llvm-mirror/lib/CodeGen/VirtRegMap.h
2007-03-20 08:13:50 +00:00

212 lines
7.6 KiB
C++

//===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a virtual register map. This maps virtual registers to
// physical registers and virtual registers to stack slots. It is created and
// updated by a register allocator and then used by a machine code rewriter that
// adds spill code and rewrites virtual into physical register references.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_VIRTREGMAP_H
#define LLVM_CODEGEN_VIRTREGMAP_H
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/Support/Streams.h"
#include <map>
namespace llvm {
class MachineInstr;
class TargetInstrInfo;
class VirtRegMap {
public:
enum {
NO_PHYS_REG = 0,
NO_STACK_SLOT = ~0 >> 1,
MAX_STACK_SLOT = (1 << 18)-1
};
enum ModRef { isRef = 1, isMod = 2, isModRef = 3 };
typedef std::multimap<MachineInstr*,
std::pair<unsigned, ModRef> > MI2VirtMapTy;
private:
const TargetInstrInfo &TII;
MachineFunction &MF;
/// Virt2PhysMap - This is a virtual to physical register
/// mapping. Each virtual register is required to have an entry in
/// it; even spilled virtual registers (the register mapped to a
/// spilled register is the temporary used to load it from the
/// stack).
IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysMap;
/// Virt2StackSlotMap - This is virtual register to stack slot
/// mapping. Each spilled virtual register has an entry in it
/// which corresponds to the stack slot this register is spilled
/// at.
IndexedMap<int, VirtReg2IndexFunctor> Virt2StackSlotMap;
/// MI2VirtMap - This is MachineInstr to virtual register
/// mapping. In the case of memory spill code being folded into
/// instructions, we need to know which virtual register was
/// read/written by this instruction.
MI2VirtMapTy MI2VirtMap;
/// ReMatMap - This is irtual register to re-materialized instruction
/// mapping. Each virtual register whose definition is going to be
/// re-materialized has an entry in it.
std::map<unsigned, const MachineInstr*> ReMatMap;
/// ReMatId - Instead of assigning a stack slot to a to be rematerialized
/// virtaul register, an unique id is being assinged. This keeps track of
/// the highest id used so far. Note, this starts at (1<<18) to avoid
/// conflicts with stack slot numbers.
int ReMatId;
VirtRegMap(const VirtRegMap&); // DO NOT IMPLEMENT
void operator=(const VirtRegMap&); // DO NOT IMPLEMENT
public:
VirtRegMap(MachineFunction &mf);
void grow();
/// @brief returns true if the specified virtual register is
/// mapped to a physical register
bool hasPhys(unsigned virtReg) const {
return getPhys(virtReg) != NO_PHYS_REG;
}
/// @brief returns the physical register mapped to the specified
/// virtual register
unsigned getPhys(unsigned virtReg) const {
assert(MRegisterInfo::isVirtualRegister(virtReg));
return Virt2PhysMap[virtReg];
}
/// @brief creates a mapping for the specified virtual register to
/// the specified physical register
void assignVirt2Phys(unsigned virtReg, unsigned physReg) {
assert(MRegisterInfo::isVirtualRegister(virtReg) &&
MRegisterInfo::isPhysicalRegister(physReg));
assert(Virt2PhysMap[virtReg] == NO_PHYS_REG &&
"attempt to assign physical register to already mapped "
"virtual register");
Virt2PhysMap[virtReg] = physReg;
}
/// @brief clears the specified virtual register's, physical
/// register mapping
void clearVirt(unsigned virtReg) {
assert(MRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2PhysMap[virtReg] != NO_PHYS_REG &&
"attempt to clear a not assigned virtual register");
Virt2PhysMap[virtReg] = NO_PHYS_REG;
}
/// @brief clears all virtual to physical register mappings
void clearAllVirt() {
Virt2PhysMap.clear();
grow();
}
/// @brief returns true is the specified virtual register is
/// mapped to a stack slot
bool hasStackSlot(unsigned virtReg) const {
return getStackSlot(virtReg) != NO_STACK_SLOT;
}
/// @brief returns the stack slot mapped to the specified virtual
/// register
int getStackSlot(unsigned virtReg) const {
assert(MRegisterInfo::isVirtualRegister(virtReg));
return Virt2StackSlotMap[virtReg];
}
/// @brief create a mapping for the specifed virtual register to
/// the next available stack slot
int assignVirt2StackSlot(unsigned virtReg);
/// @brief create a mapping for the specified virtual register to
/// the specified stack slot
void assignVirt2StackSlot(unsigned virtReg, int frameIndex);
/// @brief assign an unique re-materialization id to the specified
/// virtual register.
int assignVirtReMatId(unsigned virtReg);
/// @brief returns true if the specified virtual register is being
/// re-materialized.
bool isReMaterialized(unsigned virtReg) const {
return ReMatMap.count(virtReg) != 0;
}
/// @brief returns the original machine instruction being re-issued
/// to re-materialize the specified virtual register.
const MachineInstr *getReMaterializedMI(unsigned virtReg) {
return ReMatMap[virtReg];
}
/// @brief records the specified virtual register will be
/// re-materialized and the original instruction which will be re-issed
/// for this purpose.
void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) {
ReMatMap[virtReg] = def;
}
/// @brief Updates information about the specified virtual register's value
/// folded into newMI machine instruction. The OpNum argument indicates the
/// operand number of OldMI that is folded.
void virtFolded(unsigned VirtReg, MachineInstr *OldMI, unsigned OpNum,
MachineInstr *NewMI);
/// @brief returns the virtual registers' values folded in memory
/// operands of this instruction
std::pair<MI2VirtMapTy::const_iterator, MI2VirtMapTy::const_iterator>
getFoldedVirts(MachineInstr* MI) const {
return MI2VirtMap.equal_range(MI);
}
/// RemoveFromFoldedVirtMap - If the specified machine instruction is in
/// the folded instruction map, remove its entry from the map.
void RemoveFromFoldedVirtMap(MachineInstr *MI) {
MI2VirtMap.erase(MI);
}
void print(std::ostream &OS) const;
void print(std::ostream *OS) const { if (OS) print(*OS); }
void dump() const;
};
inline std::ostream *operator<<(std::ostream *OS, const VirtRegMap &VRM) {
VRM.print(OS);
return OS;
}
inline std::ostream &operator<<(std::ostream &OS, const VirtRegMap &VRM) {
VRM.print(OS);
return OS;
}
/// Spiller interface: Implementations of this interface assign spilled
/// virtual registers to stack slots, rewriting the code.
struct Spiller {
virtual ~Spiller();
virtual bool runOnMachineFunction(MachineFunction &MF,
VirtRegMap &VRM) = 0;
};
/// createSpiller - Create an return a spiller object, as specified on the
/// command line.
Spiller* createSpiller();
} // End llvm namespace
#endif