llvm-mirror/lib/Analysis/IntervalPartition.cpp
Chris Lattner 15c05486cc Convert analyses to new pass structure
llvm-svn: 1603
2002-01-31 00:42:27 +00:00

103 lines
3.8 KiB
C++

//===- IntervalPartition.cpp - Interval Partition module code ----*- C++ -*--=//
//
// This file contains the definition of the cfg::IntervalPartition class, which
// calculates and represent the interval partition of a method.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/IntervalIterator.h"
#include "Support/STLExtras.h"
using namespace cfg;
using std::make_pair;
AnalysisID IntervalPartition::ID(AnalysisID::create<IntervalPartition>());
//===----------------------------------------------------------------------===//
// IntervalPartition Implementation
//===----------------------------------------------------------------------===//
// destroy - Reset state back to before method was analyzed
void IntervalPartition::destroy() {
for_each(begin(), end(), deleter<cfg::Interval>);
IntervalMap.clear();
RootInterval = 0;
}
// addIntervalToPartition - Add an interval to the internal list of intervals,
// and then add mappings from all of the basic blocks in the interval to the
// interval itself (in the IntervalMap).
//
void IntervalPartition::addIntervalToPartition(Interval *I) {
push_back(I);
// Add mappings for all of the basic blocks in I to the IntervalPartition
for (Interval::node_iterator It = I->Nodes.begin(), End = I->Nodes.end();
It != End; ++It)
IntervalMap.insert(make_pair(*It, I));
}
// updatePredecessors - Interval generation only sets the successor fields of
// the interval data structures. After interval generation is complete,
// run through all of the intervals and propogate successor info as
// predecessor info.
//
void IntervalPartition::updatePredecessors(cfg::Interval *Int) {
BasicBlock *Header = Int->getHeaderNode();
for (Interval::succ_iterator I = Int->Successors.begin(),
E = Int->Successors.end(); I != E; ++I)
getBlockInterval(*I)->Predecessors.push_back(Header);
}
// IntervalPartition ctor - Build the first level interval partition for the
// specified method...
//
bool IntervalPartition::runOnMethod(Method *M) {
assert(M->front() && "Cannot operate on prototypes!");
// Pass false to intervals_begin because we take ownership of it's memory
method_interval_iterator I = intervals_begin(M, false);
assert(I != intervals_end(M) && "No intervals in method!?!?!");
addIntervalToPartition(RootInterval = *I);
++I; // After the first one...
// Add the rest of the intervals to the partition...
for_each(I, intervals_end(M),
bind_obj(this, &IntervalPartition::addIntervalToPartition));
// Now that we know all of the successor information, propogate this to the
// predecessors for each block...
for_each(begin(), end(),
bind_obj(this, &IntervalPartition::updatePredecessors));
return false;
}
// IntervalPartition ctor - Build a reduced interval partition from an
// existing interval graph. This takes an additional boolean parameter to
// distinguish it from a copy constructor. Always pass in false for now.
//
IntervalPartition::IntervalPartition(IntervalPartition &IP, bool) {
Interval *MethodStart = IP.getRootInterval();
assert(MethodStart && "Cannot operate on empty IntervalPartitions!");
// Pass false to intervals_begin because we take ownership of it's memory
interval_part_interval_iterator I = intervals_begin(IP, false);
assert(I != intervals_end(IP) && "No intervals in interval partition!?!?!");
addIntervalToPartition(RootInterval = *I);
++I; // After the first one...
// Add the rest of the intervals to the partition...
for_each(I, intervals_end(IP),
bind_obj(this, &IntervalPartition::addIntervalToPartition));
// Now that we know all of the successor information, propogate this to the
// predecessors for each block...
for_each(begin(), end(),
bind_obj(this, &IntervalPartition::updatePredecessors));
}