mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-02-24 14:33:40 +00:00

This removes a quadratic behavior in assert-enabled builds. GVN propagates the equivalence from a condition into the blocks guarded by the condition. E.g. for 'if (a == 7) { ... }', 'a' will be replaced in the block with 7. It does this by replacing all the uses of 'a' that are dominated by the true edge. For a switch with N cases and U uses of the value, this will mean N * U calls to 'dominates'. Asserting isSingleEdge in 'dominates' make this N^2 * U because this function checks for the uniqueness of the edge. I.e. traverses each edge between the SwitchInst's block and the cases. The change removes the assert and makes 'dominates' works correctly in the presence of non-unique edges. This brings build time down by an order of magnitude for an input that has ~10k cases in a switch statement. Differential Revision: https://reviews.llvm.org/D33584 llvm-svn: 304721
312 lines
11 KiB
C++
312 lines
11 KiB
C++
//===- llvm/unittests/IR/DominatorTreeTest.cpp - Constants unit tests -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/AsmParser/Parser.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
/// Build the dominator tree for the function and run the Test.
|
|
static void
|
|
runWithDomTree(Module &M, StringRef FuncName,
|
|
function_ref<void(Function &F, DominatorTree *DT,
|
|
DominatorTreeBase<BasicBlock> *PDT)>
|
|
Test) {
|
|
auto *F = M.getFunction(FuncName);
|
|
ASSERT_NE(F, nullptr) << "Could not find " << FuncName;
|
|
// Compute the dominator tree for the function.
|
|
DominatorTree DT(*F);
|
|
DominatorTreeBase<BasicBlock> PDT(/*isPostDom*/ true);
|
|
PDT.recalculate(*F);
|
|
Test(*F, &DT, &PDT);
|
|
}
|
|
|
|
static std::unique_ptr<Module> makeLLVMModule(LLVMContext &Context,
|
|
StringRef ModuleStr) {
|
|
SMDiagnostic Err;
|
|
std::unique_ptr<Module> M = parseAssemblyString(ModuleStr, Err, Context);
|
|
assert(M && "Bad assembly?");
|
|
return M;
|
|
}
|
|
|
|
TEST(DominatorTree, Unreachable) {
|
|
StringRef ModuleString =
|
|
"declare i32 @g()\n"
|
|
"define void @f(i32 %x) personality i32 ()* @g {\n"
|
|
"bb0:\n"
|
|
" %y1 = add i32 %x, 1\n"
|
|
" %y2 = add i32 %x, 1\n"
|
|
" %y3 = invoke i32 @g() to label %bb1 unwind label %bb2\n"
|
|
"bb1:\n"
|
|
" %y4 = add i32 %x, 1\n"
|
|
" br label %bb4\n"
|
|
"bb2:\n"
|
|
" %y5 = landingpad i32\n"
|
|
" cleanup\n"
|
|
" br label %bb4\n"
|
|
"bb3:\n"
|
|
" %y6 = add i32 %x, 1\n"
|
|
" %y7 = add i32 %x, 1\n"
|
|
" ret void\n"
|
|
"bb4:\n"
|
|
" %y8 = phi i32 [0, %bb2], [%y4, %bb1]\n"
|
|
" %y9 = phi i32 [0, %bb2], [%y4, %bb1]\n"
|
|
" ret void\n"
|
|
"}\n";
|
|
|
|
// Parse the module.
|
|
LLVMContext Context;
|
|
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
|
|
|
|
runWithDomTree(
|
|
*M, "f",
|
|
[&](Function &F, DominatorTree *DT, DominatorTreeBase<BasicBlock> *PDT) {
|
|
Function::iterator FI = F.begin();
|
|
|
|
BasicBlock *BB0 = &*FI++;
|
|
BasicBlock::iterator BBI = BB0->begin();
|
|
Instruction *Y1 = &*BBI++;
|
|
Instruction *Y2 = &*BBI++;
|
|
Instruction *Y3 = &*BBI++;
|
|
|
|
BasicBlock *BB1 = &*FI++;
|
|
BBI = BB1->begin();
|
|
Instruction *Y4 = &*BBI++;
|
|
|
|
BasicBlock *BB2 = &*FI++;
|
|
BBI = BB2->begin();
|
|
Instruction *Y5 = &*BBI++;
|
|
|
|
BasicBlock *BB3 = &*FI++;
|
|
BBI = BB3->begin();
|
|
Instruction *Y6 = &*BBI++;
|
|
Instruction *Y7 = &*BBI++;
|
|
|
|
BasicBlock *BB4 = &*FI++;
|
|
BBI = BB4->begin();
|
|
Instruction *Y8 = &*BBI++;
|
|
Instruction *Y9 = &*BBI++;
|
|
|
|
// Reachability
|
|
EXPECT_TRUE(DT->isReachableFromEntry(BB0));
|
|
EXPECT_TRUE(DT->isReachableFromEntry(BB1));
|
|
EXPECT_TRUE(DT->isReachableFromEntry(BB2));
|
|
EXPECT_FALSE(DT->isReachableFromEntry(BB3));
|
|
EXPECT_TRUE(DT->isReachableFromEntry(BB4));
|
|
|
|
// BB dominance
|
|
EXPECT_TRUE(DT->dominates(BB0, BB0));
|
|
EXPECT_TRUE(DT->dominates(BB0, BB1));
|
|
EXPECT_TRUE(DT->dominates(BB0, BB2));
|
|
EXPECT_TRUE(DT->dominates(BB0, BB3));
|
|
EXPECT_TRUE(DT->dominates(BB0, BB4));
|
|
|
|
EXPECT_FALSE(DT->dominates(BB1, BB0));
|
|
EXPECT_TRUE(DT->dominates(BB1, BB1));
|
|
EXPECT_FALSE(DT->dominates(BB1, BB2));
|
|
EXPECT_TRUE(DT->dominates(BB1, BB3));
|
|
EXPECT_FALSE(DT->dominates(BB1, BB4));
|
|
|
|
EXPECT_FALSE(DT->dominates(BB2, BB0));
|
|
EXPECT_FALSE(DT->dominates(BB2, BB1));
|
|
EXPECT_TRUE(DT->dominates(BB2, BB2));
|
|
EXPECT_TRUE(DT->dominates(BB2, BB3));
|
|
EXPECT_FALSE(DT->dominates(BB2, BB4));
|
|
|
|
EXPECT_FALSE(DT->dominates(BB3, BB0));
|
|
EXPECT_FALSE(DT->dominates(BB3, BB1));
|
|
EXPECT_FALSE(DT->dominates(BB3, BB2));
|
|
EXPECT_TRUE(DT->dominates(BB3, BB3));
|
|
EXPECT_FALSE(DT->dominates(BB3, BB4));
|
|
|
|
// BB proper dominance
|
|
EXPECT_FALSE(DT->properlyDominates(BB0, BB0));
|
|
EXPECT_TRUE(DT->properlyDominates(BB0, BB1));
|
|
EXPECT_TRUE(DT->properlyDominates(BB0, BB2));
|
|
EXPECT_TRUE(DT->properlyDominates(BB0, BB3));
|
|
|
|
EXPECT_FALSE(DT->properlyDominates(BB1, BB0));
|
|
EXPECT_FALSE(DT->properlyDominates(BB1, BB1));
|
|
EXPECT_FALSE(DT->properlyDominates(BB1, BB2));
|
|
EXPECT_TRUE(DT->properlyDominates(BB1, BB3));
|
|
|
|
EXPECT_FALSE(DT->properlyDominates(BB2, BB0));
|
|
EXPECT_FALSE(DT->properlyDominates(BB2, BB1));
|
|
EXPECT_FALSE(DT->properlyDominates(BB2, BB2));
|
|
EXPECT_TRUE(DT->properlyDominates(BB2, BB3));
|
|
|
|
EXPECT_FALSE(DT->properlyDominates(BB3, BB0));
|
|
EXPECT_FALSE(DT->properlyDominates(BB3, BB1));
|
|
EXPECT_FALSE(DT->properlyDominates(BB3, BB2));
|
|
EXPECT_FALSE(DT->properlyDominates(BB3, BB3));
|
|
|
|
// Instruction dominance in the same reachable BB
|
|
EXPECT_FALSE(DT->dominates(Y1, Y1));
|
|
EXPECT_TRUE(DT->dominates(Y1, Y2));
|
|
EXPECT_FALSE(DT->dominates(Y2, Y1));
|
|
EXPECT_FALSE(DT->dominates(Y2, Y2));
|
|
|
|
// Instruction dominance in the same unreachable BB
|
|
EXPECT_TRUE(DT->dominates(Y6, Y6));
|
|
EXPECT_TRUE(DT->dominates(Y6, Y7));
|
|
EXPECT_TRUE(DT->dominates(Y7, Y6));
|
|
EXPECT_TRUE(DT->dominates(Y7, Y7));
|
|
|
|
// Invoke
|
|
EXPECT_TRUE(DT->dominates(Y3, Y4));
|
|
EXPECT_FALSE(DT->dominates(Y3, Y5));
|
|
|
|
// Phi
|
|
EXPECT_TRUE(DT->dominates(Y2, Y9));
|
|
EXPECT_FALSE(DT->dominates(Y3, Y9));
|
|
EXPECT_FALSE(DT->dominates(Y8, Y9));
|
|
|
|
// Anything dominates unreachable
|
|
EXPECT_TRUE(DT->dominates(Y1, Y6));
|
|
EXPECT_TRUE(DT->dominates(Y3, Y6));
|
|
|
|
// Unreachable doesn't dominate reachable
|
|
EXPECT_FALSE(DT->dominates(Y6, Y1));
|
|
|
|
// Instruction, BB dominance
|
|
EXPECT_FALSE(DT->dominates(Y1, BB0));
|
|
EXPECT_TRUE(DT->dominates(Y1, BB1));
|
|
EXPECT_TRUE(DT->dominates(Y1, BB2));
|
|
EXPECT_TRUE(DT->dominates(Y1, BB3));
|
|
EXPECT_TRUE(DT->dominates(Y1, BB4));
|
|
|
|
EXPECT_FALSE(DT->dominates(Y3, BB0));
|
|
EXPECT_TRUE(DT->dominates(Y3, BB1));
|
|
EXPECT_FALSE(DT->dominates(Y3, BB2));
|
|
EXPECT_TRUE(DT->dominates(Y3, BB3));
|
|
EXPECT_FALSE(DT->dominates(Y3, BB4));
|
|
|
|
EXPECT_TRUE(DT->dominates(Y6, BB3));
|
|
|
|
// Post dominance.
|
|
EXPECT_TRUE(PDT->dominates(BB0, BB0));
|
|
EXPECT_FALSE(PDT->dominates(BB1, BB0));
|
|
EXPECT_FALSE(PDT->dominates(BB2, BB0));
|
|
EXPECT_FALSE(PDT->dominates(BB3, BB0));
|
|
EXPECT_TRUE(PDT->dominates(BB4, BB1));
|
|
|
|
// Dominance descendants.
|
|
SmallVector<BasicBlock *, 8> DominatedBBs, PostDominatedBBs;
|
|
|
|
DT->getDescendants(BB0, DominatedBBs);
|
|
PDT->getDescendants(BB0, PostDominatedBBs);
|
|
EXPECT_EQ(DominatedBBs.size(), 4UL);
|
|
EXPECT_EQ(PostDominatedBBs.size(), 1UL);
|
|
|
|
// BB3 is unreachable. It should have no dominators nor postdominators.
|
|
DominatedBBs.clear();
|
|
PostDominatedBBs.clear();
|
|
DT->getDescendants(BB3, DominatedBBs);
|
|
DT->getDescendants(BB3, PostDominatedBBs);
|
|
EXPECT_EQ(DominatedBBs.size(), 0UL);
|
|
EXPECT_EQ(PostDominatedBBs.size(), 0UL);
|
|
|
|
// Check DFS Numbers before
|
|
EXPECT_EQ(DT->getNode(BB0)->getDFSNumIn(), 0UL);
|
|
EXPECT_EQ(DT->getNode(BB0)->getDFSNumOut(), 7UL);
|
|
EXPECT_EQ(DT->getNode(BB1)->getDFSNumIn(), 1UL);
|
|
EXPECT_EQ(DT->getNode(BB1)->getDFSNumOut(), 2UL);
|
|
EXPECT_EQ(DT->getNode(BB2)->getDFSNumIn(), 5UL);
|
|
EXPECT_EQ(DT->getNode(BB2)->getDFSNumOut(), 6UL);
|
|
EXPECT_EQ(DT->getNode(BB4)->getDFSNumIn(), 3UL);
|
|
EXPECT_EQ(DT->getNode(BB4)->getDFSNumOut(), 4UL);
|
|
|
|
// Reattach block 3 to block 1 and recalculate
|
|
BB1->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(BB4, BB3, ConstantInt::getTrue(F.getContext()), BB1);
|
|
DT->recalculate(F);
|
|
|
|
// Check DFS Numbers after
|
|
EXPECT_EQ(DT->getNode(BB0)->getDFSNumIn(), 0UL);
|
|
EXPECT_EQ(DT->getNode(BB0)->getDFSNumOut(), 9UL);
|
|
EXPECT_EQ(DT->getNode(BB1)->getDFSNumIn(), 1UL);
|
|
EXPECT_EQ(DT->getNode(BB1)->getDFSNumOut(), 4UL);
|
|
EXPECT_EQ(DT->getNode(BB2)->getDFSNumIn(), 7UL);
|
|
EXPECT_EQ(DT->getNode(BB2)->getDFSNumOut(), 8UL);
|
|
EXPECT_EQ(DT->getNode(BB3)->getDFSNumIn(), 2UL);
|
|
EXPECT_EQ(DT->getNode(BB3)->getDFSNumOut(), 3UL);
|
|
EXPECT_EQ(DT->getNode(BB4)->getDFSNumIn(), 5UL);
|
|
EXPECT_EQ(DT->getNode(BB4)->getDFSNumOut(), 6UL);
|
|
|
|
// Change root node
|
|
DT->verifyDomTree();
|
|
BasicBlock *NewEntry =
|
|
BasicBlock::Create(F.getContext(), "new_entry", &F, BB0);
|
|
BranchInst::Create(BB0, NewEntry);
|
|
EXPECT_EQ(F.begin()->getName(), NewEntry->getName());
|
|
EXPECT_TRUE(&F.getEntryBlock() == NewEntry);
|
|
DT->setNewRoot(NewEntry);
|
|
DT->verifyDomTree();
|
|
});
|
|
}
|
|
|
|
TEST(DominatorTree, NonUniqueEdges) {
|
|
StringRef ModuleString =
|
|
"define i32 @f(i32 %i, i32 *%p) {\n"
|
|
"bb0:\n"
|
|
" store i32 %i, i32 *%p\n"
|
|
" switch i32 %i, label %bb2 [\n"
|
|
" i32 0, label %bb1\n"
|
|
" i32 1, label %bb1\n"
|
|
" ]\n"
|
|
" bb1:\n"
|
|
" ret i32 1\n"
|
|
" bb2:\n"
|
|
" ret i32 4\n"
|
|
"}\n";
|
|
|
|
// Parse the module.
|
|
LLVMContext Context;
|
|
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
|
|
|
|
runWithDomTree(
|
|
*M, "f",
|
|
[&](Function &F, DominatorTree *DT, DominatorTreeBase<BasicBlock> *PDT) {
|
|
Function::iterator FI = F.begin();
|
|
|
|
BasicBlock *BB0 = &*FI++;
|
|
BasicBlock *BB1 = &*FI++;
|
|
BasicBlock *BB2 = &*FI++;
|
|
|
|
const TerminatorInst *TI = BB0->getTerminator();
|
|
assert(TI->getNumSuccessors() == 3 && "Switch has three successors");
|
|
|
|
BasicBlockEdge Edge_BB0_BB2(BB0, TI->getSuccessor(0));
|
|
assert(Edge_BB0_BB2.getEnd() == BB2 &&
|
|
"Default label is the 1st successor");
|
|
|
|
BasicBlockEdge Edge_BB0_BB1_a(BB0, TI->getSuccessor(1));
|
|
assert(Edge_BB0_BB1_a.getEnd() == BB1 && "BB1 is the 2nd successor");
|
|
|
|
BasicBlockEdge Edge_BB0_BB1_b(BB0, TI->getSuccessor(2));
|
|
assert(Edge_BB0_BB1_b.getEnd() == BB1 && "BB1 is the 3rd successor");
|
|
|
|
EXPECT_TRUE(DT->dominates(Edge_BB0_BB2, BB2));
|
|
EXPECT_FALSE(DT->dominates(Edge_BB0_BB2, BB1));
|
|
|
|
EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_a, BB1));
|
|
EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_b, BB1));
|
|
|
|
EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_a, BB2));
|
|
EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_b, BB2));
|
|
});
|
|
}
|