit*>(RHS);
RecTy *MHSTy = 0;
RecTy *RHSTy = 0;
if (MHSt == 0 && RHSt == 0) {
const BitsInit *MHSbits = dynamic_cast<const BitsInit*>(MHS);
const BitsInit *RHSbits = dynamic_cast<const BitsInit*>(RHS);
if (MHSbits && RHSbits &&
MHSbits->getNumBits() == RHSbits->getNumBits()) {
Type = BitRecTy::get();
break;
} else {
const BitInit *MHSbit = dynamic_cast<const BitInit*>(MHS);
const BitInit *RHSbit = dynamic_cast<const BitInit*>(RHS);
if (MHSbit && RHSbit) {
Type = BitRecTy::get();
break;
}
}
} else if (MHSt != 0 && RHSt != 0) {
MHSTy = MHSt->getType();
RHSTy = RHSt->getType();
}
if (!MHSTy || !RHSTy) {
TokError("could not get type for !if");
return 0;
}
if (MHSTy->typeIsConvertibleTo(RHSTy)) {
Type = RHSTy;
} else if (RHSTy->typeIsConvertibleTo(MHSTy)) {
Type = MHSTy;
} else {
TokError("inconsistent types for !if");
return 0;
}
break;
}
case tgtok::XForEach: {
const TypedInit *MHSt = dynamic_cast<const TypedInit *>(MHS);
if (MHSt == 0) {
TokError("could not get type for !foreach");
return 0;
}
Type = MHSt->getType();
break;
}
case tgtok::XSubst: {
const TypedInit *RHSt = dynamic_cast<const TypedInit *>(RHS);
if (RHSt == 0) {
TokError("could not get type for !subst");
return 0;
}
Type = RHSt->getType();
break;
}
}
return (TernOpInit::get(Code, LHS, MHS, RHS, Type))->Fold(CurRec,
CurMultiClass);
}
}
TokError("could not parse operation");
return 0;
}
/// ParseOperatorType - Parse a type for an operator. This returns
/// null on error.
///
/// OperatorType ::= '<' Type '>'
///
RecTy *TGParser::ParseOperatorType() {
RecTy *Type = 0;
if (Lex.getCode() != tgtok::less) {
TokError("expected type name for operator");
return 0;
}
Lex.Lex(); // eat the <
Type = ParseType();
if (Type == 0) {
TokError("expected type name for operator");
return 0;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected type name for operator");
return 0;
}
Lex.Lex(); // eat the >
return Type;
}
/// ParseSimpleValue - Parse a tblgen value. This returns null on error.
///
/// SimpleValue ::= IDValue
/// SimpleValue ::= INTVAL
/// SimpleValue ::= STRVAL+
/// SimpleValue ::= CODEFRAGMENT
/// SimpleValue ::= '?'
/// SimpleValue ::= '{' ValueList '}'
/// SimpleValue ::= ID '<' ValueListNE '>'
/// SimpleValue ::= '[' ValueList ']'
/// SimpleValue ::= '(' IDValue DagArgList ')'
/// SimpleValue ::= CONCATTOK '(' Value ',' Value ')'
/// SimpleValue ::= SHLTOK '(' Value ',' Value ')'
/// SimpleValue ::= SRATOK '(' Value ',' Value ')'
/// SimpleValue ::= SRLTOK '(' Value ',' Value ')'
/// SimpleValue ::= STRCONCATTOK '(' Value ',' Value ')'
///
const Init *TGParser::ParseSimpleValue(Record *CurRec, RecTy *ItemType) {
const Init *R = 0;
switch (Lex.getCode()) {
default: TokError("Unknown token when parsing a value"); break;
case tgtok::IntVal: R = IntInit::get(Lex.getCurIntVal()); Lex.Lex(); break;
case tgtok::StrVal: {
std::string Val = Lex.getCurStrVal();
Lex.Lex();
// Handle multiple consecutive concatenated strings.
while (Lex.getCode() == tgtok::StrVal) {
Val += Lex.getCurStrVal();
Lex.Lex();
}
R = StringInit::get(Val);
break;
}
case tgtok::CodeFragment:
R = CodeInit::get(Lex.getCurStrVal());
Lex.Lex();
break;
case tgtok::question:
R = UnsetInit::get();
Lex.Lex();
break;
case tgtok::Id: {
SMLoc NameLoc = Lex.getLoc();
std::string Name = Lex.getCurStrVal();
if (Lex.Lex() != tgtok::less) // consume the Id.
return ParseIDValue(CurRec, Name, NameLoc); // Value ::= IDValue
// Value ::= ID '<' ValueListNE '>'
if (Lex.Lex() == tgtok::greater) {
TokError("expected non-empty value list");
return 0;
}
// This is a CLASS<initvalslist> expression. This is supposed to synthesize
// a new anonymous definition, deriving from CLASS<initvalslist> with no
// body.
Record *Class = Records.getClass(Name);
if (!Class) {
Error(NameLoc, "Expected a class name, got '" + Name + "'");
return 0;
}
std::vector<const Init*> ValueList = ParseValueList(CurRec, Class);
if (ValueList.empty()) return 0;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of value list");
return 0;
}
Lex.Lex(); // eat the '>'
// Create the new record, set it as CurRec temporarily.
static unsigned AnonCounter = 0;
Record *NewRec = new Record("anonymous.val."+utostr(AnonCounter++),
NameLoc,
Records);
SubClassReference SCRef;
SCRef.RefLoc = NameLoc;
SCRef.Rec = Class;
SCRef.TemplateArgs = ValueList;
// Add info about the subclass to NewRec.
if (AddSubClass(NewRec, SCRef))
return 0;
NewRec->resolveReferences();
Records.addDef(NewRec);
// The result of the expression is a reference to the new record.
return DefInit::get(NewRec);
}
case tgtok::l_brace: { // Value ::= '{' ValueList '}'
SMLoc BraceLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
std::vector<const Init*> Vals;
if (Lex.getCode() != tgtok::r_brace) {
Vals = ParseValueList(CurRec);
if (Vals.empty()) return 0;
}
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit list value");
return 0;
}
Lex.Lex(); // eat the '}'
SmallVector<const Init *, 16> NewBits(Vals.size());
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
const Init *Bit = Vals[i]->convertInitializerTo(BitRecTy::get());
if (Bit == 0) {
Error(BraceLoc, "Element #" + utostr(i) + " (" + Vals[i]->getAsString()+
") is not convertable to a bit");
return 0;
}
NewBits[Vals.size()-i-1] = Bit;
}
return BitsInit::get(NewBits);
}
case tgtok::l_square: { // Value ::= '[' ValueList ']'
Lex.Lex(); // eat the '['
std::vector<const Init*> Vals;
RecTy *DeducedEltTy = 0;
ListRecTy *GivenListTy = 0;
if (ItemType != 0) {
ListRecTy *ListType = dynamic_cast<ListRecTy*>(ItemType);
if (ListType == 0) {
std::stringstream s;
s << "Type mismatch for list, expected list type, got "
<< ItemType->getAsString();
TokError(s.str());
return 0;
}
GivenListTy = ListType;
}
if (Lex.getCode() != tgtok::r_square) {
Vals = ParseValueList(CurRec, 0,
GivenListTy ? GivenListTy->getElementType() : 0);
if (Vals.empty()) return 0;
}
if (Lex.getCode() != tgtok::r_square) {
TokError("expected ']' at end of list value");
return 0;
}
Lex.Lex(); // eat the ']'
RecTy *GivenEltTy = 0;
if (Lex.getCode() == tgtok::less) {
// Optional list element type
Lex.Lex(); // eat the '<'
GivenEltTy = ParseType();
if (GivenEltTy == 0) {
// Couldn't parse element type
return 0;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of list element type");
return 0;
}
Lex.Lex(); // eat the '>'
}
// Check elements
RecTy *EltTy = 0;
for (std::vector<const Init *>::iterator i = Vals.begin(), ie = Vals.end();
i != ie;
++i) {
const TypedInit *TArg = dynamic_cast<const TypedInit*>(*i);
if (TArg == 0) {
TokError("Untyped list element");
return 0;
}
if (EltTy != 0) {
EltTy = resolveTypes(EltTy, TArg->getType());
if (EltTy == 0) {
TokError("Incompatible types in list elements");
return 0;
}
} else {
EltTy = TArg->getType();
}
}
if (GivenEltTy != 0) {
if (EltTy != 0) {
// Verify consistency
if (!EltTy->typeIsConvertibleTo(GivenEltTy)) {
TokError("Incompatible types in list elements");
return 0;
}
}
EltTy = GivenEltTy;
}
if (EltTy == 0) {
if (ItemType == 0) {
TokError("No type for list");
return 0;
}
DeducedEltTy = GivenListTy->getElementType();
} else {
// Make sure the deduced type is compatible with the given type
if (GivenListTy) {
if (!EltTy->typeIsConvertibleTo(GivenListTy->getElementType())) {
TokError("Element type mismatch for list");
return 0;
}
}
DeducedEltTy = EltTy;
}
return ListInit::get(Vals, DeducedEltTy);
}
case tgtok::l_paren: { // Value ::= '(' IDValue DagArgList ')'
Lex.Lex(); // eat the '('
if (Lex.getCode() != tgtok::Id && Lex.getCode() != tgtok::XCast) {
TokError("expected identifier in dag init");
return 0;
}
const Init *Operator = ParseValue(CurRec);
if (Operator == 0) return 0;
// If the operator name is present, parse it.
std::string OperatorName;
if (Lex.getCode() == tgtok::colon) {
if (Lex.Lex() != tgtok::VarName) { // eat the ':'
TokError("expected variable name in dag operator");
return 0;
}
OperatorName = Lex.getCurStrVal();
Lex.Lex(); // eat the VarName.
}
std::vector<std::pair<const llvm::Init*, std::string> > DagArgs;
if (Lex.getCode() != tgtok::r_paren) {
DagArgs = ParseDagArgList(CurRec);
if (DagArgs.empty()) return 0;
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in dag init");
return 0;
}
Lex.Lex(); // eat the ')'
return DagInit::get(Operator, OperatorName, DagArgs);
}
case tgtok::XHead:
case tgtok::XTail:
case tgtok::XEmpty:
case tgtok::XCast: // Value ::= !unop '(' Value ')'
case tgtok::XConcat:
case tgtok::XSRA:
case tgtok::XSRL:
case tgtok::XSHL:
case tgtok::XEq:
case tgtok::XStrConcat: // Value ::= !binop '(' Value ',' Value ')'
case tgtok::XIf:
case tgtok::XForEach:
case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')'
return ParseOperation(CurRec);
}
}
return R;
}
/// ParseValue - Parse a tblgen value. This returns null on error.
///
/// Value ::= SimpleValue ValueSuffix*
/// ValueSuffix ::= '{' BitList '}'
/// ValueSuffix ::= '[' BitList ']'
/// ValueSuffix ::= '.' ID
///
const Init *TGParser::ParseValue(Record *CurRec, RecTy *ItemType) {
const Init *Result = ParseSimpleValue(CurRec, ItemType);
if (Result == 0) return 0;
// Parse the suffixes now if present.
while (1) {
switch (Lex.getCode()) {
default: return Result;
case tgtok::l_brace: {
SMLoc CurlyLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
std::vector<unsigned> Ranges = ParseRangeList();
if (Ranges.empty()) return 0;
// Reverse the bitlist.
std::reverse(Ranges.begin(), Ranges.end());
Result = Result->convertInitializerBitRange(Ranges);
if (Result == 0) {
Error(CurlyLoc, "Invalid bit range for value");
return 0;
}
// Eat the '}'.
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit range list");
return 0;
}
Lex.Lex();
break;
}
case tgtok::l_square: {
SMLoc SquareLoc = Lex.getLoc();
Lex.Lex(); // eat the '['
std::vector<unsigned> Ranges = ParseRangeList();
if (Ranges.empty()) return 0;
Result = Result->convertInitListSlice(Ranges);
if (Result == 0) {
Error(SquareLoc, "Invalid range for list slice");
return 0;
}
// Eat the ']'.
if (Lex.getCode() != tgtok::r_square) {
TokError("expected ']' at end of list slice");
return 0;
}
Lex.Lex();
break;
}
case tgtok::period:
if (Lex.Lex() != tgtok::Id) { // eat the .
TokError("expected field identifier after '.'");
return 0;
}
if (!Result->getFieldType(Lex.getCurStrVal())) {
TokError("Cannot access field '" + Lex.getCurStrVal() + "' of value '" +
Result->getAsString() + "'");
return 0;
}
Result = FieldInit::get(Result, Lex.getCurStrVal());
Lex.Lex(); // eat field name
break;
}
}
}
/// ParseDagArgList - Parse the argument list for a dag literal expression.
///
/// ParseDagArgList ::= Value (':' VARNAME)?
/// ParseDagArgList ::= ParseDagArgList ',' Value (':' VARNAME)?
std::vector<std::pair<const llvm::Init*, std::string> >
TGParser::ParseDagArgList(Record *CurRec) {
std::vector<std::pair<const llvm::Init*, std::string> > Result;
while (1) {
const Init *Val = ParseValue(CurRec);
if (Val == 0) return std::vector<std::pair<const llvm::Init*, std::string> >();
// If the variable name is present, add it.
std::string VarName;
if (Lex.getCode() == tgtok::colon) {
if (Lex.Lex() != tgtok::VarName) { // eat the ':'
TokError("expected variable name in dag literal");
return std::vector<std::pair<const llvm::Init*, std::string> >();
}
VarName = Lex.getCurStrVal();
Lex.Lex(); // eat the VarName.
}
Result.push_back(std::make_pair(Val, VarName));
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat the ','
}
return Result;
}
/// ParseValueList - Parse a comma separated list of values, returning them as a
/// vector. Note that this always expects to be able to parse at least one
/// value. It returns an empty list if this is not possible.
///
/// ValueList ::= Value (',' Value)
///
std::vector<const Init*> TGParser::ParseValueList(Record *CurRec, Record *ArgsRec,
RecTy *EltTy) {
std::vector<const Init*> Result;
RecTy *ItemType = EltTy;
unsigned int ArgN = 0;
if (ArgsRec != 0 && EltTy == 0) {
const std::vector<std::string> &TArgs = ArgsRec->getTemplateArgs();
const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]);
assert(RV && "Template argument record not found??");
ItemType = RV->getType();
++ArgN;
}
Result.push_back(ParseValue(CurRec, ItemType));
if (Result.back() == 0) return std::vector<const Init*>();
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // Eat the comma
if (ArgsRec != 0 && EltTy == 0) {
const std::vector<std::string> &TArgs = ArgsRec->getTemplateArgs();
if (ArgN >= TArgs.size()) {
TokError("too many template arguments");
return std::vector<const Init*>();
}
const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]);
assert(RV && "Template argument record not found??");
ItemType = RV->getType();
++ArgN;
}
Result.push_back(ParseValue(CurRec, ItemType));
if (Result.back() == 0) return std::vector<const Init*>();
}
return Result;
}
/// ParseDeclaration - Read a declaration, returning the name of field ID, or an
/// empty string on error. This can happen in a number of different context's,
/// including within a def or in the template args for a def (which which case
/// CurRec will be non-null) and within the template args for a multiclass (in
/// which case CurRec will be null, but CurMultiClass will be set). This can
/// also happen within a def that is within a multiclass, which will set both
/// CurRec and CurMultiClass.
///
/// Declaration ::= FIELD? Type ID ('=' Value)?
///
std::string TGParser::ParseDeclaration(Record *CurRec,
bool ParsingTemplateArgs) {
// Read the field prefix if present.
bool HasField = Lex.getCode() == tgtok::Field;
if (HasField) Lex.Lex();
RecTy *Type = ParseType();
if (Type == 0) return "";
if (Lex.getCode() != tgtok::Id) {
TokError("Expected identifier in declaration");
return "";
}
SMLoc IdLoc = Lex.getLoc();
std::string DeclName = Lex.getCurStrVal();
Lex.Lex();
if (ParsingTemplateArgs) {
if (CurRec) {
DeclName = CurRec->getName() + ":" + DeclName;
} else {
assert(CurMultiClass);
}
if (CurMultiClass)
DeclName = CurMultiClass->Rec.getName() + "::" + DeclName;
}
// Add the value.
if (AddValue(CurRec, IdLoc, RecordVal(DeclName, Type, HasField)))
return "";
// If a value is present, parse it.
if (Lex.getCode() == tgtok::equal) {
Lex.Lex();
SMLoc ValLoc = Lex.getLoc();
const Init *Val = ParseValue(CurRec, Type);
if (Val == 0 ||
SetValue(CurRec, ValLoc, DeclName, std::vector<unsigned>(), Val))
return "";
}
return DeclName;
}
/// ParseTemplateArgList - Read a template argument list, which is a non-empty
/// sequence of template-declarations in <>'s. If CurRec is non-null, these are
/// template args for a def, which may or may not be in a multiclass. If null,
/// these are the template args for a multiclass.
///
/// TemplateArgList ::= '<' Declaration (',' Declaration)* '>'
///
bool TGParser::ParseTemplateArgList(Record *CurRec) {
assert(Lex.getCode() == tgtok::less && "Not a template arg list!");
Lex.Lex(); // eat the '<'
Record *TheRecToAddTo = CurRec ? CurRec : &CurMultiClass->Rec;
// Read the first declaration.
std::string TemplArg = ParseDeclaration(CurRec, true/*templateargs*/);
if (TemplArg.empty())
return true;
TheRecToAddTo->addTemplateArg(TemplArg);
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // eat the ','
// Read the following declarations.
TemplArg = ParseDeclaration(CurRec, true/*templateargs*/);
if (TemplArg.empty())
return true;
TheRecToAddTo->addTemplateArg(TemplArg);
}
if (Lex.getCode() != tgtok::greater)
return TokError("expected '>' at end of template argument list");
Lex.Lex(); // eat the '>'.
return false;
}
/// ParseBodyItem - Parse a single item at within the body of a def or class.
///
/// BodyItem ::= Declaration ';'
/// BodyItem ::= LET ID OptionalBitList '=' Value ';'
bool TGParser::ParseBodyItem(Record *CurRec) {
if (Lex.getCode() != tgtok::Let) {
if (ParseDeclaration(CurRec, false).empty())
return true;
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' after declaration");
Lex.Lex();
return false;
}
// LET ID OptionalRangeList '=' Value ';'
if (Lex.Lex() != tgtok::Id)
return TokError("expected field identifier after let");
SMLoc IdLoc = Lex.getLoc();
std::string FieldName = Lex.getCurStrVal();
Lex.Lex(); // eat the field name.
std::vector<unsigned> BitList;
if (ParseOptionalBitList(BitList))
return true;
std::reverse(BitList.begin(), BitList.end());
if (Lex.getCode() != tgtok::equal)
return TokError("expected '=' in let expression");
Lex.Lex(); // eat the '='.
RecordVal *Field = CurRec->getValue(FieldName);
if (Field == 0)
return TokError("Value '" + FieldName + "' unknown!");
RecTy *Type = Field->getType();
const Init *Val = ParseValue(CurRec, Type);
if (Val == 0) return true;
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' after let expression");
Lex.Lex();
return SetValue(CurRec, IdLoc, FieldName, BitList, Val);
}
/// ParseBody - Read the body of a class or def. Return true on error, false on
/// success.
///
/// Body ::= ';'
/// Body ::= '{' BodyList '}'
/// BodyList BodyItem*
///
bool TGParser::ParseBody(Record *CurRec) {
// If this is a null definition, just eat the semi and return.
if (Lex.getCode() == tgtok::semi) {
Lex.Lex();
return false;
}
if (Lex.getCode() != tgtok::l_brace)
return TokError("Expected ';' or '{' to start body");
// Eat the '{'.
Lex.Lex();
while (Lex.getCode() != tgtok::r_brace)
if (ParseBodyItem(CurRec))
return true;
// Eat the '}'.
Lex.Lex();
return false;
}
/// ParseObjectBody - Parse the body of a def or class. This consists of an
/// optional ClassList followed by a Body. CurRec is the current def or class
/// that is being parsed.
///
/// ObjectBody ::= BaseClassList Body
/// BaseClassList ::= /*empty*/
/// BaseClassList ::= ':' BaseClassListNE
/// BaseClassListNE ::= SubClassRef (',' SubClassRef)*
///
bool TGParser::ParseObjectBody(Record *CurRec) {
// If there is a baseclass list, read it.
if (Lex.getCode() == tgtok::colon) {
Lex.Lex();
// Read all of the subclasses.
SubClassReference SubClass = ParseSubClassReference(CurRec, false);
while (1) {
// Check for error.
if (SubClass.Rec == 0) return true;
// Add it.
if (AddSubClass(CurRec, SubClass))
return true;
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubClass = ParseSubClassReference(CurRec, false);
}
}
// Process any variables on the let stack.
for (unsigned i = 0, e = LetStack.size(); i != e; ++i)
for (unsigned j = 0, e = LetStack[i].size(); j != e; ++j)
if (SetValue(CurRec, LetStack[i][j].Loc, LetStack[i][j].Name,
LetStack[i][j].Bits, LetStack[i][j].Value))
return true;
return ParseBody(CurRec);
}
/// ParseDef - Parse and return a top level or multiclass def, return the record
/// corresponding to it. This returns null on error.
///
/// DefInst ::= DEF ObjectName ObjectBody
///
bool TGParser::ParseDef(MultiClass *CurMultiClass) {
SMLoc DefLoc = Lex.getLoc();
assert(Lex.getCode() == tgtok::Def && "Unknown tok");
Lex.Lex(); // Eat the 'def' token.
// Parse ObjectName and make a record for it.
Record *CurRec = new Record(ParseObjectName(), DefLoc, Records);
if (!CurMultiClass) {
// Top-level def definition.
// Ensure redefinition doesn't happen.
if (Records.getDef(CurRec->getName())) {
Error(DefLoc, "def '" + CurRec->getName() + "' already defined");
return true;
}
Records.addDef(CurRec);
} else {
// Otherwise, a def inside a multiclass, add it to the multiclass.
for (unsigned i = 0, e = CurMultiClass->DefPrototypes.size(); i != e; ++i)
if (CurMultiClass->DefPrototypes[i]->getName() == CurRec->getName()) {
Error(DefLoc, "def '" + CurRec->getName() +
"' already defined in this multiclass!");
return true;
}
CurMultiClass->DefPrototypes.push_back(CurRec);
}
if (ParseObjectBody(CurRec))
return true;
if (CurMultiClass == 0) // Def's in multiclasses aren't really defs.
CurRec->resolveReferences();
// If ObjectBody has template arguments, it's an error.
assert(CurRec->getTemplateArgs().empty() && "How'd this get template args?");
if (CurMultiClass) {
// Copy the template arguments for the multiclass into the def.
const std::vector<std::string> &TArgs =
CurMultiClass->Rec.getTemplateArgs();
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
const RecordVal *RV = CurMultiClass->Rec.getValue(TArgs[i]);
assert(RV && "Template arg doesn't exist?");
CurRec->addValue(*RV);
}
}
return false;
}
/// ParseClass - Parse a tblgen class definition.
///
/// ClassInst ::= CLASS ID TemplateArgList? ObjectBody
///
bool TGParser::ParseClass() {
assert(Lex.getCode() == tgtok::Class && "Unexpected token!");
Lex.Lex();
if (Lex.getCode() != tgtok::Id)
return TokError("expected class name after 'class' keyword");
Record *CurRec = Records.getClass(Lex.getCurStrVal());
if (CurRec) {
// If the body was previously defined, this is an error.
if (!CurRec->getValues().empty() ||
!CurRec->getSuperClasses().empty() ||
!CurRec->getTemplateArgs().empty())
return TokError("Class '" + CurRec->getName() + "' already defined");
} else {
// If this is the first reference to this class, create and add it.
CurRec = new Record(Lex.getCurStrVal(), Lex.getLoc(), Records);
Records.addClass(CurRec);
}
Lex.Lex(); // eat the name.
// If there are template args, parse them.
if (Lex.getCode() == tgtok::less)
if (ParseTemplateArgList(CurRec))
return true;
// Finally, parse the object body.
return ParseObjectBody(CurRec);
}
/// ParseLetList - Parse a non-empty list of assignment expressions into a list
/// of LetRecords.
///
/// LetList ::= LetItem (',' LetItem)*
/// LetItem ::= ID OptionalRangeList '=' Value
///
std::vector<LetRecord> TGParser::ParseLetList() {
std::vector<LetRecord> Result;
while (1) {
if (Lex.getCode() != tgtok::Id) {
TokError("expected identifier in let definition");
return std::vector<LetRecord>();
}
std::string Name = Lex.getCurStrVal();
SMLoc NameLoc = Lex.getLoc();
Lex.Lex(); // Eat the identifier.
// Check for an optional RangeList.
std::vector<unsigned> Bits;
if (ParseOptionalRangeList(Bits))
return std::vector<LetRecord>();
std::reverse(Bits.begin(), Bits.end());
if (Lex.getCode() != tgtok::equal) {
TokError("expected '=' in let expression");
return std::vector<LetRecord>();
}
Lex.Lex(); // eat the '='.
const Init *Val = ParseValue(0);
if (Val == 0) return std::vector<LetRecord>();
// Now that we have everything, add the record.
Result.push_back(LetRecord(Name, Bits, Val, NameLoc));
if (Lex.getCode() != tgtok::comma)
return Result;
Lex.Lex(); // eat the comma.
}
}
/// ParseTopLevelLet - Parse a 'let' at top level. This can be a couple of
/// different related productions. This works inside multiclasses too.
///
/// Object ::= LET LetList IN '{' ObjectList '}'
/// Object ::= LET LetList IN Object
///
bool TGParser::ParseTopLevelLet(MultiClass *CurMultiClass) {
assert(Lex.getCode() == tgtok::Let && "Unexpected token");
Lex.Lex();
// Add this entry to the let stack.
std::vector<LetRecord> LetInfo = ParseLetList();
if (LetInfo.empty()) return true;
LetStack.push_back(LetInfo);
if (Lex.getCode() != tgtok::In)
return TokError("expected 'in' at end of top-level 'let'");
Lex.Lex();
// If this is a scalar let, just handle it now
if (Lex.getCode() != tgtok::l_brace) {
// LET LetList IN Object
if (ParseObject(CurMultiClass))
return true;
} else { // Object ::= LETCommand '{' ObjectList '}'
SMLoc BraceLoc = Lex.getLoc();
// Otherwise, this is a group let.
Lex.Lex(); // eat the '{'.
// Parse the object list.
if (ParseObjectList(CurMultiClass))
return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of top level let command");
return Error(BraceLoc, "to match this '{'");
}
Lex.Lex();
}
// Outside this let scope, this let block is not active.
LetStack.pop_back();
return false;
}
/// ParseMultiClass - Parse a multiclass definition.
///
/// MultiClassInst ::= MULTICLASS ID TemplateArgList?
/// ':' BaseMultiClassList '{' MultiClassDef+ '}'
///
bool TGParser::ParseMultiClass() {
assert(Lex.getCode() == tgtok::MultiClass && "Unexpected token");
Lex.Lex(); // Eat the multiclass token.
if (Lex.getCode() != tgtok::Id)
return TokError("expected identifier after multiclass for name");
std::string Name = Lex.getCurStrVal();
if (MultiClasses.count(Name))
return TokError("multiclass '" + Name + "' already defined");
CurMultiClass = MultiClasses[Name] = new MultiClass(Name,
Lex.getLoc(), Records);
Lex.Lex(); // Eat the identifier.
// If there are template args, parse them.
if (Lex.getCode() == tgtok::less)
if (ParseTemplateArgList(0))
return true;
bool inherits = false;
// If there are submulticlasses, parse them.
if (Lex.getCode() == tgtok::colon) {
inherits = true;
Lex.Lex();
// Read all of the submulticlasses.
SubMultiClassReference SubMultiClass =
ParseSubMultiClassReference(CurMultiClass);
while (1) {
// Check for error.
if (SubMultiClass.MC == 0) return true;
// Add it.
if (AddSubMultiClass(CurMultiClass, SubMultiClass))
return true;
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubMultiClass = ParseSubMultiClassReference(CurMultiClass);
}
}
if (Lex.getCode() != tgtok::l_brace) {
if (!inherits)
return TokError("expected '{' in multiclass definition");
else if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' in multiclass definition");
else
Lex.Lex(); // eat the ';'.
} else {
if (Lex.Lex() == tgtok::r_brace) // eat the '{'.
return TokError("multiclass must contain at least one def");
while (Lex.getCode() != tgtok::r_brace) {
switch (Lex.getCode()) {
default:
return TokError("expected 'let', 'def' or 'defm' in multiclass body");
case tgtok::Let:
case tgtok::Def:
case tgtok::Defm:
if (ParseObject(CurMultiClass))
return true;
break;
}
}
Lex.Lex(); // eat the '}'.
}
CurMultiClass = 0;
return false;
}
/// ParseDefm - Parse the instantiation of a multiclass.
///
/// DefMInst ::= DEFM ID ':' DefmSubClassRef ';'
///
bool TGParser::ParseDefm(MultiClass *CurMultiClass) {
assert(Lex.getCode() == tgtok::Defm && "Unexpected token!");
std::string DefmPrefix;
if (Lex.Lex() == tgtok::Id) { // eat the defm.
DefmPrefix = Lex.getCurStrVal();
Lex.Lex(); // Eat the defm prefix.
}
SMLoc DefmPrefixLoc = Lex.getLoc();
if (Lex.getCode() != tgtok::colon)
return TokError("expected ':' after defm identifier");
// Keep track of the new generated record definitions.
std::vector<Record*> NewRecDefs;
// This record also inherits from a regular class (non-multiclass)?
bool InheritFromClass = false;
// eat the colon.
Lex.Lex();
SMLoc SubClassLoc = Lex.getLoc();
SubClassReference Ref = ParseSubClassReference(0, true);
while (1) {
if (Ref.Rec == 0) return true;
// To instantiate a multiclass, we need to first get the multiclass, then
// instantiate each def contained in the multiclass with the SubClassRef
// template parameters.
MultiClass *MC = MultiClasses[Ref.Rec->getName()];
assert(MC && "Didn't lookup multiclass correctly?");
std::vector<const Init*> &TemplateVals = Ref.TemplateArgs;
// Verify that the correct number of template arguments were specified.
const std::vector<std::string> &TArgs = MC->Rec.getTemplateArgs();
if (TArgs.size() < TemplateVals.size())
return Error(SubClassLoc,
"more template args specified than multiclass expects");
// Loop over all the def's in the multiclass, instantiating each one.
for (unsigned i = 0, e = MC->DefPrototypes.size(); i != e; ++i) {
Record *DefProto = MC->DefPrototypes[i];
// Add in the defm name. If the defm prefix is empty, give each
// instantiated def a unique name. Otherwise, if "#NAME#" exists in the
// name, substitute the prefix for #NAME#. Otherwise, use the defm name
// as a prefix.
std::string DefName = DefProto->getName();
if (DefmPrefix.empty()) {
DefName = GetNewAnonymousName();
} else {
std::string::size_type idx = DefName.find("#NAME#");
if (idx != std::string::npos) {
DefName.replace(idx, 6, DefmPrefix);
} else {
// Add the suffix to the defm name to get the new name.
DefName = DefmPrefix + DefName;
}
}
Record *CurRec = new Record(DefName, DefmPrefixLoc, Records);
SubClassReference Ref;
Ref.RefLoc = DefmPrefixLoc;
Ref.Rec = DefProto;
AddSubClass(CurRec, Ref);
// Loop over all of the template arguments, setting them to the specified
// value or leaving them as the default if necessary.
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
// Check if a value is specified for this temp-arg.
if (i < TemplateVals.size()) {
// Set it now.
if (SetValue(CurRec, DefmPrefixLoc, TArgs[i], std::vector<unsigned>(),
TemplateVals[i]))
return true;
// Resolve it next.
CurRec->resolveReferencesTo(CurRec->getValue(TArgs[i]));
// Now remove it.
CurRec->removeValue(TArgs[i]);
} else if (!CurRec->getValue(TArgs[i])->getValue()->isComplete()) {
return Error(SubClassLoc,
"value not specified for template argument #"+
utostr(i) + " (" + TArgs[i] + ") of multiclassclass '" +
MC->Rec.getName() + "'");
}
}
// If the mdef is inside a 'let' expression, add to each def.
for (unsigned i = 0, e = LetStack.size(); i != e; ++i)
for (unsigned j = 0, e = LetStack[i].size(); j != e; ++j)
if (SetValue(CurRec, LetStack[i][j].Loc, LetStack[i][j].Name,
LetStack[i][j].Bits, LetStack[i][j].Value)) {
Error(DefmPrefixLoc, "when instantiating this defm");
return true;
}
// Ensure redefinition doesn't happen.
if (Records.getDef(CurRec->getName()))
return Error(DefmPrefixLoc, "def '" + CurRec->getName() +
"' already defined, instantiating defm with subdef '" +
DefProto->getName() + "'");
// Don't create a top level definition for defm inside multiclasses,
// instead, only update the prototypes and bind the template args
// with the new created definition.
if (CurMultiClass) {
for (unsigned i = 0, e = CurMultiClass->DefPrototypes.size();
i != e; ++i) {
if (CurMultiClass->DefPrototypes[i]->getName() == CurRec->getName()) {
Error(DefmPrefixLoc, "defm '" + CurRec->getName() +
"' already defined in this multiclass!");
return 0;
}
}
CurMultiClass->DefPrototypes.push_back(CurRec);
// Copy the template arguments for the multiclass into the new def.
const std::vector<std::string> &TA =
CurMultiClass->Rec.getTemplateArgs();
for (unsigned i = 0, e = TA.size(); i != e; ++i) {
const RecordVal *RV = CurMultiClass->Rec.getValue(TA[i]);
assert(RV && "Template arg doesn't exist?");
CurRec->addValue(*RV);
}
} else {
Records.addDef(CurRec);
}
NewRecDefs.push_back(CurRec);
}
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubClassLoc = Lex.getLoc();
// A defm can inherit from regular classes (non-multiclass) as
// long as they come in the end of the inheritance list.
InheritFromClass = (Records.getClass(Lex.getCurStrVal()) != 0);
if (InheritFromClass)
break;
Ref = ParseSubClassReference(0, true);
}
if (InheritFromClass) {
// Process all the classes to inherit as if they were part of a
// regular 'def' and inherit all record values.
SubClassReference SubClass = ParseSubClassReference(0, false);
while (1) {
// Check for error.
if (SubClass.Rec == 0) return true;
// Get the expanded definition prototypes and teach them about
// the record values the current class to inherit has
for (unsigned i = 0, e = NewRecDefs.size(); i != e; ++i) {
Record *CurRec = NewRecDefs[i];
// Add it.
if (AddSubClass(CurRec, SubClass))
return true;
// Process any variables on the let stack.
for (unsigned i = 0, e = LetStack.size(); i != e; ++i)
for (unsigned j = 0, e = LetStack[i].size(); j != e; ++j)
if (SetValue(CurRec, LetStack[i][j].Loc, LetStack[i][j].Name,
LetStack[i][j].Bits, LetStack[i][j].Value))
return true;
}
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubClass = ParseSubClassReference(0, false);
}
}
if (!CurMultiClass)
for (unsigned i = 0, e = NewRecDefs.size(); i != e; ++i)
NewRecDefs[i]->resolveReferences();
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' at end of defm");
Lex.Lex();
return false;
}
/// ParseObject
/// Object ::= ClassInst
/// Object ::= DefInst
/// Object ::= MultiClassInst
/// Object ::= DefMInst
/// Object ::= LETCommand '{' ObjectList '}'
/// Object ::= LETCommand Object
bool TGParser::ParseObject(MultiClass *MC) {
switch (Lex.getCode()) {
default:
return TokError("Expected class, def, defm, multiclass or let definition");
case tgtok::Let: return ParseTopLevelLet(MC);
case tgtok::Def: return ParseDef(MC);
case tgtok::Defm: return ParseDefm(MC);
case tgtok::Class: return ParseClass();
case tgtok::MultiClass: return ParseMultiClass();
}
}
/// ParseObjectList
/// ObjectList :== Object*
bool TGParser::ParseObjectList(MultiClass *MC) {
while (isObjectStart(Lex.getCode())) {
if (ParseObject(MC))
return true;
}
return false;
}
bool TGParser::ParseFile() {
Lex.Lex(); // Prime the lexer.
if (ParseObjectList()) return true;
// If we have unread input at the end of the file, report it.
if (Lex.getCode() == tgtok::Eof)
return false;
return TokError("Unexpected input at top level");
}