llvm-mirror/include/llvm/CodeGen/SelectionDAG.h
Mon P Wang 6792115592 Added CONVERT_RNDSAT (conversion with rounding and saturation) SDNode to
support targets that support these conversions. Users should avoid using
this node as the current targets don't generating code for it.

llvm-svn: 59001
2008-11-10 20:54:11 +00:00

823 lines
35 KiB
C++

//===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SelectionDAG class, and transitively defines the
// SDNode class and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAG_H
#define LLVM_CODEGEN_SELECTIONDAG_H
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include <cassert>
#include <vector>
#include <map>
#include <string>
namespace llvm {
class AliasAnalysis;
class TargetLowering;
class TargetMachine;
class MachineModuleInfo;
class MachineFunction;
class MachineConstantPoolValue;
class FunctionLoweringInfo;
template<> struct ilist_traits<SDNode> : public ilist_default_traits<SDNode> {
private:
mutable SDNode Sentinel;
public:
ilist_traits() : Sentinel(ISD::DELETED_NODE, SDVTList()) {}
SDNode *createSentinel() const {
return &Sentinel;
}
static void destroySentinel(SDNode *) {}
static void deleteNode(SDNode *) {
assert(0 && "ilist_traits<SDNode> shouldn't see a deleteNode call!");
}
private:
static void createNode(const SDNode &);
};
/// SelectionDAG class - This is used to represent a portion of an LLVM function
/// in a low-level Data Dependence DAG representation suitable for instruction
/// selection. This DAG is constructed as the first step of instruction
/// selection in order to allow implementation of machine specific optimizations
/// and code simplifications.
///
/// The representation used by the SelectionDAG is a target-independent
/// representation, which has some similarities to the GCC RTL representation,
/// but is significantly more simple, powerful, and is a graph form instead of a
/// linear form.
///
class SelectionDAG {
TargetLowering &TLI;
MachineFunction *MF;
FunctionLoweringInfo &FLI;
MachineModuleInfo *MMI;
/// EntryNode - The starting token.
SDNode EntryNode;
/// Root - The root of the entire DAG.
SDValue Root;
/// AllNodes - A linked list of nodes in the current DAG.
ilist<SDNode> AllNodes;
/// NodeAllocatorType - The AllocatorType for allocating SDNodes. We use
/// pool allocation with recycling.
typedef RecyclingAllocator<BumpPtrAllocator, SDNode, sizeof(LargestSDNode),
AlignOf<MostAlignedSDNode>::Alignment>
NodeAllocatorType;
/// NodeAllocator - Pool allocation for nodes.
NodeAllocatorType NodeAllocator;
/// CSEMap - This structure is used to memoize nodes, automatically performing
/// CSE with existing nodes with a duplicate is requested.
FoldingSet<SDNode> CSEMap;
/// OperandAllocator - Pool allocation for machine-opcode SDNode operands.
BumpPtrAllocator OperandAllocator;
/// Allocator - Pool allocation for misc. objects that are created once per
/// SelectionDAG.
BumpPtrAllocator Allocator;
/// VerifyNode - Sanity check the given node. Aborts if it is invalid.
void VerifyNode(SDNode *N);
/// setGraphColorHelper - Implementation of setSubgraphColor.
/// Return whether we had to truncate the search.
///
bool setSubgraphColorHelper(SDNode *N, const char *Color, DenseSet<SDNode *> &visited,
int level, bool &printed);
public:
SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli);
~SelectionDAG();
/// init - Prepare this SelectionDAG to process code in the given
/// MachineFunction.
///
void init(MachineFunction &mf, MachineModuleInfo *mmi);
/// clear - Clear state and free memory necessary to make this
/// SelectionDAG ready to process a new block.
///
void clear();
MachineFunction &getMachineFunction() const { return *MF; }
const TargetMachine &getTarget() const;
TargetLowering &getTargetLoweringInfo() const { return TLI; }
FunctionLoweringInfo &getFunctionLoweringInfo() const { return FLI; }
MachineModuleInfo *getMachineModuleInfo() const { return MMI; }
/// viewGraph - Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
///
void viewGraph(const std::string &Title);
void viewGraph();
#ifndef NDEBUG
std::map<const SDNode *, std::string> NodeGraphAttrs;
#endif
/// clearGraphAttrs - Clear all previously defined node graph attributes.
/// Intended to be used from a debugging tool (eg. gdb).
void clearGraphAttrs();
/// setGraphAttrs - Set graph attributes for a node. (eg. "color=red".)
///
void setGraphAttrs(const SDNode *N, const char *Attrs);
/// getGraphAttrs - Get graph attributes for a node. (eg. "color=red".)
/// Used from getNodeAttributes.
const std::string getGraphAttrs(const SDNode *N) const;
/// setGraphColor - Convenience for setting node color attribute.
///
void setGraphColor(const SDNode *N, const char *Color);
/// setGraphColor - Convenience for setting subgraph color attribute.
///
void setSubgraphColor(SDNode *N, const char *Color);
typedef ilist<SDNode>::const_iterator allnodes_const_iterator;
allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
typedef ilist<SDNode>::iterator allnodes_iterator;
allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
allnodes_iterator allnodes_end() { return AllNodes.end(); }
ilist<SDNode>::size_type allnodes_size() const {
return AllNodes.size();
}
/// getRoot - Return the root tag of the SelectionDAG.
///
const SDValue &getRoot() const { return Root; }
/// getEntryNode - Return the token chain corresponding to the entry of the
/// function.
SDValue getEntryNode() const {
return SDValue(const_cast<SDNode *>(&EntryNode), 0);
}
/// setRoot - Set the current root tag of the SelectionDAG.
///
const SDValue &setRoot(SDValue N) {
assert((!N.getNode() || N.getValueType() == MVT::Other) &&
"DAG root value is not a chain!");
return Root = N;
}
/// Combine - This iterates over the nodes in the SelectionDAG, folding
/// certain types of nodes together, or eliminating superfluous nodes. When
/// the AfterLegalize argument is set to 'true', Combine takes care not to
/// generate any nodes that will be illegal on the target.
void Combine(bool AfterLegalize, AliasAnalysis &AA, bool Fast);
/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void LegalizeTypes();
/// Legalize - This transforms the SelectionDAG into a SelectionDAG that is
/// compatible with the target instruction selector, as indicated by the
/// TargetLowering object.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void Legalize();
/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG.
void RemoveDeadNodes();
/// DeleteNode - Remove the specified node from the system. This node must
/// have no referrers.
void DeleteNode(SDNode *N);
/// getVTList - Return an SDVTList that represents the list of values
/// specified.
SDVTList getVTList(MVT VT);
SDVTList getVTList(MVT VT1, MVT VT2);
SDVTList getVTList(MVT VT1, MVT VT2, MVT VT3);
SDVTList getVTList(const MVT *VTs, unsigned NumVTs);
/// getNodeValueTypes - These are obsolete, use getVTList instead.
const MVT *getNodeValueTypes(MVT VT) {
return getVTList(VT).VTs;
}
const MVT *getNodeValueTypes(MVT VT1, MVT VT2) {
return getVTList(VT1, VT2).VTs;
}
const MVT *getNodeValueTypes(MVT VT1, MVT VT2, MVT VT3) {
return getVTList(VT1, VT2, VT3).VTs;
}
const MVT *getNodeValueTypes(const std::vector<MVT> &vtList) {
return getVTList(&vtList[0], (unsigned)vtList.size()).VTs;
}
//===--------------------------------------------------------------------===//
// Node creation methods.
//
SDValue getConstant(uint64_t Val, MVT VT, bool isTarget = false);
SDValue getConstant(const APInt &Val, MVT VT, bool isTarget = false);
SDValue getConstant(const ConstantInt &Val, MVT VT, bool isTarget = false);
SDValue getIntPtrConstant(uint64_t Val, bool isTarget = false);
SDValue getTargetConstant(uint64_t Val, MVT VT) {
return getConstant(Val, VT, true);
}
SDValue getTargetConstant(const APInt &Val, MVT VT) {
return getConstant(Val, VT, true);
}
SDValue getTargetConstant(const ConstantInt &Val, MVT VT) {
return getConstant(Val, VT, true);
}
SDValue getConstantFP(double Val, MVT VT, bool isTarget = false);
SDValue getConstantFP(const APFloat& Val, MVT VT, bool isTarget = false);
SDValue getConstantFP(const ConstantFP &CF, MVT VT, bool isTarget = false);
SDValue getTargetConstantFP(double Val, MVT VT) {
return getConstantFP(Val, VT, true);
}
SDValue getTargetConstantFP(const APFloat& Val, MVT VT) {
return getConstantFP(Val, VT, true);
}
SDValue getTargetConstantFP(const ConstantFP &Val, MVT VT) {
return getConstantFP(Val, VT, true);
}
SDValue getGlobalAddress(const GlobalValue *GV, MVT VT,
int64_t offset = 0, bool isTargetGA = false);
SDValue getTargetGlobalAddress(const GlobalValue *GV, MVT VT,
int64_t offset = 0) {
return getGlobalAddress(GV, VT, offset, true);
}
SDValue getFrameIndex(int FI, MVT VT, bool isTarget = false);
SDValue getTargetFrameIndex(int FI, MVT VT) {
return getFrameIndex(FI, VT, true);
}
SDValue getJumpTable(int JTI, MVT VT, bool isTarget = false);
SDValue getTargetJumpTable(int JTI, MVT VT) {
return getJumpTable(JTI, VT, true);
}
SDValue getConstantPool(Constant *C, MVT VT,
unsigned Align = 0, int Offs = 0, bool isT=false);
SDValue getTargetConstantPool(Constant *C, MVT VT,
unsigned Align = 0, int Offset = 0) {
return getConstantPool(C, VT, Align, Offset, true);
}
SDValue getConstantPool(MachineConstantPoolValue *C, MVT VT,
unsigned Align = 0, int Offs = 0, bool isT=false);
SDValue getTargetConstantPool(MachineConstantPoolValue *C,
MVT VT, unsigned Align = 0,
int Offset = 0) {
return getConstantPool(C, VT, Align, Offset, true);
}
SDValue getBasicBlock(MachineBasicBlock *MBB);
SDValue getExternalSymbol(const char *Sym, MVT VT);
SDValue getTargetExternalSymbol(const char *Sym, MVT VT);
SDValue getArgFlags(ISD::ArgFlagsTy Flags);
SDValue getValueType(MVT);
SDValue getRegister(unsigned Reg, MVT VT);
SDValue getDbgStopPoint(SDValue Root, unsigned Line, unsigned Col,
const CompileUnitDesc *CU);
SDValue getLabel(unsigned Opcode, SDValue Root, unsigned LabelID);
SDValue getCopyToReg(SDValue Chain, unsigned Reg, SDValue N) {
return getNode(ISD::CopyToReg, MVT::Other, Chain,
getRegister(Reg, N.getValueType()), N);
}
// This version of the getCopyToReg method takes an extra operand, which
// indicates that there is potentially an incoming flag value (if Flag is not
// null) and that there should be a flag result.
SDValue getCopyToReg(SDValue Chain, unsigned Reg, SDValue N,
SDValue Flag) {
const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Flag };
return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.getNode() ? 4 : 3);
}
// Similar to last getCopyToReg() except parameter Reg is a SDValue
SDValue getCopyToReg(SDValue Chain, SDValue Reg, SDValue N,
SDValue Flag) {
const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
SDValue Ops[] = { Chain, Reg, N, Flag };
return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.getNode() ? 4 : 3);
}
SDValue getCopyFromReg(SDValue Chain, unsigned Reg, MVT VT) {
const MVT *VTs = getNodeValueTypes(VT, MVT::Other);
SDValue Ops[] = { Chain, getRegister(Reg, VT) };
return getNode(ISD::CopyFromReg, VTs, 2, Ops, 2);
}
// This version of the getCopyFromReg method takes an extra operand, which
// indicates that there is potentially an incoming flag value (if Flag is not
// null) and that there should be a flag result.
SDValue getCopyFromReg(SDValue Chain, unsigned Reg, MVT VT,
SDValue Flag) {
const MVT *VTs = getNodeValueTypes(VT, MVT::Other, MVT::Flag);
SDValue Ops[] = { Chain, getRegister(Reg, VT), Flag };
return getNode(ISD::CopyFromReg, VTs, 3, Ops, Flag.getNode() ? 3 : 2);
}
SDValue getCondCode(ISD::CondCode Cond);
/// Returns the ConvertRndSat Note: Avoid using this node because it may
/// disappear in the future and most targets don't support it.
SDValue getConvertRndSat(MVT VT, SDValue Val, SDValue DTy, SDValue STy,
SDValue Rnd, SDValue Sat, ISD::CvtCode Code);
/// getZeroExtendInReg - Return the expression required to zero extend the Op
/// value assuming it was the smaller SrcTy value.
SDValue getZeroExtendInReg(SDValue Op, MVT SrcTy);
/// getCALLSEQ_START - Return a new CALLSEQ_START node, which always must have
/// a flag result (to ensure it's not CSE'd).
SDValue getCALLSEQ_START(SDValue Chain, SDValue Op) {
const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
SDValue Ops[] = { Chain, Op };
return getNode(ISD::CALLSEQ_START, VTs, 2, Ops, 2);
}
/// getCALLSEQ_END - Return a new CALLSEQ_END node, which always must have a
/// flag result (to ensure it's not CSE'd).
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
SDValue InFlag) {
SDVTList NodeTys = getVTList(MVT::Other, MVT::Flag);
SmallVector<SDValue, 4> Ops;
Ops.push_back(Chain);
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(InFlag);
return getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0],
(unsigned)Ops.size() - (InFlag.getNode() == 0 ? 1 : 0));
}
/// getNode - Gets or creates the specified node.
///
SDValue getNode(unsigned Opcode, MVT VT);
SDValue getNode(unsigned Opcode, MVT VT, SDValue N);
SDValue getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2);
SDValue getNode(unsigned Opcode, MVT VT,
SDValue N1, SDValue N2, SDValue N3);
SDValue getNode(unsigned Opcode, MVT VT,
SDValue N1, SDValue N2, SDValue N3, SDValue N4);
SDValue getNode(unsigned Opcode, MVT VT,
SDValue N1, SDValue N2, SDValue N3, SDValue N4,
SDValue N5);
SDValue getNode(unsigned Opcode, MVT VT,
const SDValue *Ops, unsigned NumOps);
SDValue getNode(unsigned Opcode, MVT VT,
const SDUse *Ops, unsigned NumOps);
SDValue getNode(unsigned Opcode, const std::vector<MVT> &ResultTys,
const SDValue *Ops, unsigned NumOps);
SDValue getNode(unsigned Opcode, const MVT *VTs, unsigned NumVTs,
const SDValue *Ops, unsigned NumOps);
SDValue getNode(unsigned Opcode, SDVTList VTs);
SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N);
SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N1, SDValue N2);
SDValue getNode(unsigned Opcode, SDVTList VTs,
SDValue N1, SDValue N2, SDValue N3);
SDValue getNode(unsigned Opcode, SDVTList VTs,
SDValue N1, SDValue N2, SDValue N3, SDValue N4);
SDValue getNode(unsigned Opcode, SDVTList VTs,
SDValue N1, SDValue N2, SDValue N3, SDValue N4,
SDValue N5);
SDValue getNode(unsigned Opcode, SDVTList VTs,
const SDValue *Ops, unsigned NumOps);
SDValue getMemcpy(SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool AlwaysInline,
const Value *DstSV, uint64_t DstSVOff,
const Value *SrcSV, uint64_t SrcSVOff);
SDValue getMemmove(SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
const Value *DstSV, uint64_t DstOSVff,
const Value *SrcSV, uint64_t SrcSVOff);
SDValue getMemset(SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
const Value *DstSV, uint64_t DstSVOff);
/// getSetCC - Helper function to make it easier to build SetCC's if you just
/// have an ISD::CondCode instead of an SDValue.
///
SDValue getSetCC(MVT VT, SDValue LHS, SDValue RHS,
ISD::CondCode Cond) {
return getNode(ISD::SETCC, VT, LHS, RHS, getCondCode(Cond));
}
/// getVSetCC - Helper function to make it easier to build VSetCC's nodes
/// if you just have an ISD::CondCode instead of an SDValue.
///
SDValue getVSetCC(MVT VT, SDValue LHS, SDValue RHS,
ISD::CondCode Cond) {
return getNode(ISD::VSETCC, VT, LHS, RHS, getCondCode(Cond));
}
/// getSelectCC - Helper function to make it easier to build SelectCC's if you
/// just have an ISD::CondCode instead of an SDValue.
///
SDValue getSelectCC(SDValue LHS, SDValue RHS,
SDValue True, SDValue False, ISD::CondCode Cond) {
return getNode(ISD::SELECT_CC, True.getValueType(), LHS, RHS, True, False,
getCondCode(Cond));
}
/// getVAArg - VAArg produces a result and token chain, and takes a pointer
/// and a source value as input.
SDValue getVAArg(MVT VT, SDValue Chain, SDValue Ptr,
SDValue SV);
/// getAtomic - Gets a node for an atomic op, produces result and chain and
/// takes 3 operands
SDValue getAtomic(unsigned Opcode, SDValue Chain, SDValue Ptr,
SDValue Cmp, SDValue Swp, const Value* PtrVal,
unsigned Alignment=0);
/// getAtomic - Gets a node for an atomic op, produces result and chain and
/// takes 2 operands.
SDValue getAtomic(unsigned Opcode, SDValue Chain, SDValue Ptr,
SDValue Val, const Value* PtrVal,
unsigned Alignment = 0);
/// getMemIntrinsicNode - Creates a MemIntrinsicNode that may produce a
/// result and takes a list of operands.
SDValue getMemIntrinsicNode(unsigned Opcode,
const MVT *VTs, unsigned NumVTs,
const SDValue *Ops, unsigned NumOps,
MVT MemVT, const Value *srcValue, int SVOff,
unsigned Align = 0, bool Vol = false,
bool ReadMem = true, bool WriteMem = true);
SDValue getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
const SDValue *Ops, unsigned NumOps,
MVT MemVT, const Value *srcValue, int SVOff,
unsigned Align = 0, bool Vol = false,
bool ReadMem = true, bool WriteMem = true);
/// getMergeValues - Create a MERGE_VALUES node from the given operands.
/// Allowed to return something different (and simpler) if Simplify is true.
SDValue getMergeValues(const SDValue *Ops, unsigned NumOps,
bool Simplify = true);
/// getMergeValues - Create a MERGE_VALUES node from the given types and ops.
/// Allowed to return something different (and simpler) if Simplify is true.
/// May be faster than the above version if VTs is known and NumOps is large.
SDValue getMergeValues(SDVTList VTs, const SDValue *Ops, unsigned NumOps,
bool Simplify = true) {
if (Simplify && NumOps == 1)
return Ops[0];
return getNode(ISD::MERGE_VALUES, VTs, Ops, NumOps);
}
/// getCall - Create a CALL node from the given information.
///
SDValue getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
bool isInreg, SDVTList VTs, const SDValue *Operands,
unsigned NumOperands);
/// getLoad - Loads are not normal binary operators: their result type is not
/// determined by their operands, and they produce a value AND a token chain.
///
SDValue getLoad(MVT VT, SDValue Chain, SDValue Ptr,
const Value *SV, int SVOffset, bool isVolatile=false,
unsigned Alignment=0);
SDValue getExtLoad(ISD::LoadExtType ExtType, MVT VT,
SDValue Chain, SDValue Ptr, const Value *SV,
int SVOffset, MVT EVT, bool isVolatile=false,
unsigned Alignment=0);
SDValue getIndexedLoad(SDValue OrigLoad, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
MVT VT, SDValue Chain,
SDValue Ptr, SDValue Offset,
const Value *SV, int SVOffset, MVT EVT,
bool isVolatile=false, unsigned Alignment=0);
/// getStore - Helper function to build ISD::STORE nodes.
///
SDValue getStore(SDValue Chain, SDValue Val, SDValue Ptr,
const Value *SV, int SVOffset, bool isVolatile=false,
unsigned Alignment=0);
SDValue getTruncStore(SDValue Chain, SDValue Val, SDValue Ptr,
const Value *SV, int SVOffset, MVT TVT,
bool isVolatile=false, unsigned Alignment=0);
SDValue getIndexedStore(SDValue OrigStoe, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
// getSrcValue - Construct a node to track a Value* through the backend.
SDValue getSrcValue(const Value *v);
// getMemOperand - Construct a node to track a memory reference
// through the backend.
SDValue getMemOperand(const MachineMemOperand &MO);
/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
/// specified operands. If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists. If the resultant node does not exist in the DAG, the
/// input node is returned. As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDValue UpdateNodeOperands(SDValue N, SDValue Op);
SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2);
SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
SDValue Op3);
SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4);
SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4, SDValue Op5);
SDValue UpdateNodeOperands(SDValue N,
const SDValue *Ops, unsigned NumOps);
/// SelectNodeTo - These are used for target selectors to *mutate* the
/// specified node to have the specified return type, Target opcode, and
/// operands. Note that target opcodes are stored as
/// ~TargetOpcode in the node opcode field. The resultant node is returned.
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT, SDValue Op1);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
SDValue Op1, SDValue Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
const SDValue *Ops, unsigned NumOps);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1, MVT VT2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, const SDValue *Ops, unsigned NumOps);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, SDValue Op1);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
const SDValue *Ops, unsigned NumOps);
/// MorphNodeTo - These *mutate* the specified node to have the specified
/// return type, opcode, and operands.
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, SDValue Op1);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
SDValue Op1, SDValue Op2);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
const SDValue *Ops, unsigned NumOps);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
MVT VT2, const SDValue *Ops, unsigned NumOps);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
MVT VT2, SDValue Op1);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
const SDValue *Ops, unsigned NumOps);
/// getTargetNode - These are used for target selectors to create a new node
/// with specified return type(s), target opcode, and operands.
///
/// Note that getTargetNode returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
SDNode *getTargetNode(unsigned Opcode, MVT VT);
SDNode *getTargetNode(unsigned Opcode, MVT VT, SDValue Op1);
SDNode *getTargetNode(unsigned Opcode, MVT VT, SDValue Op1, SDValue Op2);
SDNode *getTargetNode(unsigned Opcode, MVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *getTargetNode(unsigned Opcode, MVT VT,
const SDValue *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, SDValue Op1);
SDNode *getTargetNode(unsigned Opcode, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2);
SDNode *getTargetNode(unsigned Opcode, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
const SDValue *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
SDValue Op1, SDValue Op2);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
const SDValue *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, MVT VT4,
const SDValue *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, const std::vector<MVT> &ResultTys,
const SDValue *Ops, unsigned NumOps);
/// getNodeIfExists - Get the specified node if it's already available, or
/// else return NULL.
SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs,
const SDValue *Ops, unsigned NumOps);
/// DAGUpdateListener - Clients of various APIs that cause global effects on
/// the DAG can optionally implement this interface. This allows the clients
/// to handle the various sorts of updates that happen.
class DAGUpdateListener {
public:
virtual ~DAGUpdateListener();
/// NodeDeleted - The node N that was deleted and, if E is not null, an
/// equivalent node E that replaced it.
virtual void NodeDeleted(SDNode *N, SDNode *E) = 0;
/// NodeUpdated - The node N that was updated.
virtual void NodeUpdated(SDNode *N) = 0;
};
/// RemoveDeadNode - Remove the specified node from the system. If any of its
/// operands then becomes dead, remove them as well. Inform UpdateListener
/// for each node deleted.
void RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener = 0);
/// RemoveDeadNodes - This method deletes the unreachable nodes in the
/// given list, and any nodes that become unreachable as a result.
void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
DAGUpdateListener *UpdateListener = 0);
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG. Use the first
/// version if 'From' is known to have a single result, use the second
/// if you have two nodes with identical results, use the third otherwise.
///
/// These methods all take an optional UpdateListener, which (if not null) is
/// informed about nodes that are deleted and modified due to recursive
/// changes in the dag.
///
void ReplaceAllUsesWith(SDValue From, SDValue Op,
DAGUpdateListener *UpdateListener = 0);
void ReplaceAllUsesWith(SDNode *From, SDNode *To,
DAGUpdateListener *UpdateListener = 0);
void ReplaceAllUsesWith(SDNode *From, const SDValue *To,
DAGUpdateListener *UpdateListener = 0);
/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.Val alone.
void ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
DAGUpdateListener *UpdateListener = 0);
/// ReplaceAllUsesOfValuesWith - Like ReplaceAllUsesOfValueWith, but
/// for multiple values at once. This correctly handles the case where
/// there is an overlap between the From values and the To values.
void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
unsigned Num,
DAGUpdateListener *UpdateListener = 0);
/// AssignTopologicalOrder - Topological-sort the AllNodes list and a
/// assign a unique node id for each node in the DAG based on their
/// topological order. Returns the number of nodes.
unsigned AssignTopologicalOrder();
/// RepositionNode - Move node N in the AllNodes list to be immediately
/// before the given iterator Position. This may be used to update the
/// topological ordering when the list of nodes is modified.
void RepositionNode(allnodes_iterator Position, SDNode *N) {
AllNodes.insert(Position, AllNodes.remove(N));
}
/// isCommutativeBinOp - Returns true if the opcode is a commutative binary
/// operation.
static bool isCommutativeBinOp(unsigned Opcode) {
// FIXME: This should get its info from the td file, so that we can include
// target info.
switch (Opcode) {
case ISD::ADD:
case ISD::MUL:
case ISD::MULHU:
case ISD::MULHS:
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI:
case ISD::FADD:
case ISD::FMUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::ADDC:
case ISD::ADDE: return true;
default: return false;
}
}
void dump() const;
/// CreateStackTemporary - Create a stack temporary, suitable for holding the
/// specified value type. If minAlign is specified, the slot size will have
/// at least that alignment.
SDValue CreateStackTemporary(MVT VT, unsigned minAlign = 1);
/// FoldConstantArithmetic -
SDValue FoldConstantArithmetic(unsigned Opcode,
MVT VT,
ConstantSDNode *Cst1,
ConstantSDNode *Cst2);
/// FoldSetCC - Constant fold a setcc to true or false.
SDValue FoldSetCC(MVT VT, SDValue N1,
SDValue N2, ISD::CondCode Cond);
/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
/// use this predicate to simplify operations downstream.
bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We
/// use this predicate to simplify operations downstream. Op and Mask are
/// known to be the same type.
bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
const;
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
/// processing. Targets can implement the computeMaskedBitsForTargetNode
/// method in the TargetLowering class to allow target nodes to be understood.
void ComputeMaskedBits(SDValue Op, const APInt &Mask, APInt &KnownZero,
APInt &KnownOne, unsigned Depth = 0) const;
/// ComputeNumSignBits - Return the number of times the sign bit of the
/// register is replicated into the other bits. We know that at least 1 bit
/// is always equal to the sign bit (itself), but other cases can give us
/// information. For example, immediately after an "SRA X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3. Targets can
/// implement the ComputeNumSignBitsForTarget method in the TargetLowering
/// class to allow target nodes to be understood.
unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
/// isVerifiedDebugInfoDesc - Returns true if the specified SDValue has
/// been verified as a debug information descriptor.
bool isVerifiedDebugInfoDesc(SDValue Op) const;
/// getShuffleScalarElt - Returns the scalar element that will make up the ith
/// element of the result of the vector shuffle.
SDValue getShuffleScalarElt(const SDNode *N, unsigned Idx);
private:
bool RemoveNodeFromCSEMaps(SDNode *N);
SDNode *AddNonLeafNodeToCSEMaps(SDNode *N);
SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, const SDValue *Ops, unsigned NumOps,
void *&InsertPos);
void DeleteNodeNotInCSEMaps(SDNode *N);
unsigned getMVTAlignment(MVT MemoryVT) const;
void allnodes_clear();
// List of non-single value types.
std::vector<SDVTList> VTList;
// Maps to auto-CSE operations.
std::vector<CondCodeSDNode*> CondCodeNodes;
std::vector<SDNode*> ValueTypeNodes;
std::map<MVT, SDNode*, MVT::compareRawBits> ExtendedValueTypeNodes;
StringMap<SDNode*> ExternalSymbols;
StringMap<SDNode*> TargetExternalSymbols;
};
template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
typedef SelectionDAG::allnodes_iterator nodes_iterator;
static nodes_iterator nodes_begin(SelectionDAG *G) {
return G->allnodes_begin();
}
static nodes_iterator nodes_end(SelectionDAG *G) {
return G->allnodes_end();
}
};
} // end namespace llvm
#endif