llvm-mirror/lib/ProfileData/CoverageMapping.cpp
Justin Bogner 521deeff36 llvm-cov: Disentangle the coverage data logic from the display (NFC)
This splits the logic for actually looking up coverage information
from the logic that displays it. These were tangled rather thoroughly
so this change is a bit large, but it mostly consists of moving things
around. The coverage lookup logic itself now lives in the library,
rather than being spread between the library and the tool.

llvm-svn: 218184
2014-09-20 15:31:56 +00:00

418 lines
14 KiB
C++

//=-- CoverageMapping.cpp - Code coverage mapping support ---------*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for clang's and llvm's instrumentation based
// code coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/CoverageMapping.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ProfileData/CoverageMappingReader.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
using namespace coverage;
CounterExpressionBuilder::CounterExpressionBuilder(unsigned NumCounterValues) {
Terms.resize(NumCounterValues);
}
Counter CounterExpressionBuilder::get(const CounterExpression &E) {
for (unsigned I = 0, S = Expressions.size(); I < S; ++I) {
if (Expressions[I] == E)
return Counter::getExpression(I);
}
Expressions.push_back(E);
return Counter::getExpression(Expressions.size() - 1);
}
void CounterExpressionBuilder::extractTerms(Counter C, int Sign) {
switch (C.getKind()) {
case Counter::Zero:
break;
case Counter::CounterValueReference:
Terms[C.getCounterID()] += Sign;
break;
case Counter::Expression:
const auto &E = Expressions[C.getExpressionID()];
extractTerms(E.LHS, Sign);
extractTerms(E.RHS, E.Kind == CounterExpression::Subtract ? -Sign : Sign);
break;
}
}
Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
// Gather constant terms.
for (auto &I : Terms)
I = 0;
extractTerms(ExpressionTree);
Counter C;
// Create additions.
// Note: the additions are created first
// to avoid creation of a tree like ((0 - X) + Y) instead of (Y - X).
for (unsigned I = 0, S = Terms.size(); I < S; ++I) {
if (Terms[I] <= 0)
continue;
for (int J = 0; J < Terms[I]; ++J) {
if (C.isZero())
C = Counter::getCounter(I);
else
C = get(CounterExpression(CounterExpression::Add, C,
Counter::getCounter(I)));
}
}
// Create subtractions.
for (unsigned I = 0, S = Terms.size(); I < S; ++I) {
if (Terms[I] >= 0)
continue;
for (int J = 0; J < (-Terms[I]); ++J)
C = get(CounterExpression(CounterExpression::Subtract, C,
Counter::getCounter(I)));
}
return C;
}
Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
}
Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
return simplify(
get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
}
void CounterMappingContext::dump(const Counter &C,
llvm::raw_ostream &OS) const {
switch (C.getKind()) {
case Counter::Zero:
OS << '0';
return;
case Counter::CounterValueReference:
OS << '#' << C.getCounterID();
break;
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return;
const auto &E = Expressions[C.getExpressionID()];
OS << '(';
dump(E.LHS, OS);
OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
dump(E.RHS, OS);
OS << ')';
break;
}
}
if (CounterValues.empty())
return;
ErrorOr<int64_t> Value = evaluate(C);
if (!Value)
return;
OS << '[' << *Value << ']';
}
ErrorOr<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
switch (C.getKind()) {
case Counter::Zero:
return 0;
case Counter::CounterValueReference:
if (C.getCounterID() >= CounterValues.size())
return std::make_error_code(std::errc::argument_out_of_domain);
return CounterValues[C.getCounterID()];
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return std::make_error_code(std::errc::argument_out_of_domain);
const auto &E = Expressions[C.getExpressionID()];
ErrorOr<int64_t> LHS = evaluate(E.LHS);
if (!LHS)
return LHS;
ErrorOr<int64_t> RHS = evaluate(E.RHS);
if (!RHS)
return RHS;
return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
}
}
llvm_unreachable("Unhandled CounterKind");
}
ErrorOr<std::unique_ptr<CoverageMapping>>
CoverageMapping::load(ObjectFileCoverageMappingReader &CoverageReader,
IndexedInstrProfReader &ProfileReader) {
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
std::vector<uint64_t> Counts;
for (const auto &Record : CoverageReader) {
Counts.clear();
if (std::error_code EC = ProfileReader.getFunctionCounts(
Record.FunctionName, Record.FunctionHash, Counts)) {
if (EC != instrprof_error::hash_mismatch &&
EC != instrprof_error::unknown_function)
return EC;
Coverage->MismatchedFunctionCount++;
continue;
}
FunctionRecord Function(Record.FunctionName, Record.Filenames);
CounterMappingContext Ctx(Record.Expressions, Counts);
for (const auto &Region : Record.MappingRegions) {
ErrorOr<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
if (!ExecutionCount)
break;
Function.CountedRegions.push_back(CountedRegion(Region, *ExecutionCount));
}
if (Function.CountedRegions.size() != Record.MappingRegions.size()) {
Coverage->MismatchedFunctionCount++;
continue;
}
Coverage->Functions.push_back(Function);
}
return std::move(Coverage);
}
namespace {
/// \brief Distributes functions into instantiation sets.
///
/// An instantiation set is a collection of functions that have the same source
/// code, ie, template functions specializations.
class FunctionInstantiationSetCollector {
typedef DenseMap<std::pair<unsigned, unsigned>,
std::vector<const FunctionRecord *>> MapT;
MapT InstantiatedFunctions;
public:
void insert(const FunctionRecord &Function, unsigned FileID) {
auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
while (I != E && I->FileID != FileID)
++I;
assert(I != E && "function does not cover the given file");
auto &Functions = InstantiatedFunctions[I->startLoc()];
Functions.push_back(&Function);
}
MapT::iterator begin() { return InstantiatedFunctions.begin(); }
MapT::iterator end() { return InstantiatedFunctions.end(); }
};
class SegmentBuilder {
std::vector<CoverageSegment> Segments;
SmallVector<const CountedRegion *, 8> ActiveRegions;
/// Start a segment with no count specified.
void startSegment(unsigned Line, unsigned Col) {
Segments.emplace_back(Line, Col, /*IsRegionEntry=*/false);
}
/// Start a segment with the given Region's count.
void startSegment(unsigned Line, unsigned Col, bool IsRegionEntry,
const CountedRegion &Region) {
if (Segments.empty())
Segments.emplace_back(Line, Col, IsRegionEntry);
CoverageSegment S = Segments.back();
// Avoid creating empty regions.
if (S.Line != Line || S.Col != Col) {
Segments.emplace_back(Line, Col, IsRegionEntry);
S = Segments.back();
}
// Set this region's count.
if (Region.Kind != coverage::CounterMappingRegion::SkippedRegion)
Segments.back().setCount(Region.ExecutionCount);
}
/// Start a segment for the given region.
void startSegment(const CountedRegion &Region) {
startSegment(Region.LineStart, Region.ColumnStart, true, Region);
}
/// Pop the top region off of the active stack, starting a new segment with
/// the containing Region's count.
void popRegion() {
const CountedRegion *Active = ActiveRegions.back();
unsigned Line = Active->LineEnd, Col = Active->ColumnEnd;
ActiveRegions.pop_back();
if (ActiveRegions.empty())
startSegment(Line, Col);
else
startSegment(Line, Col, false, *ActiveRegions.back());
}
public:
/// Build a list of CoverageSegments from a sorted list of Regions.
std::vector<CoverageSegment> buildSegments(ArrayRef<CountedRegion> Regions) {
for (const auto &Region : Regions) {
// Pop any regions that end before this one starts.
while (!ActiveRegions.empty() &&
ActiveRegions.back()->endLoc() <= Region.startLoc())
popRegion();
// Add this region to the stack.
ActiveRegions.push_back(&Region);
startSegment(Region);
}
// Pop any regions that are left in the stack.
while (!ActiveRegions.empty())
popRegion();
return Segments;
}
};
}
std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() {
std::vector<StringRef> Filenames;
for (const auto &Function : getCoveredFunctions())
for (const auto &Filename : Function.Filenames)
Filenames.push_back(Filename);
std::sort(Filenames.begin(), Filenames.end());
auto Last = std::unique(Filenames.begin(), Filenames.end());
Filenames.erase(Last, Filenames.end());
return Filenames;
}
static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
const FunctionRecord &Function) {
llvm::SmallVector<bool, 8> IsExpandedFile(Function.Filenames.size(), false);
llvm::SmallVector<bool, 8> FilenameEquivalence(Function.Filenames.size(),
false);
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (SourceFile == Function.Filenames[I])
FilenameEquivalence[I] = true;
for (const auto &CR : Function.CountedRegions)
if (CR.Kind == CounterMappingRegion::ExpansionRegion &&
FilenameEquivalence[CR.FileID])
IsExpandedFile[CR.ExpandedFileID] = true;
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (FilenameEquivalence[I] && !IsExpandedFile[I])
return I;
return None;
}
static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
llvm::SmallVector<bool, 8> IsExpandedFile(Function.Filenames.size(), false);
for (const auto &CR : Function.CountedRegions)
if (CR.Kind == CounterMappingRegion::ExpansionRegion)
IsExpandedFile[CR.ExpandedFileID] = true;
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (!IsExpandedFile[I])
return I;
return None;
}
static SmallSet<unsigned, 8> gatherFileIDs(StringRef SourceFile,
const FunctionRecord &Function) {
SmallSet<unsigned, 8> IDs;
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (SourceFile == Function.Filenames[I])
IDs.insert(I);
return IDs;
}
/// Sort a nested sequence of regions from a single file.
template <class It> static void sortNestedRegions(It First, It Last) {
std::sort(First, Last,
[](const CountedRegion &LHS, const CountedRegion &RHS) {
if (LHS.startLoc() == RHS.startLoc())
// When LHS completely contains RHS, we sort LHS first.
return RHS.endLoc() < LHS.endLoc();
return LHS.startLoc() < RHS.startLoc();
});
}
static bool isExpansion(const CountedRegion &R, unsigned FileID) {
return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
}
CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) {
CoverageData FileCoverage(Filename);
std::vector<coverage::CountedRegion> Regions;
for (const auto &Function : Functions) {
auto MainFileID = findMainViewFileID(Filename, Function);
if (!MainFileID)
continue;
auto FileIDs = gatherFileIDs(Filename, Function);
for (const auto &CR : Function.CountedRegions)
if (FileIDs.count(CR.FileID)) {
Regions.push_back(CR);
if (isExpansion(CR, *MainFileID))
FileCoverage.Expansions.emplace_back(CR, Function);
}
}
sortNestedRegions(Regions.begin(), Regions.end());
FileCoverage.Segments = SegmentBuilder().buildSegments(Regions);
return FileCoverage;
}
std::vector<const FunctionRecord *>
CoverageMapping::getInstantiations(StringRef Filename) {
FunctionInstantiationSetCollector InstantiationSetCollector;
for (const auto &Function : Functions) {
auto MainFileID = findMainViewFileID(Filename, Function);
if (!MainFileID)
continue;
InstantiationSetCollector.insert(Function, *MainFileID);
}
std::vector<const FunctionRecord *> Result;
for (const auto &InstantiationSet : InstantiationSetCollector) {
if (InstantiationSet.second.size() < 2)
continue;
for (auto Function : InstantiationSet.second)
Result.push_back(Function);
}
return Result;
}
CoverageData
CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) {
auto MainFileID = findMainViewFileID(Function);
if (!MainFileID)
return CoverageData();
CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
std::vector<coverage::CountedRegion> Regions;
for (const auto &CR : Function.CountedRegions)
if (CR.FileID == *MainFileID) {
Regions.push_back(CR);
if (isExpansion(CR, *MainFileID))
FunctionCoverage.Expansions.emplace_back(CR, Function);
}
sortNestedRegions(Regions.begin(), Regions.end());
FunctionCoverage.Segments = SegmentBuilder().buildSegments(Regions);
return FunctionCoverage;
}
CoverageData
CoverageMapping::getCoverageForExpansion(const ExpansionRecord &Expansion) {
CoverageData ExpansionCoverage(
Expansion.Function.Filenames[Expansion.FileID]);
std::vector<coverage::CountedRegion> Regions;
for (const auto &CR : Expansion.Function.CountedRegions)
if (CR.FileID == Expansion.FileID) {
Regions.push_back(CR);
if (isExpansion(CR, Expansion.FileID))
ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
}
sortNestedRegions(Regions.begin(), Regions.end());
ExpansionCoverage.Segments = SegmentBuilder().buildSegments(Regions);
return ExpansionCoverage;
}