llvm-mirror/unittests/ADT/ArrayRefTest.cpp
Roman Lebedev ddf11f00db [ADR] ArrayRefTest: disable SizeTSizedOperations test - it's UB.
This test is not defined.

FAIL: LLVM-Unit :: ADT/./ADTTests/ArrayRefTest.SizeTSizedOperations (178 of 33926)
******************** TEST 'LLVM-Unit :: ADT/./ADTTests/ArrayRefTest.SizeTSizedOperations' FAILED ********************
Note: Google Test filter = ArrayRefTest.SizeTSizedOperations
[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from ArrayRefTest
[ RUN      ] ArrayRefTest.SizeTSizedOperations
/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/include/llvm/ADT/ArrayRef.h:180:32: runtime error: applying non-zero offset 9223372036854775806 to null pointer
    #0 0x5ae8dc in llvm::ArrayRef<char>::slice(unsigned long, unsigned long) const /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/include/llvm/ADT/ArrayRef.h:180:32
    #1 0x5ae44c in (anonymous namespace)::ArrayRefTest_SizeTSizedOperations_Test::TestBody() /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/unittests/ADT/ArrayRefTest.cpp:85:3
    #2 0x928a96 in testing::Test::Run() /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/utils/unittest/googletest/src/gtest.cc:2474:5
    #3 0x929793 in testing::TestInfo::Run() /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/utils/unittest/googletest/src/gtest.cc:2656:11
    #4 0x92a152 in testing::TestCase::Run() /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/utils/unittest/googletest/src/gtest.cc:2774:28
    #5 0x9319d2 in testing::internal::UnitTestImpl::RunAllTests() /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/utils/unittest/googletest/src/gtest.cc:4649:43
    #6 0x931416 in testing::UnitTest::Run() /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/utils/unittest/googletest/src/gtest.cc:4257:10
    #7 0x920ac3 in RUN_ALL_TESTS /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/utils/unittest/googletest/include/gtest/gtest.h:2233:46
    #8 0x920ac3 in main /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/utils/unittest/UnitTestMain/TestMain.cpp:50:10
    #9 0x7f66135b72e0 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x202e0)
    #10 0x472c19 in _start (/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/unittests/ADT/ADTTests+0x472c19)

SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/include/llvm/ADT/ArrayRef.h:180:32 in
llvm-svn: 374327
2019-10-10 12:22:33 +00:00

269 lines
9.0 KiB
C++

//===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/raw_ostream.h"
#include "gtest/gtest.h"
#include <limits>
#include <vector>
using namespace llvm;
// Check that the ArrayRef-of-pointer converting constructor only allows adding
// cv qualifiers (not removing them, or otherwise changing the type)
static_assert(
std::is_convertible<ArrayRef<int *>, ArrayRef<const int *>>::value,
"Adding const");
static_assert(
std::is_convertible<ArrayRef<int *>, ArrayRef<volatile int *>>::value,
"Adding volatile");
static_assert(!std::is_convertible<ArrayRef<int *>, ArrayRef<float *>>::value,
"Changing pointer of one type to a pointer of another");
static_assert(
!std::is_convertible<ArrayRef<const int *>, ArrayRef<int *>>::value,
"Removing const");
static_assert(
!std::is_convertible<ArrayRef<volatile int *>, ArrayRef<int *>>::value,
"Removing volatile");
// Check that we can't accidentally assign a temporary location to an ArrayRef.
// (Unfortunately we can't make use of the same thing with constructors.)
static_assert(
!std::is_assignable<ArrayRef<int *>&, int *>::value,
"Assigning from single prvalue element");
static_assert(
!std::is_assignable<ArrayRef<int *>&, int * &&>::value,
"Assigning from single xvalue element");
static_assert(
std::is_assignable<ArrayRef<int *>&, int * &>::value,
"Assigning from single lvalue element");
static_assert(
!std::is_assignable<ArrayRef<int *>&, std::initializer_list<int *>>::value,
"Assigning from an initializer list");
namespace {
TEST(ArrayRefTest, AllocatorCopy) {
BumpPtrAllocator Alloc;
static const uint16_t Words1[] = { 1, 4, 200, 37 };
ArrayRef<uint16_t> Array1 = makeArrayRef(Words1, 4);
static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 };
ArrayRef<uint16_t> Array2 = makeArrayRef(Words2, 5);
ArrayRef<uint16_t> Array1c = Array1.copy(Alloc);
ArrayRef<uint16_t> Array2c = Array2.copy(Alloc);
EXPECT_TRUE(Array1.equals(Array1c));
EXPECT_NE(Array1.data(), Array1c.data());
EXPECT_TRUE(Array2.equals(Array2c));
EXPECT_NE(Array2.data(), Array2c.data());
// Check that copy can cope with uninitialized memory.
struct NonAssignable {
const char *Ptr;
NonAssignable(const char *Ptr) : Ptr(Ptr) {}
NonAssignable(const NonAssignable &RHS) = default;
void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); }
bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; }
} Array3Src[] = {"hello", "world"};
ArrayRef<NonAssignable> Array3Copy = makeArrayRef(Array3Src).copy(Alloc);
EXPECT_EQ(makeArrayRef(Array3Src), Array3Copy);
EXPECT_NE(makeArrayRef(Array3Src).data(), Array3Copy.data());
}
// This test is pure UB given the ArrayRef<> implementation.
// You are not allowed to produce non-null pointers given null base pointer.
TEST(ArrayRefTest, DISABLED_SizeTSizedOperations) {
ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max());
// Check that drop_back accepts size_t-sized numbers.
EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size());
// Check that drop_front accepts size_t-sized numbers.
EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size());
// Check that slice accepts size_t-sized numbers.
EXPECT_EQ(1U, AR.slice(AR.size() - 1).size());
EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size());
}
TEST(ArrayRefTest, DropBack) {
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> AR2(TheNumbers, AR1.size() - 1);
EXPECT_TRUE(AR1.drop_back().equals(AR2));
}
TEST(ArrayRefTest, DropFront) {
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2);
EXPECT_TRUE(AR1.drop_front(2).equals(AR2));
}
TEST(ArrayRefTest, DropWhile) {
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> Expected = AR1.drop_front(3);
EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; }));
EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; }));
EXPECT_EQ(ArrayRef<int>(),
AR1.drop_while([](const int &N) { return N > 0; }));
}
TEST(ArrayRefTest, DropUntil) {
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> Expected = AR1.drop_front(3);
EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; }));
EXPECT_EQ(ArrayRef<int>(),
AR1.drop_until([](const int &N) { return N < 0; }));
EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; }));
}
TEST(ArrayRefTest, TakeBack) {
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> AR2(AR1.end() - 1, 1);
EXPECT_TRUE(AR1.take_back().equals(AR2));
}
TEST(ArrayRefTest, TakeFront) {
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> AR2(AR1.data(), 2);
EXPECT_TRUE(AR1.take_front(2).equals(AR2));
}
TEST(ArrayRefTest, TakeWhile) {
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> Expected = AR1.take_front(3);
EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; }));
EXPECT_EQ(ArrayRef<int>(),
AR1.take_while([](const int &N) { return N < 0; }));
EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; }));
}
TEST(ArrayRefTest, TakeUntil) {
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> Expected = AR1.take_front(3);
EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; }));
EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; }));
EXPECT_EQ(ArrayRef<int>(),
AR1.take_until([](const int &N) { return N > 0; }));
}
TEST(ArrayRefTest, Equals) {
static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
ArrayRef<int> AR1(A1);
EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8}));
EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7}));
EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1}));
EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7}));
EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8}));
EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8}));
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42}));
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7}));
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9}));
ArrayRef<int> AR1a = AR1.drop_back();
EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7}));
EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8}));
ArrayRef<int> AR1b = AR1a.slice(2, 4);
EXPECT_TRUE(AR1b.equals({3, 4, 5, 6}));
EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6}));
EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7}));
}
TEST(ArrayRefTest, EmptyEquals) {
EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>());
}
TEST(ArrayRefTest, ConstConvert) {
int buf[4];
for (int i = 0; i < 4; ++i)
buf[i] = i;
static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]};
ArrayRef<const int *> a((ArrayRef<int *>(A)));
a = ArrayRef<int *>(A);
}
static std::vector<int> ReturnTest12() { return {1, 2}; }
static void ArgTest12(ArrayRef<int> A) {
EXPECT_EQ(2U, A.size());
EXPECT_EQ(1, A[0]);
EXPECT_EQ(2, A[1]);
}
TEST(ArrayRefTest, InitializerList) {
std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 };
ArrayRef<int> A = init_list;
for (int i = 0; i < 5; ++i)
EXPECT_EQ(i, A[i]);
std::vector<int> B = ReturnTest12();
A = B;
EXPECT_EQ(1, A[0]);
EXPECT_EQ(2, A[1]);
ArgTest12({1, 2});
}
TEST(ArrayRefTest, EmptyInitializerList) {
ArrayRef<int> A = {};
EXPECT_TRUE(A.empty());
A = {};
EXPECT_TRUE(A.empty());
}
// Test that makeArrayRef works on ArrayRef (no-op)
TEST(ArrayRefTest, makeArrayRef) {
static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
// No copy expected for non-const ArrayRef (true no-op)
ArrayRef<int> AR1(A1);
ArrayRef<int> &AR1Ref = makeArrayRef(AR1);
EXPECT_EQ(&AR1, &AR1Ref);
// A copy is expected for non-const ArrayRef (thin copy)
const ArrayRef<int> AR2(A1);
const ArrayRef<int> &AR2Ref = makeArrayRef(AR2);
EXPECT_NE(&AR2Ref, &AR2);
EXPECT_TRUE(AR2.equals(AR2Ref));
}
TEST(ArrayRefTest, OwningArrayRef) {
static const int A1[] = {0, 1};
OwningArrayRef<int> A(makeArrayRef(A1));
OwningArrayRef<int> B(std::move(A));
EXPECT_EQ(A.data(), nullptr);
}
TEST(ArrayRefTest, makeArrayRefFromStdArray) {
std::array<int, 5> A1{{42, -5, 0, 1000000, -1000000}};
ArrayRef<int> A2 = makeArrayRef(A1);
EXPECT_EQ(A1.size(), A2.size());
for (std::size_t i = 0; i < A1.size(); ++i) {
EXPECT_EQ(A1[i], A2[i]);
}
}
static_assert(is_trivially_copyable<ArrayRef<int>>::value,
"trivially copyable");
} // end anonymous namespace