llvm-mirror/lib/CodeGen/RegAllocLocal.cpp
2006-05-04 17:52:23 +00:00

697 lines
28 KiB
C++

//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
#include <iostream>
using namespace llvm;
namespace {
Statistic<> NumStores("ra-local", "Number of stores added");
Statistic<> NumLoads ("ra-local", "Number of loads added");
Statistic<> NumFolded("ra-local", "Number of loads/stores folded into "
"instructions");
class RA : public MachineFunctionPass {
const TargetMachine *TM;
MachineFunction *MF;
const MRegisterInfo *RegInfo;
LiveVariables *LV;
bool *PhysRegsEverUsed;
// StackSlotForVirtReg - Maps virtual regs to the frame index where these
// values are spilled.
std::map<unsigned, int> StackSlotForVirtReg;
// Virt2PhysRegMap - This map contains entries for each virtual register
// that is currently available in a physical register.
DenseMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
return Virt2PhysRegMap[VirtReg];
}
// PhysRegsUsed - This array is effectively a map, containing entries for
// each physical register that currently has a value (ie, it is in
// Virt2PhysRegMap). The value mapped to is the virtual register
// corresponding to the physical register (the inverse of the
// Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
// because it is used by a future instruction. If the entry for a physical
// register is -1, then the physical register is "not in the map".
//
std::vector<int> PhysRegsUsed;
// PhysRegsUseOrder - This contains a list of the physical registers that
// currently have a virtual register value in them. This list provides an
// ordering of registers, imposing a reallocation order. This list is only
// used if all registers are allocated and we have to spill one, in which
// case we spill the least recently used register. Entries at the front of
// the list are the least recently used registers, entries at the back are
// the most recently used.
//
std::vector<unsigned> PhysRegsUseOrder;
// VirtRegModified - This bitset contains information about which virtual
// registers need to be spilled back to memory when their registers are
// scavenged. If a virtual register has simply been rematerialized, there
// is no reason to spill it to memory when we need the register back.
//
std::vector<bool> VirtRegModified;
void markVirtRegModified(unsigned Reg, bool Val = true) {
assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
Reg -= MRegisterInfo::FirstVirtualRegister;
if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
VirtRegModified[Reg] = Val;
}
bool isVirtRegModified(unsigned Reg) const {
assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
&& "Illegal virtual register!");
return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
}
void MarkPhysRegRecentlyUsed(unsigned Reg) {
if(PhysRegsUseOrder.empty() ||
PhysRegsUseOrder.back() == Reg) return; // Already most recently used
for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
// Add it to the end of the list
PhysRegsUseOrder.push_back(RegMatch);
if (RegMatch == Reg)
return; // Found an exact match, exit early
}
}
public:
virtual const char *getPassName() const {
return "Local Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveVariables>();
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// runOnMachineFunction - Register allocate the whole function
bool runOnMachineFunction(MachineFunction &Fn);
/// AllocateBasicBlock - Register allocate the specified basic block.
void AllocateBasicBlock(MachineBasicBlock &MBB);
/// areRegsEqual - This method returns true if the specified registers are
/// related to each other. To do this, it checks to see if they are equal
/// or if the first register is in the alias set of the second register.
///
bool areRegsEqual(unsigned R1, unsigned R2) const {
if (R1 == R2) return true;
for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
*AliasSet; ++AliasSet) {
if (*AliasSet == R1) return true;
}
return false;
}
/// getStackSpaceFor - This returns the frame index of the specified virtual
/// register on the stack, allocating space if necessary.
int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
/// removePhysReg - This method marks the specified physical register as no
/// longer being in use.
///
void removePhysReg(unsigned PhysReg);
/// spillVirtReg - This method spills the value specified by PhysReg into
/// the virtual register slot specified by VirtReg. It then updates the RA
/// data structures to indicate the fact that PhysReg is now available.
///
void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
unsigned VirtReg, unsigned PhysReg);
/// spillPhysReg - This method spills the specified physical register into
/// the virtual register slot associated with it. If OnlyVirtRegs is set to
/// true, then the request is ignored if the physical register does not
/// contain a virtual register.
///
void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
unsigned PhysReg, bool OnlyVirtRegs = false);
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
/// liberatePhysReg - Make sure the specified physical register is available
/// for use. If there is currently a value in it, it is either moved out of
/// the way or spilled to memory.
///
void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned PhysReg);
/// isPhysRegAvailable - Return true if the specified physical register is
/// free and available for use. This also includes checking to see if
/// aliased registers are all free...
///
bool isPhysRegAvailable(unsigned PhysReg) const;
/// getFreeReg - Look to see if there is a free register available in the
/// specified register class. If not, return 0.
///
unsigned getFreeReg(const TargetRegisterClass *RC);
/// getReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method
/// spills the last used virtual register to the stack, and uses that
/// register.
///
unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned VirtReg);
/// reloadVirtReg - This method transforms the specified specified virtual
/// register use to refer to a physical register. This method may do this
/// in one of several ways: if the register is available in a physical
/// register already, it uses that physical register. If the value is not
/// in a physical register, and if there are physical registers available,
/// it loads it into a register. If register pressure is high, and it is
/// possible, it tries to fold the load of the virtual register into the
/// instruction itself. It avoids doing this if register pressure is low to
/// improve the chance that subsequent instructions can use the reloaded
/// value. This method returns the modified instruction.
///
MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned OpNum);
void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned PhysReg);
};
}
/// getStackSpaceFor - This allocates space for the specified virtual register
/// to be held on the stack.
int RA::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
// Find the location Reg would belong...
std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg);
if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
return I->second; // Already has space allocated?
// Allocate a new stack object for this spill location...
int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
RC->getAlignment());
// Assign the slot...
StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
return FrameIdx;
}
/// removePhysReg - This method marks the specified physical register as no
/// longer being in use.
///
void RA::removePhysReg(unsigned PhysReg) {
PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
std::vector<unsigned>::iterator It =
std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
if (It != PhysRegsUseOrder.end())
PhysRegsUseOrder.erase(It);
}
/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg. It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
///
void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned VirtReg, unsigned PhysReg) {
assert(VirtReg && "Spilling a physical register is illegal!"
" Must not have appropriate kill for the register or use exists beyond"
" the intended one.");
DEBUG(std::cerr << " Spilling register " << RegInfo->getName(PhysReg);
std::cerr << " containing %reg" << VirtReg;
if (!isVirtRegModified(VirtReg))
std::cerr << " which has not been modified, so no store necessary!");
// Otherwise, there is a virtual register corresponding to this physical
// register. We only need to spill it into its stack slot if it has been
// modified.
if (isVirtRegModified(VirtReg)) {
const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
DEBUG(std::cerr << " to stack slot #" << FrameIndex);
RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RC);
++NumStores; // Update statistics
}
getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
DEBUG(std::cerr << "\n");
removePhysReg(PhysReg);
}
/// spillPhysReg - This method spills the specified physical register into the
/// virtual register slot associated with it. If OnlyVirtRegs is set to true,
/// then the request is ignored if the physical register does not contain a
/// virtual register.
///
void RA::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
unsigned PhysReg, bool OnlyVirtRegs) {
if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
} else {
// If the selected register aliases any other registers, we must make
// sure that one of the aliases isn't alive...
for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
*AliasSet; ++AliasSet)
if (PhysRegsUsed[*AliasSet] != -1) // Spill aliased register...
if (PhysRegsUsed[*AliasSet] || !OnlyVirtRegs)
spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
}
}
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
void RA::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
// Update information to note the fact that this register was just used, and
// it holds VirtReg.
PhysRegsUsed[PhysReg] = VirtReg;
getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
}
/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use. This also includes checking to see if aliased
/// registers are all free...
///
bool RA::isPhysRegAvailable(unsigned PhysReg) const {
if (PhysRegsUsed[PhysReg] != -1) return false;
// If the selected register aliases any other allocated registers, it is
// not free!
for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
*AliasSet; ++AliasSet)
if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
return false; // Can't use this reg then.
return true;
}
/// getFreeReg - Look to see if there is a free register available in the
/// specified register class. If not, return 0.
///
unsigned RA::getFreeReg(const TargetRegisterClass *RC) {
// Get iterators defining the range of registers that are valid to allocate in
// this class, which also specifies the preferred allocation order.
TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
for (; RI != RE; ++RI)
if (isPhysRegAvailable(*RI)) { // Is reg unused?
assert(*RI != 0 && "Cannot use register!");
return *RI; // Found an unused register!
}
return 0;
}
/// liberatePhysReg - Make sure the specified physical register is available for
/// use. If there is currently a value in it, it is either moved out of the way
/// or spilled to memory.
///
void RA::liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned PhysReg) {
spillPhysReg(MBB, I, PhysReg);
}
/// getReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
///
unsigned RA::getReg(MachineBasicBlock &MBB, MachineInstr *I,
unsigned VirtReg) {
const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
// First check to see if we have a free register of the requested type...
unsigned PhysReg = getFreeReg(RC);
// If we didn't find an unused register, scavenge one now!
if (PhysReg == 0) {
assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
// Loop over all of the preallocated registers from the least recently used
// to the most recently used. When we find one that is capable of holding
// our register, use it.
for (unsigned i = 0; PhysReg == 0; ++i) {
assert(i != PhysRegsUseOrder.size() &&
"Couldn't find a register of the appropriate class!");
unsigned R = PhysRegsUseOrder[i];
// We can only use this register if it holds a virtual register (ie, it
// can be spilled). Do not use it if it is an explicitly allocated
// physical register!
assert(PhysRegsUsed[R] != -1 &&
"PhysReg in PhysRegsUseOrder, but is not allocated?");
if (PhysRegsUsed[R]) {
// If the current register is compatible, use it.
if (RC->contains(R)) {
PhysReg = R;
break;
} else {
// If one of the registers aliased to the current register is
// compatible, use it.
for (const unsigned *AliasSet = RegInfo->getAliasSet(R);
*AliasSet; ++AliasSet) {
if (RC->contains(*AliasSet)) {
PhysReg = *AliasSet; // Take an aliased register
break;
}
}
}
}
}
assert(PhysReg && "Physical register not assigned!?!?");
// At this point PhysRegsUseOrder[i] is the least recently used register of
// compatible register class. Spill it to memory and reap its remains.
spillPhysReg(MBB, I, PhysReg);
}
// Now that we know which register we need to assign this to, do it now!
assignVirtToPhysReg(VirtReg, PhysReg);
return PhysReg;
}
/// reloadVirtReg - This method transforms the specified specified virtual
/// register use to refer to a physical register. This method may do this in
/// one of several ways: if the register is available in a physical register
/// already, it uses that physical register. If the value is not in a physical
/// register, and if there are physical registers available, it loads it into a
/// register. If register pressure is high, and it is possible, it tries to
/// fold the load of the virtual register into the instruction itself. It
/// avoids doing this if register pressure is low to improve the chance that
/// subsequent instructions can use the reloaded value. This method returns the
/// modified instruction.
///
MachineInstr *RA::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned OpNum) {
unsigned VirtReg = MI->getOperand(OpNum).getReg();
// If the virtual register is already available, just update the instruction
// and return.
if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
MarkPhysRegRecentlyUsed(PR); // Already have this value available!
MI->getOperand(OpNum).setReg(PR); // Assign the input register
return MI;
}
// Otherwise, we need to fold it into the current instruction, or reload it.
// If we have registers available to hold the value, use them.
const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
unsigned PhysReg = getFreeReg(RC);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
if (PhysReg) { // Register is available, allocate it!
assignVirtToPhysReg(VirtReg, PhysReg);
} else { // No registers available.
// If we can fold this spill into this instruction, do so now.
if (MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)){
++NumFolded;
// Since we changed the address of MI, make sure to update live variables
// to know that the new instruction has the properties of the old one.
LV->instructionChanged(MI, FMI);
return MBB.insert(MBB.erase(MI), FMI);
}
// It looks like we can't fold this virtual register load into this
// instruction. Force some poor hapless value out of the register file to
// make room for the new register, and reload it.
PhysReg = getReg(MBB, MI, VirtReg);
}
markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
DEBUG(std::cerr << " Reloading %reg" << VirtReg << " into "
<< RegInfo->getName(PhysReg) << "\n");
// Add move instruction(s)
RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
++NumLoads; // Update statistics
PhysRegsEverUsed[PhysReg] = true;
MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
return MI;
}
void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
// loop over each instruction
MachineBasicBlock::iterator MII = MBB.begin();
const TargetInstrInfo &TII = *TM->getInstrInfo();
while (MII != MBB.end()) {
MachineInstr *MI = MII++;
const TargetInstrDescriptor &TID = TII.get(MI->getOpcode());
DEBUG(std::cerr << "\nStarting RegAlloc of: " << *MI;
std::cerr << " Regs have values: ";
for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
if (PhysRegsUsed[i] != -1)
std::cerr << "[" << RegInfo->getName(i)
<< ",%reg" << PhysRegsUsed[i] << "] ";
std::cerr << "\n");
// Loop over the implicit uses, making sure that they are at the head of the
// use order list, so they don't get reallocated.
for (const unsigned *ImplicitUses = TID.ImplicitUses;
*ImplicitUses; ++ImplicitUses)
MarkPhysRegRecentlyUsed(*ImplicitUses);
// Get the used operands into registers. This has the potential to spill
// incoming values if we are out of registers. Note that we completely
// ignore physical register uses here. We assume that if an explicit
// physical register is referenced by the instruction, that it is guaranteed
// to be live-in, or the input is badly hosed.
//
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
MachineOperand& MO = MI->getOperand(i);
// here we are looking for only used operands (never def&use)
if (!MO.isDef() && MO.isRegister() && MO.getReg() &&
MRegisterInfo::isVirtualRegister(MO.getReg()))
MI = reloadVirtReg(MBB, MI, i);
}
// If this instruction is the last user of anything in registers, kill the
// value, freeing the register being used, so it doesn't need to be
// spilled to memory.
//
for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
KE = LV->killed_end(MI); KI != KE; ++KI) {
unsigned VirtReg = *KI;
unsigned PhysReg = VirtReg;
if (MRegisterInfo::isVirtualRegister(VirtReg)) {
// If the virtual register was never materialized into a register, it
// might not be in the map, but it won't hurt to zero it out anyway.
unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
PhysReg = PhysRegSlot;
PhysRegSlot = 0;
}
if (PhysReg) {
DEBUG(std::cerr << " Last use of " << RegInfo->getName(PhysReg)
<< "[%reg" << VirtReg <<"], removing it from live set\n");
removePhysReg(PhysReg);
}
}
// Loop over all of the operands of the instruction, spilling registers that
// are defined, and marking explicit destinations in the PhysRegsUsed map.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isDef() && MO.isRegister() && MO.getReg() &&
MRegisterInfo::isPhysicalRegister(MO.getReg())) {
unsigned Reg = MO.getReg();
PhysRegsEverUsed[Reg] = true;
spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in the reg
PhysRegsUsed[Reg] = 0; // It is free and reserved now
PhysRegsUseOrder.push_back(Reg);
for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
*AliasSet; ++AliasSet) {
PhysRegsUseOrder.push_back(*AliasSet);
PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
PhysRegsEverUsed[*AliasSet] = true;
}
}
}
// Loop over the implicit defs, spilling them as well.
for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
*ImplicitDefs; ++ImplicitDefs) {
unsigned Reg = *ImplicitDefs;
spillPhysReg(MBB, MI, Reg, true);
PhysRegsUseOrder.push_back(Reg);
PhysRegsUsed[Reg] = 0; // It is free and reserved now
PhysRegsEverUsed[Reg] = true;
for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
*AliasSet; ++AliasSet) {
PhysRegsUseOrder.push_back(*AliasSet);
PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
PhysRegsEverUsed[*AliasSet] = true;
}
}
// Okay, we have allocated all of the source operands and spilled any values
// that would be destroyed by defs of this instruction. Loop over the
// explicit defs and assign them to a register, spilling incoming values if
// we need to scavenge a register.
//
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isDef() && MO.isRegister() && MO.getReg() &&
MRegisterInfo::isVirtualRegister(MO.getReg())) {
unsigned DestVirtReg = MO.getReg();
unsigned DestPhysReg;
// If DestVirtReg already has a value, use it.
if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
DestPhysReg = getReg(MBB, MI, DestVirtReg);
PhysRegsEverUsed[DestPhysReg] = true;
markVirtRegModified(DestVirtReg);
MI->getOperand(i).setReg(DestPhysReg); // Assign the output register
}
}
// If this instruction defines any registers that are immediately dead,
// kill them now.
//
for (LiveVariables::killed_iterator KI = LV->dead_begin(MI),
KE = LV->dead_end(MI); KI != KE; ++KI) {
unsigned VirtReg = *KI;
unsigned PhysReg = VirtReg;
if (MRegisterInfo::isVirtualRegister(VirtReg)) {
unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
PhysReg = PhysRegSlot;
assert(PhysReg != 0);
PhysRegSlot = 0;
}
if (PhysReg) {
DEBUG(std::cerr << " Register " << RegInfo->getName(PhysReg)
<< " [%reg" << VirtReg
<< "] is never used, removing it frame live list\n");
removePhysReg(PhysReg);
}
}
// Finally, if this is a noop copy instruction, zap it.
unsigned SrcReg, DstReg;
if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg)
MBB.erase(MI);
}
MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
// Spill all physical registers holding virtual registers now.
for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
if (PhysRegsUsed[i] != -1)
if (unsigned VirtReg = PhysRegsUsed[i])
spillVirtReg(MBB, MI, VirtReg, i);
else
removePhysReg(i);
#if 0
// This checking code is very expensive.
bool AllOk = true;
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i)
if (unsigned PR = Virt2PhysRegMap[i]) {
std::cerr << "Register still mapped: " << i << " -> " << PR << "\n";
AllOk = false;
}
assert(AllOk && "Virtual registers still in phys regs?");
#endif
// Clear any physical register which appear live at the end of the basic
// block, but which do not hold any virtual registers. e.g., the stack
// pointer.
PhysRegsUseOrder.clear();
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RA::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(std::cerr << "Machine Function " << "\n");
MF = &Fn;
TM = &Fn.getTarget();
RegInfo = TM->getRegisterInfo();
LV = &getAnalysis<LiveVariables>();
PhysRegsEverUsed = new bool[RegInfo->getNumRegs()];
std::fill(PhysRegsEverUsed, PhysRegsEverUsed+RegInfo->getNumRegs(), false);
Fn.setUsedPhysRegs(PhysRegsEverUsed);
PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
// initialize the virtual->physical register map to have a 'null'
// mapping for all virtual registers
Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg());
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
AllocateBasicBlock(*MBB);
StackSlotForVirtReg.clear();
PhysRegsUsed.clear();
VirtRegModified.clear();
Virt2PhysRegMap.clear();
return true;
}
FunctionPass *llvm::createLocalRegisterAllocator() {
return new RA();
}