llvm-mirror/lib/CodeGen/ScheduleDAGInstrs.cpp
Dan Gohman 036cc300ad Rewrite the SDep class, and simplify some of the related code.
The Cost field is removed. It was only being used in a very limited way,
to indicate when the scheduler should attempt to protect a live register,
and it isn't really needed to do that. If we ever want the scheduler to
start inserting copies in non-prohibitive situations, we'll have to
rethink some things anyway.

A Latency field is added. Instead of giving each node a single
fixed latency, each edge can have its own latency. This will eventually
be used to model various micro-architecture properties more accurately.

The PointerIntPair class and an internal union are now used, which
reduce the overall size.

llvm-svn: 60806
2008-12-09 22:54:47 +00:00

261 lines
10 KiB
C++

//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
// of MachineInstrs.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sched-instrs"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
using namespace llvm;
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineBasicBlock *bb,
const TargetMachine &tm)
: ScheduleDAG(0, bb, tm) {}
void ScheduleDAGInstrs::BuildSchedUnits() {
SUnits.clear();
SUnits.reserve(BB->size());
// We build scheduling units by walking a block's instruction list from bottom
// to top.
// Remember where defs and uses of each physical register are as we procede.
SUnit *Defs[TargetRegisterInfo::FirstVirtualRegister] = {};
std::vector<SUnit *> Uses[TargetRegisterInfo::FirstVirtualRegister] = {};
// Remember where unknown loads are after the most recent unknown store
// as we procede.
std::vector<SUnit *> PendingLoads;
// Remember where a generic side-effecting instruction is as we procede. If
// ChainMMO is null, this is assumed to have arbitrary side-effects. If
// ChainMMO is non-null, then Chain makes only a single memory reference.
SUnit *Chain = 0;
MachineMemOperand *ChainMMO = 0;
// Memory references to specific known memory locations are tracked so that
// they can be given more precise dependencies.
std::map<const Value *, SUnit *> MemDefs;
std::map<const Value *, std::vector<SUnit *> > MemUses;
// Terminators can perform control transfers, we we need to make sure that
// all the work of the block is done before the terminator.
SUnit *Terminator = 0;
for (MachineBasicBlock::iterator MII = BB->end(), MIE = BB->begin();
MII != MIE; --MII) {
MachineInstr *MI = prior(MII);
SUnit *SU = NewSUnit(MI);
// Assign the Latency field of SU using target-provided information.
ComputeLatency(SU);
// Add register-based dependencies (data, anti, and output).
for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
const MachineOperand &MO = MI->getOperand(j);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
std::vector<SUnit *> &UseList = Uses[Reg];
SUnit *&Def = Defs[Reg];
// Optionally add output and anti dependencies.
// TODO: Using a latency of 1 here assumes there's no cost for
// reusing registers.
SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
if (Def && Def != SU)
Def->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg));
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
SUnit *&Def = Defs[*Alias];
if (Def && Def != SU)
Def->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias));
}
if (MO.isDef()) {
// Add any data dependencies.
for (unsigned i = 0, e = UseList.size(); i != e; ++i)
if (UseList[i] != SU)
UseList[i]->addPred(SDep(SU, SDep::Data, SU->Latency, Reg));
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
std::vector<SUnit *> &UseList = Uses[*Alias];
for (unsigned i = 0, e = UseList.size(); i != e; ++i)
if (UseList[i] != SU)
UseList[i]->addPred(SDep(SU, SDep::Data, SU->Latency, *Alias));
}
UseList.clear();
Def = SU;
} else {
UseList.push_back(SU);
}
}
// Add chain dependencies.
// Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
// after stack slots are lowered to actual addresses.
// TODO: Use an AliasAnalysis and do real alias-analysis queries, and
// produce more precise dependence information.
const TargetInstrDesc &TID = MI->getDesc();
if (TID.isCall() || TID.isReturn() || TID.isBranch() ||
TID.hasUnmodeledSideEffects()) {
new_chain:
// This is the conservative case. Add dependencies on all memory
// references.
if (Chain)
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
Chain = SU;
for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
PendingLoads.clear();
for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
E = MemDefs.end(); I != E; ++I) {
I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
I->second = SU;
}
for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
MemUses.begin(), E = MemUses.end(); I != E; ++I) {
for (unsigned i = 0, e = I->second.size(); i != e; ++i)
I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
I->second.clear();
}
// See if it is known to just have a single memory reference.
MachineInstr *ChainMI = Chain->getInstr();
const TargetInstrDesc &ChainTID = ChainMI->getDesc();
if (!ChainTID.isCall() && !ChainTID.isReturn() && !ChainTID.isBranch() &&
!ChainTID.hasUnmodeledSideEffects() &&
ChainMI->hasOneMemOperand() &&
!ChainMI->memoperands_begin()->isVolatile() &&
ChainMI->memoperands_begin()->getValue())
// We know that the Chain accesses one specific memory location.
ChainMMO = &*ChainMI->memoperands_begin();
else
// Unknown memory accesses. Assume the worst.
ChainMMO = 0;
} else if (TID.mayStore()) {
if (MI->hasOneMemOperand() &&
MI->memoperands_begin()->getValue() &&
!MI->memoperands_begin()->isVolatile() &&
isa<PseudoSourceValue>(MI->memoperands_begin()->getValue())) {
// A store to a specific PseudoSourceValue. Add precise dependencies.
const Value *V = MI->memoperands_begin()->getValue();
// Handle the def in MemDefs, if there is one.
std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
if (I != MemDefs.end()) {
I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
/*isNormalMemory=*/true));
I->second = SU;
} else {
MemDefs[V] = SU;
}
// Handle the uses in MemUses, if there are any.
std::map<const Value *, std::vector<SUnit *> >::iterator J =
MemUses.find(V);
if (J != MemUses.end()) {
for (unsigned i = 0, e = J->second.size(); i != e; ++i)
J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
/*isNormalMemory=*/true));
J->second.clear();
}
// Add a general dependence too, if needed.
if (Chain)
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
} else
// Treat all other stores conservatively.
goto new_chain;
} else if (TID.mayLoad()) {
if (TII->isInvariantLoad(MI)) {
// Invariant load, no chain dependencies needed!
} else if (MI->hasOneMemOperand() &&
MI->memoperands_begin()->getValue() &&
!MI->memoperands_begin()->isVolatile() &&
isa<PseudoSourceValue>(MI->memoperands_begin()->getValue())) {
// A load from a specific PseudoSourceValue. Add precise dependencies.
const Value *V = MI->memoperands_begin()->getValue();
std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
if (I != MemDefs.end())
I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
/*isNormalMemory=*/true));
MemUses[V].push_back(SU);
// Add a general dependence too, if needed.
if (Chain && (!ChainMMO ||
(ChainMMO->isStore() || ChainMMO->isVolatile())))
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
} else if (MI->hasVolatileMemoryRef()) {
// Treat volatile loads conservatively. Note that this includes
// cases where memoperand information is unavailable.
goto new_chain;
} else {
// A normal load. Just depend on the general chain.
if (Chain)
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
PendingLoads.push_back(SU);
}
}
// Add chain edges from the terminator to ensure that all the work of the
// block is completed before any control transfers.
if (Terminator && SU->Succs.empty())
Terminator->addPred(SDep(SU, SDep::Order, SU->Latency));
if (TID.isTerminator() || MI->isLabel())
Terminator = SU;
}
}
void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
// Compute the latency for the node. We use the sum of the latencies for
// all nodes flagged together into this SUnit.
SU->Latency =
InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass());
}
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
SU->getInstr()->dump();
}
std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
std::string s;
raw_string_ostream oss(s);
SU->getInstr()->print(oss);
return oss.str();
}
// EmitSchedule - Emit the machine code in scheduled order.
MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
// For MachineInstr-based scheduling, we're rescheduling the instructions in
// the block, so start by removing them from the block.
while (!BB->empty())
BB->remove(BB->begin());
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
SUnit *SU = Sequence[i];
if (!SU) {
// Null SUnit* is a noop.
EmitNoop();
continue;
}
BB->push_back(SU->getInstr());
}
return BB;
}