mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-15 07:59:33 +00:00
56e0c65937
llvm-svn: 29262
732 lines
20 KiB
Plaintext
732 lines
20 KiB
Plaintext
//===---------------------------------------------------------------------===//
|
|
// Random ideas for the X86 backend.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Add a MUL2U and MUL2S nodes to represent a multiply that returns both the
|
|
Hi and Lo parts (combination of MUL and MULH[SU] into one node). Add this to
|
|
X86, & make the dag combiner produce it when needed. This will eliminate one
|
|
imul from the code generated for:
|
|
|
|
long long test(long long X, long long Y) { return X*Y; }
|
|
|
|
by using the EAX result from the mul. We should add a similar node for
|
|
DIVREM.
|
|
|
|
another case is:
|
|
|
|
long long test(int X, int Y) { return (long long)X*Y; }
|
|
|
|
... which should only be one imul instruction.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This should be one DIV/IDIV instruction, not a libcall:
|
|
|
|
unsigned test(unsigned long long X, unsigned Y) {
|
|
return X/Y;
|
|
}
|
|
|
|
This can be done trivially with a custom legalizer. What about overflow
|
|
though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improvements to the multiply -> shift/add algorithm:
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improve code like this (occurs fairly frequently, e.g. in LLVM):
|
|
long long foo(int x) { return 1LL << x; }
|
|
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html
|
|
|
|
Another useful one would be ~0ULL >> X and ~0ULL << X.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Compile this:
|
|
_Bool f(_Bool a) { return a!=1; }
|
|
|
|
into:
|
|
movzbl %dil, %eax
|
|
xorl $1, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Some isel ideas:
|
|
|
|
1. Dynamic programming based approach when compile time if not an
|
|
issue.
|
|
2. Code duplication (addressing mode) during isel.
|
|
3. Other ideas from "Register-Sensitive Selection, Duplication, and
|
|
Sequencing of Instructions".
|
|
4. Scheduling for reduced register pressure. E.g. "Minimum Register
|
|
Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs"
|
|
and other related papers.
|
|
http://citeseer.ist.psu.edu/govindarajan01minimum.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Should we promote i16 to i32 to avoid partial register update stalls?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Leave any_extend as pseudo instruction and hint to register
|
|
allocator. Delay codegen until post register allocation.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Model X86 EFLAGS as a real register to avoid redudant cmp / test. e.g.
|
|
|
|
cmpl $1, %eax
|
|
setg %al
|
|
testb %al, %al # unnecessary
|
|
jne .BB7
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Count leading zeros and count trailing zeros:
|
|
|
|
int clz(int X) { return __builtin_clz(X); }
|
|
int ctz(int X) { return __builtin_ctz(X); }
|
|
|
|
$ gcc t.c -S -o - -O3 -fomit-frame-pointer -masm=intel
|
|
clz:
|
|
bsr %eax, DWORD PTR [%esp+4]
|
|
xor %eax, 31
|
|
ret
|
|
ctz:
|
|
bsf %eax, DWORD PTR [%esp+4]
|
|
ret
|
|
|
|
however, check that these are defined for 0 and 32. Our intrinsics are, GCC's
|
|
aren't.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Use push/pop instructions in prolog/epilog sequences instead of stores off
|
|
ESP (certain code size win, perf win on some [which?] processors).
|
|
Also, it appears icc use push for parameter passing. Need to investigate.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Only use inc/neg/not instructions on processors where they are faster than
|
|
add/sub/xor. They are slower on the P4 due to only updating some processor
|
|
flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The instruction selector sometimes misses folding a load into a compare. The
|
|
pattern is written as (cmp reg, (load p)). Because the compare isn't
|
|
commutative, it is not matched with the load on both sides. The dag combiner
|
|
should be made smart enough to cannonicalize the load into the RHS of a compare
|
|
when it can invert the result of the compare for free.
|
|
|
|
How about intrinsics? An example is:
|
|
*res = _mm_mulhi_epu16(*A, _mm_mul_epu32(*B, *C));
|
|
|
|
compiles to
|
|
pmuludq (%eax), %xmm0
|
|
movl 8(%esp), %eax
|
|
movdqa (%eax), %xmm1
|
|
pmulhuw %xmm0, %xmm1
|
|
|
|
The transformation probably requires a X86 specific pass or a DAG combiner
|
|
target specific hook.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The DAG Isel doesn't fold the loads into the adds in this testcase. The
|
|
pattern selector does. This is because the chain value of the load gets
|
|
selected first, and the loads aren't checking to see if they are only used by
|
|
and add.
|
|
|
|
.ll:
|
|
|
|
int %test(int* %x, int* %y, int* %z) {
|
|
%X = load int* %x
|
|
%Y = load int* %y
|
|
%Z = load int* %z
|
|
%a = add int %X, %Y
|
|
%b = add int %a, %Z
|
|
ret int %b
|
|
}
|
|
|
|
dag isel:
|
|
|
|
_test:
|
|
movl 4(%esp), %eax
|
|
movl (%eax), %eax
|
|
movl 8(%esp), %ecx
|
|
movl (%ecx), %ecx
|
|
addl %ecx, %eax
|
|
movl 12(%esp), %ecx
|
|
movl (%ecx), %ecx
|
|
addl %ecx, %eax
|
|
ret
|
|
|
|
pattern isel:
|
|
|
|
_test:
|
|
movl 12(%esp), %ecx
|
|
movl 4(%esp), %edx
|
|
movl 8(%esp), %eax
|
|
movl (%eax), %eax
|
|
addl (%edx), %eax
|
|
addl (%ecx), %eax
|
|
ret
|
|
|
|
This is bad for register pressure, though the dag isel is producing a
|
|
better schedule. :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
In many cases, LLVM generates code like this:
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
cmpl %eax, 4(%esp)
|
|
setl %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
on some processors (which ones?), it is more efficient to do this:
|
|
|
|
_test:
|
|
movl 8(%esp), %ebx
|
|
xor %eax, %eax
|
|
cmpl %ebx, 4(%esp)
|
|
setl %al
|
|
ret
|
|
|
|
Doing this correctly is tricky though, as the xor clobbers the flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should generate 'test' instead of 'cmp' in various cases, e.g.:
|
|
|
|
bool %test(int %X) {
|
|
%Y = shl int %X, ubyte 1
|
|
%C = seteq int %Y, 0
|
|
ret bool %C
|
|
}
|
|
bool %test(int %X) {
|
|
%Y = and int %X, 8
|
|
%C = seteq int %Y, 0
|
|
ret bool %C
|
|
}
|
|
|
|
This may just be a matter of using 'test' to write bigger patterns for X86cmp.
|
|
|
|
An important case is comparison against zero:
|
|
|
|
if (X == 0) ...
|
|
|
|
instead of:
|
|
|
|
cmpl $0, %eax
|
|
je LBB4_2 #cond_next
|
|
|
|
use:
|
|
test %eax, %eax
|
|
jz LBB4_2
|
|
|
|
which is smaller.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should generate bts/btr/etc instructions on targets where they are cheap or
|
|
when codesize is important. e.g., for:
|
|
|
|
void setbit(int *target, int bit) {
|
|
*target |= (1 << bit);
|
|
}
|
|
void clearbit(int *target, int bit) {
|
|
*target &= ~(1 << bit);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Instead of the following for memset char*, 1, 10:
|
|
|
|
movl $16843009, 4(%edx)
|
|
movl $16843009, (%edx)
|
|
movw $257, 8(%edx)
|
|
|
|
It might be better to generate
|
|
|
|
movl $16843009, %eax
|
|
movl %eax, 4(%edx)
|
|
movl %eax, (%edx)
|
|
movw al, 8(%edx)
|
|
|
|
when we can spare a register. It reduces code size.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently
|
|
get this:
|
|
|
|
int %test1(int %X) {
|
|
%Y = div int %X, 8
|
|
ret int %Y
|
|
}
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
sarl $31, %ecx
|
|
shrl $29, %ecx
|
|
addl %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
GCC knows several different ways to codegen it, one of which is this:
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
cmpl $-1, %eax
|
|
leal 7(%eax), %ecx
|
|
cmovle %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
which is probably slower, but it's interesting at least :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Should generate min/max for stuff like:
|
|
|
|
void minf(float a, float b, float *X) {
|
|
*X = a <= b ? a : b;
|
|
}
|
|
|
|
Make use of floating point min / max instructions. Perhaps introduce ISD::FMIN
|
|
and ISD::FMAX node types?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The first BB of this code:
|
|
|
|
declare bool %foo()
|
|
int %bar() {
|
|
%V = call bool %foo()
|
|
br bool %V, label %T, label %F
|
|
T:
|
|
ret int 1
|
|
F:
|
|
call bool %foo()
|
|
ret int 12
|
|
}
|
|
|
|
compiles to:
|
|
|
|
_bar:
|
|
subl $12, %esp
|
|
call L_foo$stub
|
|
xorb $1, %al
|
|
testb %al, %al
|
|
jne LBB_bar_2 # F
|
|
|
|
It would be better to emit "cmp %al, 1" than a xor and test.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Enable X86InstrInfo::convertToThreeAddress().
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Investigate whether it is better to codegen the following
|
|
|
|
%tmp.1 = mul int %x, 9
|
|
to
|
|
|
|
movl 4(%esp), %eax
|
|
leal (%eax,%eax,8), %eax
|
|
|
|
as opposed to what llc is currently generating:
|
|
|
|
imull $9, 4(%esp), %eax
|
|
|
|
Currently the load folding imull has a higher complexity than the LEA32 pattern.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl
|
|
We should leave these as libcalls for everything over a much lower threshold,
|
|
since libc is hand tuned for medium and large mem ops (avoiding RFO for large
|
|
stores, TLB preheating, etc)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize this into something reasonable:
|
|
x * copysign(1.0, y) * copysign(1.0, z)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize copysign(x, *y) to use an integer load from y.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
%X = weak global int 0
|
|
|
|
void %foo(int %N) {
|
|
%N = cast int %N to uint
|
|
%tmp.24 = setgt int %N, 0
|
|
br bool %tmp.24, label %no_exit, label %return
|
|
|
|
no_exit:
|
|
%indvar = phi uint [ 0, %entry ], [ %indvar.next, %no_exit ]
|
|
%i.0.0 = cast uint %indvar to int
|
|
volatile store int %i.0.0, int* %X
|
|
%indvar.next = add uint %indvar, 1
|
|
%exitcond = seteq uint %indvar.next, %N
|
|
br bool %exitcond, label %return, label %no_exit
|
|
|
|
return:
|
|
ret void
|
|
}
|
|
|
|
compiles into:
|
|
|
|
.text
|
|
.align 4
|
|
.globl _foo
|
|
_foo:
|
|
movl 4(%esp), %eax
|
|
cmpl $1, %eax
|
|
jl LBB_foo_4 # return
|
|
LBB_foo_1: # no_exit.preheader
|
|
xorl %ecx, %ecx
|
|
LBB_foo_2: # no_exit
|
|
movl L_X$non_lazy_ptr, %edx
|
|
movl %ecx, (%edx)
|
|
incl %ecx
|
|
cmpl %eax, %ecx
|
|
jne LBB_foo_2 # no_exit
|
|
LBB_foo_3: # return.loopexit
|
|
LBB_foo_4: # return
|
|
ret
|
|
|
|
We should hoist "movl L_X$non_lazy_ptr, %edx" out of the loop after
|
|
remateralization is implemented. This can be accomplished with 1) a target
|
|
dependent LICM pass or 2) makeing SelectDAG represent the whole function.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The following tests perform worse with LSR:
|
|
|
|
lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Teach the coalescer to coalesce vregs of different register classes. e.g. FR32 /
|
|
FR64 to VR128.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
mov $reg, 48(%esp)
|
|
...
|
|
leal 48(%esp), %eax
|
|
mov %eax, (%esp)
|
|
call _foo
|
|
|
|
Obviously it would have been better for the first mov (or any op) to store
|
|
directly %esp[0] if there are no other uses.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Adding to the list of cmp / test poor codegen issues:
|
|
|
|
int test(__m128 *A, __m128 *B) {
|
|
if (_mm_comige_ss(*A, *B))
|
|
return 3;
|
|
else
|
|
return 4;
|
|
}
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
movaps (%eax), %xmm0
|
|
movl 4(%esp), %eax
|
|
movaps (%eax), %xmm1
|
|
comiss %xmm0, %xmm1
|
|
setae %al
|
|
movzbl %al, %ecx
|
|
movl $3, %eax
|
|
movl $4, %edx
|
|
cmpl $0, %ecx
|
|
cmove %edx, %eax
|
|
ret
|
|
|
|
Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There
|
|
are a number of issues. 1) We are introducing a setcc between the result of the
|
|
intrisic call and select. 2) The intrinsic is expected to produce a i32 value
|
|
so a any extend (which becomes a zero extend) is added.
|
|
|
|
We probably need some kind of target DAG combine hook to fix this.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We generate significantly worse code for this than GCC:
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150
|
|
http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701
|
|
|
|
There is also one case we do worse on PPC.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
If shorter, we should use things like:
|
|
movzwl %ax, %eax
|
|
instead of:
|
|
andl $65535, %EAX
|
|
|
|
The former can also be used when the two-addressy nature of the 'and' would
|
|
require a copy to be inserted (in X86InstrInfo::convertToThreeAddress).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code generates ugly code, probably due to costs being off or something:
|
|
|
|
void %test(float* %P, <4 x float>* %P2 ) {
|
|
%xFloat0.688 = load float* %P
|
|
%loadVector37.712 = load <4 x float>* %P2
|
|
%inFloat3.713 = insertelement <4 x float> %loadVector37.712, float 0.000000e+00, uint 3
|
|
store <4 x float> %inFloat3.713, <4 x float>* %P2
|
|
ret void
|
|
}
|
|
|
|
Generates:
|
|
|
|
_test:
|
|
pxor %xmm0, %xmm0
|
|
movd %xmm0, %eax ;; EAX = 0!
|
|
movl 8(%esp), %ecx
|
|
movaps (%ecx), %xmm0
|
|
pinsrw $6, %eax, %xmm0
|
|
shrl $16, %eax ;; EAX = 0 again!
|
|
pinsrw $7, %eax, %xmm0
|
|
movaps %xmm0, (%ecx)
|
|
ret
|
|
|
|
It would be better to generate:
|
|
|
|
_test:
|
|
movl 8(%esp), %ecx
|
|
movaps (%ecx), %xmm0
|
|
xor %eax, %eax
|
|
pinsrw $6, %eax, %xmm0
|
|
pinsrw $7, %eax, %xmm0
|
|
movaps %xmm0, (%ecx)
|
|
ret
|
|
|
|
or use pxor (to make a zero vector) and shuffle (to insert it).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Bad codegen:
|
|
|
|
char foo(int x) { return x; }
|
|
|
|
_foo:
|
|
movl 4(%esp), %eax
|
|
shll $24, %eax
|
|
sarl $24, %eax
|
|
ret
|
|
|
|
SIGN_EXTEND_INREG can be implemented as (sext (trunc)) to take advantage of
|
|
sub-registers.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider this:
|
|
|
|
typedef struct pair { float A, B; } pair;
|
|
void pairtest(pair P, float *FP) {
|
|
*FP = P.A+P.B;
|
|
}
|
|
|
|
We currently generate this code with llvmgcc4:
|
|
|
|
_pairtest:
|
|
subl $12, %esp
|
|
movl 20(%esp), %eax
|
|
movl %eax, 4(%esp)
|
|
movl 16(%esp), %eax
|
|
movl %eax, (%esp)
|
|
movss (%esp), %xmm0
|
|
addss 4(%esp), %xmm0
|
|
movl 24(%esp), %eax
|
|
movss %xmm0, (%eax)
|
|
addl $12, %esp
|
|
ret
|
|
|
|
we should be able to generate:
|
|
_pairtest:
|
|
movss 4(%esp), %xmm0
|
|
movl 12(%esp), %eax
|
|
addss 8(%esp), %xmm0
|
|
movss %xmm0, (%eax)
|
|
ret
|
|
|
|
The issue is that llvmgcc4 is forcing the struct to memory, then passing it as
|
|
integer chunks. It does this so that structs like {short,short} are passed in
|
|
a single 32-bit integer stack slot. We should handle the safe cases above much
|
|
nicer, while still handling the hard cases.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Some ideas for instruction selection code simplification: 1. A pre-pass to
|
|
determine which chain producing node can or cannot be folded. The generated
|
|
isel code would then use the information. 2. The same pre-pass can force
|
|
ordering of TokenFactor operands to allow load / store folding. 3. During isel,
|
|
instead of recursively going up the chain operand chain, mark the chain operand
|
|
as available and put it in some work list. Select other nodes in the normal
|
|
manner. The chain operands are selected after all other nodes are selected. Uses
|
|
of chain nodes are modified after instruction selection is completed.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Another instruction selector deficiency:
|
|
|
|
void %bar() {
|
|
%tmp = load int (int)** %foo
|
|
%tmp = tail call int %tmp( int 3 )
|
|
ret void
|
|
}
|
|
|
|
_bar:
|
|
subl $12, %esp
|
|
movl L_foo$non_lazy_ptr, %eax
|
|
movl (%eax), %eax
|
|
call *%eax
|
|
addl $12, %esp
|
|
ret
|
|
|
|
The current isel scheme will not allow the load to be folded in the call since
|
|
the load's chain result is read by the callseq_start.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Don't forget to find a way to squash noop truncates in the JIT environment.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Implement anyext in the same manner as truncate that would allow them to be
|
|
eliminated.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
How about implementing truncate / anyext as a property of machine instruction
|
|
operand? i.e. Print as 32-bit super-class register / 16-bit sub-class register.
|
|
Do this for the cases where a truncate / anyext is guaranteed to be eliminated.
|
|
For IA32 that is truncate from 32 to 16 and anyext from 16 to 32.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For this:
|
|
|
|
int test(int a)
|
|
{
|
|
return a * 3;
|
|
}
|
|
|
|
We currently emits
|
|
imull $3, 4(%esp), %eax
|
|
|
|
Perhaps this is what we really should generate is? Is imull three or four
|
|
cycles? Note: ICC generates this:
|
|
movl 4(%esp), %eax
|
|
leal (%eax,%eax,2), %eax
|
|
|
|
The current instruction priority is based on pattern complexity. The former is
|
|
more "complex" because it folds a load so the latter will not be emitted.
|
|
|
|
Perhaps we should use AddedComplexity to give LEA32r a higher priority? We
|
|
should always try to match LEA first since the LEA matching code does some
|
|
estimate to determine whether the match is profitable.
|
|
|
|
However, if we care more about code size, then imull is better. It's two bytes
|
|
shorter than movl + leal.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Implement CTTZ, CTLZ with bsf and bsr.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It appears gcc place string data with linkonce linkage in
|
|
.section __TEXT,__const_coal,coalesced instead of
|
|
.section __DATA,__const_coal,coalesced.
|
|
Take a look at darwin.h, there are other Darwin assembler directives that we
|
|
do not make use of.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should handle __attribute__ ((__visibility__ ("hidden"))).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider:
|
|
int foo(int *a, int t) {
|
|
int x;
|
|
for (x=0; x<40; ++x)
|
|
t = t + a[x] + x;
|
|
return t;
|
|
}
|
|
|
|
We generate:
|
|
LBB1_1: #cond_true
|
|
movl %ecx, %esi
|
|
movl (%edx,%eax,4), %edi
|
|
movl %esi, %ecx
|
|
addl %edi, %ecx
|
|
addl %eax, %ecx
|
|
incl %eax
|
|
cmpl $40, %eax
|
|
jne LBB1_1 #cond_true
|
|
|
|
GCC generates:
|
|
|
|
L2:
|
|
addl (%ecx,%edx,4), %eax
|
|
addl %edx, %eax
|
|
addl $1, %edx
|
|
cmpl $40, %edx
|
|
jne L2
|
|
|
|
Smells like a register coallescing/reassociation issue.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Use cpuid to auto-detect CPU features such as SSE, SSE2, and SSE3.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
u32 to float conversion improvement:
|
|
|
|
float uint32_2_float( unsigned u ) {
|
|
float fl = (int) (u & 0xffff);
|
|
float fh = (int) (u >> 16);
|
|
fh *= 0x1.0p16f;
|
|
return fh + fl;
|
|
}
|
|
|
|
00000000 subl $0x04,%esp
|
|
00000003 movl 0x08(%esp,1),%eax
|
|
00000007 movl %eax,%ecx
|
|
00000009 shrl $0x10,%ecx
|
|
0000000c cvtsi2ss %ecx,%xmm0
|
|
00000010 andl $0x0000ffff,%eax
|
|
00000015 cvtsi2ss %eax,%xmm1
|
|
00000019 mulss 0x00000078,%xmm0
|
|
00000021 addss %xmm1,%xmm0
|
|
00000025 movss %xmm0,(%esp,1)
|
|
0000002a flds (%esp,1)
|
|
0000002d addl $0x04,%esp
|
|
00000030 ret
|