llvm-mirror/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
Bill Wendling e421c8f63d Change MachineInstrBuilder::addReg() to take a flag instead of a list of
booleans. This gives a better indication of what the "addReg()" is
doing. Remembering what all of those booleans mean isn't easy, especially if you
aren't spending all of your time in that code.

I took Jakob's suggestion and made it illegal to pass in "true" for the
flag. This should hopefully prevent any unintended misuse of this (by reverting
to the old way of using addReg()).

llvm-svn: 71722
2009-05-13 21:33:08 +00:00

779 lines
26 KiB
C++

//===-- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass ----*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that performs load / store related peephole
// optimizations. This pass should be run after register allocation.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "arm-ldst-opt"
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMRegisterInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
STATISTIC(NumLDMGened , "Number of ldm instructions generated");
STATISTIC(NumSTMGened , "Number of stm instructions generated");
STATISTIC(NumFLDMGened, "Number of fldm instructions generated");
STATISTIC(NumFSTMGened, "Number of fstm instructions generated");
namespace {
struct VISIBILITY_HIDDEN ARMLoadStoreOpt : public MachineFunctionPass {
static char ID;
ARMLoadStoreOpt() : MachineFunctionPass(&ID) {}
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
ARMFunctionInfo *AFI;
RegScavenger *RS;
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual const char *getPassName() const {
return "ARM load / store optimization pass";
}
private:
struct MemOpQueueEntry {
int Offset;
unsigned Position;
MachineBasicBlock::iterator MBBI;
bool Merged;
MemOpQueueEntry(int o, int p, MachineBasicBlock::iterator i)
: Offset(o), Position(p), MBBI(i), Merged(false) {};
};
typedef SmallVector<MemOpQueueEntry,8> MemOpQueue;
typedef MemOpQueue::iterator MemOpQueueIter;
SmallVector<MachineBasicBlock::iterator, 4>
MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex, unsigned Base,
int Opcode, unsigned Size,
ARMCC::CondCodes Pred, unsigned PredReg,
unsigned Scratch, MemOpQueue &MemOps);
void AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps);
bool LoadStoreMultipleOpti(MachineBasicBlock &MBB);
bool MergeReturnIntoLDM(MachineBasicBlock &MBB);
};
char ARMLoadStoreOpt::ID = 0;
}
/// createARMLoadStoreOptimizationPass - returns an instance of the load / store
/// optimization pass.
FunctionPass *llvm::createARMLoadStoreOptimizationPass() {
return new ARMLoadStoreOpt();
}
static int getLoadStoreMultipleOpcode(int Opcode) {
switch (Opcode) {
case ARM::LDR:
NumLDMGened++;
return ARM::LDM;
case ARM::STR:
NumSTMGened++;
return ARM::STM;
case ARM::FLDS:
NumFLDMGened++;
return ARM::FLDMS;
case ARM::FSTS:
NumFSTMGened++;
return ARM::FSTMS;
case ARM::FLDD:
NumFLDMGened++;
return ARM::FLDMD;
case ARM::FSTD:
NumFSTMGened++;
return ARM::FSTMD;
default: abort();
}
return 0;
}
/// mergeOps - Create and insert a LDM or STM with Base as base register and
/// registers in Regs as the register operands that would be loaded / stored.
/// It returns true if the transformation is done.
static bool mergeOps(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
int Offset, unsigned Base, bool BaseKill, int Opcode,
ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch,
SmallVector<std::pair<unsigned, bool>, 8> &Regs,
const TargetInstrInfo *TII) {
// FIXME would it be better to take a DL from one of the loads arbitrarily?
DebugLoc dl = DebugLoc::getUnknownLoc();
// Only a single register to load / store. Don't bother.
unsigned NumRegs = Regs.size();
if (NumRegs <= 1)
return false;
ARM_AM::AMSubMode Mode = ARM_AM::ia;
bool isAM4 = Opcode == ARM::LDR || Opcode == ARM::STR;
if (isAM4 && Offset == 4)
Mode = ARM_AM::ib;
else if (isAM4 && Offset == -4 * (int)NumRegs + 4)
Mode = ARM_AM::da;
else if (isAM4 && Offset == -4 * (int)NumRegs)
Mode = ARM_AM::db;
else if (Offset != 0) {
// If starting offset isn't zero, insert a MI to materialize a new base.
// But only do so if it is cost effective, i.e. merging more than two
// loads / stores.
if (NumRegs <= 2)
return false;
unsigned NewBase;
if (Opcode == ARM::LDR)
// If it is a load, then just use one of the destination register to
// use as the new base.
NewBase = Regs[NumRegs-1].first;
else {
// Use the scratch register to use as a new base.
NewBase = Scratch;
if (NewBase == 0)
return false;
}
int BaseOpc = ARM::ADDri;
if (Offset < 0) {
BaseOpc = ARM::SUBri;
Offset = - Offset;
}
int ImmedOffset = ARM_AM::getSOImmVal(Offset);
if (ImmedOffset == -1)
return false; // Probably not worth it then.
BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase)
.addReg(Base, getKillRegState(BaseKill)).addImm(ImmedOffset)
.addImm(Pred).addReg(PredReg).addReg(0);
Base = NewBase;
BaseKill = true; // New base is always killed right its use.
}
bool isDPR = Opcode == ARM::FLDD || Opcode == ARM::FSTD;
bool isDef = Opcode == ARM::LDR || Opcode == ARM::FLDS || Opcode == ARM::FLDD;
Opcode = getLoadStoreMultipleOpcode(Opcode);
MachineInstrBuilder MIB = (isAM4)
? BuildMI(MBB, MBBI, dl, TII->get(Opcode))
.addReg(Base, getKillRegState(BaseKill))
.addImm(ARM_AM::getAM4ModeImm(Mode)).addImm(Pred).addReg(PredReg)
: BuildMI(MBB, MBBI, dl, TII->get(Opcode))
.addReg(Base, getKillRegState(BaseKill))
.addImm(ARM_AM::getAM5Opc(Mode, false, isDPR ? NumRegs<<1 : NumRegs))
.addImm(Pred).addReg(PredReg);
for (unsigned i = 0; i != NumRegs; ++i)
MIB = MIB.addReg(Regs[i].first, getDefRegState(isDef)
| getKillRegState(Regs[i].second));
return true;
}
/// MergeLDR_STR - Merge a number of load / store instructions into one or more
/// load / store multiple instructions.
SmallVector<MachineBasicBlock::iterator, 4>
ARMLoadStoreOpt::MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex,
unsigned Base, int Opcode, unsigned Size,
ARMCC::CondCodes Pred, unsigned PredReg,
unsigned Scratch, MemOpQueue &MemOps) {
SmallVector<MachineBasicBlock::iterator, 4> Merges;
bool isAM4 = Opcode == ARM::LDR || Opcode == ARM::STR;
int Offset = MemOps[SIndex].Offset;
int SOffset = Offset;
unsigned Pos = MemOps[SIndex].Position;
MachineBasicBlock::iterator Loc = MemOps[SIndex].MBBI;
unsigned PReg = MemOps[SIndex].MBBI->getOperand(0).getReg();
unsigned PRegNum = ARMRegisterInfo::getRegisterNumbering(PReg);
bool isKill = MemOps[SIndex].MBBI->getOperand(0).isKill();
SmallVector<std::pair<unsigned,bool>, 8> Regs;
Regs.push_back(std::make_pair(PReg, isKill));
for (unsigned i = SIndex+1, e = MemOps.size(); i != e; ++i) {
int NewOffset = MemOps[i].Offset;
unsigned Reg = MemOps[i].MBBI->getOperand(0).getReg();
unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(Reg);
isKill = MemOps[i].MBBI->getOperand(0).isKill();
// AM4 - register numbers in ascending order.
// AM5 - consecutive register numbers in ascending order.
if (NewOffset == Offset + (int)Size &&
((isAM4 && RegNum > PRegNum) || RegNum == PRegNum+1)) {
Offset += Size;
Regs.push_back(std::make_pair(Reg, isKill));
PRegNum = RegNum;
} else {
// Can't merge this in. Try merge the earlier ones first.
if (mergeOps(MBB, ++Loc, SOffset, Base, false, Opcode, Pred, PredReg,
Scratch, Regs, TII)) {
Merges.push_back(prior(Loc));
for (unsigned j = SIndex; j < i; ++j) {
MBB.erase(MemOps[j].MBBI);
MemOps[j].Merged = true;
}
}
SmallVector<MachineBasicBlock::iterator, 4> Merges2 =
MergeLDR_STR(MBB, i, Base, Opcode, Size, Pred, PredReg, Scratch,MemOps);
Merges.append(Merges2.begin(), Merges2.end());
return Merges;
}
if (MemOps[i].Position > Pos) {
Pos = MemOps[i].Position;
Loc = MemOps[i].MBBI;
}
}
bool BaseKill = Loc->findRegisterUseOperandIdx(Base, true) != -1;
if (mergeOps(MBB, ++Loc, SOffset, Base, BaseKill, Opcode, Pred, PredReg,
Scratch, Regs, TII)) {
Merges.push_back(prior(Loc));
for (unsigned i = SIndex, e = MemOps.size(); i != e; ++i) {
MBB.erase(MemOps[i].MBBI);
MemOps[i].Merged = true;
}
}
return Merges;
}
/// getInstrPredicate - If instruction is predicated, returns its predicate
/// condition, otherwise returns AL. It also returns the condition code
/// register by reference.
static ARMCC::CondCodes getInstrPredicate(MachineInstr *MI, unsigned &PredReg) {
int PIdx = MI->findFirstPredOperandIdx();
if (PIdx == -1) {
PredReg = 0;
return ARMCC::AL;
}
PredReg = MI->getOperand(PIdx+1).getReg();
return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
}
static inline bool isMatchingDecrement(MachineInstr *MI, unsigned Base,
unsigned Bytes, ARMCC::CondCodes Pred,
unsigned PredReg) {
unsigned MyPredReg = 0;
return (MI && MI->getOpcode() == ARM::SUBri &&
MI->getOperand(0).getReg() == Base &&
MI->getOperand(1).getReg() == Base &&
ARM_AM::getAM2Offset(MI->getOperand(2).getImm()) == Bytes &&
getInstrPredicate(MI, MyPredReg) == Pred &&
MyPredReg == PredReg);
}
static inline bool isMatchingIncrement(MachineInstr *MI, unsigned Base,
unsigned Bytes, ARMCC::CondCodes Pred,
unsigned PredReg) {
unsigned MyPredReg = 0;
return (MI && MI->getOpcode() == ARM::ADDri &&
MI->getOperand(0).getReg() == Base &&
MI->getOperand(1).getReg() == Base &&
ARM_AM::getAM2Offset(MI->getOperand(2).getImm()) == Bytes &&
getInstrPredicate(MI, MyPredReg) == Pred &&
MyPredReg == PredReg);
}
static inline unsigned getLSMultipleTransferSize(MachineInstr *MI) {
switch (MI->getOpcode()) {
default: return 0;
case ARM::LDR:
case ARM::STR:
case ARM::FLDS:
case ARM::FSTS:
return 4;
case ARM::FLDD:
case ARM::FSTD:
return 8;
case ARM::LDM:
case ARM::STM:
return (MI->getNumOperands() - 4) * 4;
case ARM::FLDMS:
case ARM::FSTMS:
case ARM::FLDMD:
case ARM::FSTMD:
return ARM_AM::getAM5Offset(MI->getOperand(1).getImm()) * 4;
}
}
/// mergeBaseUpdateLSMultiple - Fold proceeding/trailing inc/dec of base
/// register into the LDM/STM/FLDM{D|S}/FSTM{D|S} op when possible:
///
/// stmia rn, <ra, rb, rc>
/// rn := rn + 4 * 3;
/// =>
/// stmia rn!, <ra, rb, rc>
///
/// rn := rn - 4 * 3;
/// ldmia rn, <ra, rb, rc>
/// =>
/// ldmdb rn!, <ra, rb, rc>
static bool mergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
bool &Advance,
MachineBasicBlock::iterator &I) {
MachineInstr *MI = MBBI;
unsigned Base = MI->getOperand(0).getReg();
unsigned Bytes = getLSMultipleTransferSize(MI);
unsigned PredReg = 0;
ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
int Opcode = MI->getOpcode();
bool isAM4 = Opcode == ARM::LDM || Opcode == ARM::STM;
if (isAM4) {
if (ARM_AM::getAM4WBFlag(MI->getOperand(1).getImm()))
return false;
// Can't use the updating AM4 sub-mode if the base register is also a dest
// register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined.
for (unsigned i = 3, e = MI->getNumOperands(); i != e; ++i) {
if (MI->getOperand(i).getReg() == Base)
return false;
}
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MI->getOperand(1).getImm());
if (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PrevMBBI = prior(MBBI);
if (Mode == ARM_AM::ia &&
isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(ARM_AM::db, true));
MBB.erase(PrevMBBI);
return true;
} else if (Mode == ARM_AM::ib &&
isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(ARM_AM::da, true));
MBB.erase(PrevMBBI);
return true;
}
}
if (MBBI != MBB.end()) {
MachineBasicBlock::iterator NextMBBI = next(MBBI);
if ((Mode == ARM_AM::ia || Mode == ARM_AM::ib) &&
isMatchingIncrement(NextMBBI, Base, Bytes, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(Mode, true));
if (NextMBBI == I) {
Advance = true;
++I;
}
MBB.erase(NextMBBI);
return true;
} else if ((Mode == ARM_AM::da || Mode == ARM_AM::db) &&
isMatchingDecrement(NextMBBI, Base, Bytes, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(Mode, true));
if (NextMBBI == I) {
Advance = true;
++I;
}
MBB.erase(NextMBBI);
return true;
}
}
} else {
// FLDM{D|S}, FSTM{D|S} addressing mode 5 ops.
if (ARM_AM::getAM5WBFlag(MI->getOperand(1).getImm()))
return false;
ARM_AM::AMSubMode Mode = ARM_AM::getAM5SubMode(MI->getOperand(1).getImm());
unsigned Offset = ARM_AM::getAM5Offset(MI->getOperand(1).getImm());
if (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PrevMBBI = prior(MBBI);
if (Mode == ARM_AM::ia &&
isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM5Opc(ARM_AM::db, true, Offset));
MBB.erase(PrevMBBI);
return true;
}
}
if (MBBI != MBB.end()) {
MachineBasicBlock::iterator NextMBBI = next(MBBI);
if (Mode == ARM_AM::ia &&
isMatchingIncrement(NextMBBI, Base, Bytes, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM5Opc(ARM_AM::ia, true, Offset));
if (NextMBBI == I) {
Advance = true;
++I;
}
MBB.erase(NextMBBI);
}
return true;
}
}
return false;
}
static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc) {
switch (Opc) {
case ARM::LDR: return ARM::LDR_PRE;
case ARM::STR: return ARM::STR_PRE;
case ARM::FLDS: return ARM::FLDMS;
case ARM::FLDD: return ARM::FLDMD;
case ARM::FSTS: return ARM::FSTMS;
case ARM::FSTD: return ARM::FSTMD;
default: abort();
}
return 0;
}
static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc) {
switch (Opc) {
case ARM::LDR: return ARM::LDR_POST;
case ARM::STR: return ARM::STR_POST;
case ARM::FLDS: return ARM::FLDMS;
case ARM::FLDD: return ARM::FLDMD;
case ARM::FSTS: return ARM::FSTMS;
case ARM::FSTD: return ARM::FSTMD;
default: abort();
}
return 0;
}
/// mergeBaseUpdateLoadStore - Fold proceeding/trailing inc/dec of base
/// register into the LDR/STR/FLD{D|S}/FST{D|S} op when possible:
static bool mergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const TargetInstrInfo *TII,
bool &Advance,
MachineBasicBlock::iterator &I) {
MachineInstr *MI = MBBI;
unsigned Base = MI->getOperand(1).getReg();
bool BaseKill = MI->getOperand(1).isKill();
unsigned Bytes = getLSMultipleTransferSize(MI);
int Opcode = MI->getOpcode();
DebugLoc dl = MI->getDebugLoc();
bool isAM2 = Opcode == ARM::LDR || Opcode == ARM::STR;
if ((isAM2 && ARM_AM::getAM2Offset(MI->getOperand(3).getImm()) != 0) ||
(!isAM2 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0))
return false;
bool isLd = Opcode == ARM::LDR || Opcode == ARM::FLDS || Opcode == ARM::FLDD;
// Can't do the merge if the destination register is the same as the would-be
// writeback register.
if (isLd && MI->getOperand(0).getReg() == Base)
return false;
unsigned PredReg = 0;
ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
bool DoMerge = false;
ARM_AM::AddrOpc AddSub = ARM_AM::add;
unsigned NewOpc = 0;
if (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PrevMBBI = prior(MBBI);
if (isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) {
DoMerge = true;
AddSub = ARM_AM::sub;
NewOpc = getPreIndexedLoadStoreOpcode(Opcode);
} else if (isAM2 && isMatchingIncrement(PrevMBBI, Base, Bytes,
Pred, PredReg)) {
DoMerge = true;
NewOpc = getPreIndexedLoadStoreOpcode(Opcode);
}
if (DoMerge)
MBB.erase(PrevMBBI);
}
if (!DoMerge && MBBI != MBB.end()) {
MachineBasicBlock::iterator NextMBBI = next(MBBI);
if (isAM2 && isMatchingDecrement(NextMBBI, Base, Bytes, Pred, PredReg)) {
DoMerge = true;
AddSub = ARM_AM::sub;
NewOpc = getPostIndexedLoadStoreOpcode(Opcode);
} else if (isMatchingIncrement(NextMBBI, Base, Bytes, Pred, PredReg)) {
DoMerge = true;
NewOpc = getPostIndexedLoadStoreOpcode(Opcode);
}
if (DoMerge) {
if (NextMBBI == I) {
Advance = true;
++I;
}
MBB.erase(NextMBBI);
}
}
if (!DoMerge)
return false;
bool isDPR = NewOpc == ARM::FLDMD || NewOpc == ARM::FSTMD;
unsigned Offset = isAM2 ? ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift)
: ARM_AM::getAM5Opc((AddSub == ARM_AM::sub) ? ARM_AM::db : ARM_AM::ia,
true, isDPR ? 2 : 1);
if (isLd) {
if (isAM2)
// LDR_PRE, LDR_POST;
BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg())
.addReg(Base, RegState::Define)
.addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg);
else
// FLDMS, FLDMD
BuildMI(MBB, MBBI, dl, TII->get(NewOpc))
.addReg(Base, getKillRegState(BaseKill))
.addImm(Offset).addImm(Pred).addReg(PredReg)
.addReg(MI->getOperand(0).getReg(), RegState::Define);
} else {
MachineOperand &MO = MI->getOperand(0);
if (isAM2)
// STR_PRE, STR_POST;
BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base)
.addReg(MO.getReg(), getKillRegState(BaseKill))
.addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg);
else
// FSTMS, FSTMD
BuildMI(MBB, MBBI, dl, TII->get(NewOpc)).addReg(Base).addImm(Offset)
.addImm(Pred).addReg(PredReg)
.addReg(MO.getReg(), getKillRegState(MO.isKill()));
}
MBB.erase(MBBI);
return true;
}
/// isMemoryOp - Returns true if instruction is a memory operations (that this
/// pass is capable of operating on).
static bool isMemoryOp(MachineInstr *MI) {
int Opcode = MI->getOpcode();
switch (Opcode) {
default: break;
case ARM::LDR:
case ARM::STR:
return MI->getOperand(1).isReg() && MI->getOperand(2).getReg() == 0;
case ARM::FLDS:
case ARM::FSTS:
return MI->getOperand(1).isReg();
case ARM::FLDD:
case ARM::FSTD:
return MI->getOperand(1).isReg();
}
return false;
}
/// AdvanceRS - Advance register scavenger to just before the earliest memory
/// op that is being merged.
void ARMLoadStoreOpt::AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps) {
MachineBasicBlock::iterator Loc = MemOps[0].MBBI;
unsigned Position = MemOps[0].Position;
for (unsigned i = 1, e = MemOps.size(); i != e; ++i) {
if (MemOps[i].Position < Position) {
Position = MemOps[i].Position;
Loc = MemOps[i].MBBI;
}
}
if (Loc != MBB.begin())
RS->forward(prior(Loc));
}
/// LoadStoreMultipleOpti - An optimization pass to turn multiple LDR / STR
/// ops of the same base and incrementing offset into LDM / STM ops.
bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
unsigned NumMerges = 0;
unsigned NumMemOps = 0;
MemOpQueue MemOps;
unsigned CurrBase = 0;
int CurrOpc = -1;
unsigned CurrSize = 0;
ARMCC::CondCodes CurrPred = ARMCC::AL;
unsigned CurrPredReg = 0;
unsigned Position = 0;
RS->enterBasicBlock(&MBB);
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
while (MBBI != E) {
bool Advance = false;
bool TryMerge = false;
bool Clobber = false;
bool isMemOp = isMemoryOp(MBBI);
if (isMemOp) {
int Opcode = MBBI->getOpcode();
bool isAM2 = Opcode == ARM::LDR || Opcode == ARM::STR;
unsigned Size = getLSMultipleTransferSize(MBBI);
unsigned Base = MBBI->getOperand(1).getReg();
unsigned PredReg = 0;
ARMCC::CondCodes Pred = getInstrPredicate(MBBI, PredReg);
unsigned NumOperands = MBBI->getDesc().getNumOperands();
unsigned OffField = MBBI->getOperand(NumOperands-3).getImm();
int Offset = isAM2
? ARM_AM::getAM2Offset(OffField) : ARM_AM::getAM5Offset(OffField) * 4;
if (isAM2) {
if (ARM_AM::getAM2Op(OffField) == ARM_AM::sub)
Offset = -Offset;
} else {
if (ARM_AM::getAM5Op(OffField) == ARM_AM::sub)
Offset = -Offset;
}
// Watch out for:
// r4 := ldr [r5]
// r5 := ldr [r5, #4]
// r6 := ldr [r5, #8]
//
// The second ldr has effectively broken the chain even though it
// looks like the later ldr(s) use the same base register. Try to
// merge the ldr's so far, including this one. But don't try to
// combine the following ldr(s).
Clobber = (Opcode == ARM::LDR && Base == MBBI->getOperand(0).getReg());
if (CurrBase == 0 && !Clobber) {
// Start of a new chain.
CurrBase = Base;
CurrOpc = Opcode;
CurrSize = Size;
CurrPred = Pred;
CurrPredReg = PredReg;
MemOps.push_back(MemOpQueueEntry(Offset, Position, MBBI));
NumMemOps++;
Advance = true;
} else {
if (Clobber) {
TryMerge = true;
Advance = true;
}
if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) {
// No need to match PredReg.
// Continue adding to the queue.
if (Offset > MemOps.back().Offset) {
MemOps.push_back(MemOpQueueEntry(Offset, Position, MBBI));
NumMemOps++;
Advance = true;
} else {
for (MemOpQueueIter I = MemOps.begin(), E = MemOps.end();
I != E; ++I) {
if (Offset < I->Offset) {
MemOps.insert(I, MemOpQueueEntry(Offset, Position, MBBI));
NumMemOps++;
Advance = true;
break;
} else if (Offset == I->Offset) {
// Collision! This can't be merged!
break;
}
}
}
}
}
}
if (Advance) {
++Position;
++MBBI;
} else
TryMerge = true;
if (TryMerge) {
if (NumMemOps > 1) {
// Try to find a free register to use as a new base in case it's needed.
// First advance to the instruction just before the start of the chain.
AdvanceRS(MBB, MemOps);
// Find a scratch register. Make sure it's a call clobbered register or
// a spilled callee-saved register.
unsigned Scratch = RS->FindUnusedReg(&ARM::GPRRegClass, true);
if (!Scratch)
Scratch = RS->FindUnusedReg(&ARM::GPRRegClass,
AFI->getSpilledCSRegisters());
// Process the load / store instructions.
RS->forward(prior(MBBI));
// Merge ops.
SmallVector<MachineBasicBlock::iterator,4> MBBII =
MergeLDR_STR(MBB, 0, CurrBase, CurrOpc, CurrSize,
CurrPred, CurrPredReg, Scratch, MemOps);
// Try folding preceeding/trailing base inc/dec into the generated
// LDM/STM ops.
for (unsigned i = 0, e = MBBII.size(); i < e; ++i)
if (mergeBaseUpdateLSMultiple(MBB, MBBII[i], Advance, MBBI))
NumMerges++;
NumMerges += MBBII.size();
// Try folding preceeding/trailing base inc/dec into those load/store
// that were not merged to form LDM/STM ops.
for (unsigned i = 0; i != NumMemOps; ++i)
if (!MemOps[i].Merged)
if (mergeBaseUpdateLoadStore(MBB, MemOps[i].MBBI, TII,Advance,MBBI))
NumMerges++;
// RS may be pointing to an instruction that's deleted.
RS->skipTo(prior(MBBI));
}
CurrBase = 0;
CurrOpc = -1;
CurrSize = 0;
CurrPred = ARMCC::AL;
CurrPredReg = 0;
if (NumMemOps) {
MemOps.clear();
NumMemOps = 0;
}
// If iterator hasn't been advanced and this is not a memory op, skip it.
// It can't start a new chain anyway.
if (!Advance && !isMemOp && MBBI != E) {
++Position;
++MBBI;
}
}
}
return NumMerges > 0;
}
/// MergeReturnIntoLDM - If this is a exit BB, try merging the return op
/// (bx lr) into the preceeding stack restore so it directly restore the value
/// of LR into pc.
/// ldmfd sp!, {r7, lr}
/// bx lr
/// =>
/// ldmfd sp!, {r7, pc}
bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) {
if (MBB.empty()) return false;
MachineBasicBlock::iterator MBBI = prior(MBB.end());
if (MBBI->getOpcode() == ARM::BX_RET && MBBI != MBB.begin()) {
MachineInstr *PrevMI = prior(MBBI);
if (PrevMI->getOpcode() == ARM::LDM) {
MachineOperand &MO = PrevMI->getOperand(PrevMI->getNumOperands()-1);
if (MO.getReg() == ARM::LR) {
PrevMI->setDesc(TII->get(ARM::LDM_RET));
MO.setReg(ARM::PC);
MBB.erase(MBBI);
return true;
}
}
}
return false;
}
bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
const TargetMachine &TM = Fn.getTarget();
AFI = Fn.getInfo<ARMFunctionInfo>();
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
RS = new RegScavenger();
bool Modified = false;
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI) {
MachineBasicBlock &MBB = *MFI;
Modified |= LoadStoreMultipleOpti(MBB);
Modified |= MergeReturnIntoLDM(MBB);
}
delete RS;
return Modified;
}