llvm-mirror/lib/Support/FoldingSet.cpp
Dale Johannesen 575bd6070a Remove the assumption that FP's are either float or
double from some of the many places in the optimizers
it appears, and do something reasonable with x86
long double.
Make APInt::dump() public, remove newline, use it to
dump ConstantSDNode's.
Allow APFloats in FoldingSet.
Expand X86 backend handling of long doubles (conversions
to/from int, mostly).

llvm-svn: 41967
2007-09-14 22:26:36 +00:00

317 lines
10 KiB
C++

//===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by James M. Laskey and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a hash set that can be used to remove duplication of
// nodes in a graph. This code was originally created by Chris Lattner for use
// with SelectionDAGCSEMap, but was isolated to provide use across the llvm code
// set.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
using namespace llvm;
//===----------------------------------------------------------------------===//
// FoldingSetImpl::NodeID Implementation
/// Add* - Add various data types to Bit data.
///
void FoldingSetImpl::NodeID::AddPointer(const void *Ptr) {
// Note: this adds pointers to the hash using sizes and endianness that
// depend on the host. It doesn't matter however, because hashing on
// pointer values in inherently unstable. Nothing should depend on the
// ordering of nodes in the folding set.
intptr_t PtrI = (intptr_t)Ptr;
Bits.push_back(unsigned(PtrI));
if (sizeof(intptr_t) > sizeof(unsigned))
Bits.push_back(unsigned(uint64_t(PtrI) >> 32));
}
void FoldingSetImpl::NodeID::AddInteger(signed I) {
Bits.push_back(I);
}
void FoldingSetImpl::NodeID::AddInteger(unsigned I) {
Bits.push_back(I);
}
void FoldingSetImpl::NodeID::AddInteger(int64_t I) {
AddInteger((uint64_t)I);
}
void FoldingSetImpl::NodeID::AddInteger(uint64_t I) {
Bits.push_back(unsigned(I));
// If the integer is small, encode it just as 32-bits.
if ((uint64_t)(int)I != I)
Bits.push_back(unsigned(I >> 32));
}
void FoldingSetImpl::NodeID::AddFloat(float F) {
Bits.push_back(FloatToBits(F));
}
void FoldingSetImpl::NodeID::AddDouble(double D) {
AddInteger(DoubleToBits(D));
}
void FoldingSetImpl::NodeID::AddAPFloat(const APFloat& apf) {
APInt api = apf.convertToAPInt();
const uint64_t *p = api.getRawData();
for (int i=0; i<api.getNumWords(); i++)
AddInteger(*p++);
}
void FoldingSetImpl::NodeID::AddString(const std::string &String) {
unsigned Size = String.size();
Bits.push_back(Size);
if (!Size) return;
unsigned Units = Size / 4;
unsigned Pos = 0;
const unsigned *Base = (const unsigned *)String.data();
// If the string is aligned do a bulk transfer.
if (!((intptr_t)Base & 3)) {
Bits.append(Base, Base + Units);
Pos = (Units + 1) * 4;
} else {
// Otherwise do it the hard way.
for ( Pos += 4; Pos <= Size; Pos += 4) {
unsigned V = ((unsigned char)String[Pos - 4] << 24) |
((unsigned char)String[Pos - 3] << 16) |
((unsigned char)String[Pos - 2] << 8) |
(unsigned char)String[Pos - 1];
Bits.push_back(V);
}
}
// With the leftover bits.
unsigned V = 0;
// Pos will have overshot size by 4 - #bytes left over.
switch (Pos - Size) {
case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru.
case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru.
case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
default: return; // Nothing left.
}
Bits.push_back(V);
}
/// ComputeHash - Compute a strong hash value for this NodeID, used to
/// lookup the node in the FoldingSetImpl.
unsigned FoldingSetImpl::NodeID::ComputeHash() const {
// This is adapted from SuperFastHash by Paul Hsieh.
unsigned Hash = Bits.size();
for (const unsigned *BP = &Bits[0], *E = BP+Bits.size(); BP != E; ++BP) {
unsigned Data = *BP;
Hash += Data & 0xFFFF;
unsigned Tmp = ((Data >> 16) << 11) ^ Hash;
Hash = (Hash << 16) ^ Tmp;
Hash += Hash >> 11;
}
// Force "avalanching" of final 127 bits.
Hash ^= Hash << 3;
Hash += Hash >> 5;
Hash ^= Hash << 4;
Hash += Hash >> 17;
Hash ^= Hash << 25;
Hash += Hash >> 6;
return Hash;
}
/// operator== - Used to compare two nodes to each other.
///
bool FoldingSetImpl::NodeID::operator==(const FoldingSetImpl::NodeID &RHS)const{
if (Bits.size() != RHS.Bits.size()) return false;
return memcmp(&Bits[0], &RHS.Bits[0], Bits.size()*sizeof(Bits[0])) == 0;
}
//===----------------------------------------------------------------------===//
/// Helper functions for FoldingSetImpl.
/// GetNextPtr - In order to save space, each bucket is a
/// singly-linked-list. In order to make deletion more efficient, we make
/// the list circular, so we can delete a node without computing its hash.
/// The problem with this is that the start of the hash buckets are not
/// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null:
/// use GetBucketPtr when this happens.
static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr,
void **Buckets, unsigned NumBuckets) {
if (NextInBucketPtr >= Buckets && NextInBucketPtr < Buckets + NumBuckets)
return 0;
return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr);
}
/// GetBucketPtr - Provides a casting of a bucket pointer for isNode
/// testing.
static void **GetBucketPtr(void *NextInBucketPtr) {
return static_cast<void**>(NextInBucketPtr);
}
/// GetBucketFor - Hash the specified node ID and return the hash bucket for
/// the specified ID.
static void **GetBucketFor(const FoldingSetImpl::NodeID &ID,
void **Buckets, unsigned NumBuckets) {
// NumBuckets is always a power of 2.
unsigned BucketNum = ID.ComputeHash() & (NumBuckets-1);
return Buckets + BucketNum;
}
//===----------------------------------------------------------------------===//
// FoldingSetImpl Implementation
FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) : NumNodes(0) {
assert(5 < Log2InitSize && Log2InitSize < 32 &&
"Initial hash table size out of range");
NumBuckets = 1 << Log2InitSize;
Buckets = new void*[NumBuckets];
memset(Buckets, 0, NumBuckets*sizeof(void*));
}
FoldingSetImpl::~FoldingSetImpl() {
delete [] Buckets;
}
/// GrowHashTable - Double the size of the hash table and rehash everything.
///
void FoldingSetImpl::GrowHashTable() {
void **OldBuckets = Buckets;
unsigned OldNumBuckets = NumBuckets;
NumBuckets <<= 1;
// Reset the node count to zero: we're going to reinsert everything.
NumNodes = 0;
// Clear out new buckets.
Buckets = new void*[NumBuckets];
memset(Buckets, 0, NumBuckets*sizeof(void*));
// Walk the old buckets, rehashing nodes into their new place.
for (unsigned i = 0; i != OldNumBuckets; ++i) {
void *Probe = OldBuckets[i];
if (!Probe) continue;
while (Node *NodeInBucket = GetNextPtr(Probe, OldBuckets, OldNumBuckets)) {
// Figure out the next link, remove NodeInBucket from the old link.
Probe = NodeInBucket->getNextInBucket();
NodeInBucket->SetNextInBucket(0);
// Insert the node into the new bucket, after recomputing the hash.
NodeID ID;
GetNodeProfile(ID, NodeInBucket);
InsertNode(NodeInBucket, GetBucketFor(ID, Buckets, NumBuckets));
}
}
delete[] OldBuckets;
}
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
/// return it. If not, return the insertion token that will make insertion
/// faster.
FoldingSetImpl::Node *FoldingSetImpl::FindNodeOrInsertPos(const NodeID &ID,
void *&InsertPos) {
void **Bucket = GetBucketFor(ID, Buckets, NumBuckets);
void *Probe = *Bucket;
InsertPos = 0;
while (Node *NodeInBucket = GetNextPtr(Probe, Buckets, NumBuckets)) {
NodeID OtherID;
GetNodeProfile(OtherID, NodeInBucket);
if (OtherID == ID)
return NodeInBucket;
Probe = NodeInBucket->getNextInBucket();
}
// Didn't find the node, return null with the bucket as the InsertPos.
InsertPos = Bucket;
return 0;
}
/// InsertNode - Insert the specified node into the folding set, knowing that it
/// is not already in the map. InsertPos must be obtained from
/// FindNodeOrInsertPos.
void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) {
assert(N->getNextInBucket() == 0);
// Do we need to grow the hashtable?
if (NumNodes+1 > NumBuckets*2) {
GrowHashTable();
NodeID ID;
GetNodeProfile(ID, N);
InsertPos = GetBucketFor(ID, Buckets, NumBuckets);
}
++NumNodes;
/// The insert position is actually a bucket pointer.
void **Bucket = static_cast<void**>(InsertPos);
void *Next = *Bucket;
// If this is the first insertion into this bucket, its next pointer will be
// null. Pretend as if it pointed to itself.
if (Next == 0)
Next = Bucket;
// Set the node's next pointer, and make the bucket point to the node.
N->SetNextInBucket(Next);
*Bucket = N;
}
/// RemoveNode - Remove a node from the folding set, returning true if one was
/// removed or false if the node was not in the folding set.
bool FoldingSetImpl::RemoveNode(Node *N) {
// Because each bucket is a circular list, we don't need to compute N's hash
// to remove it.
void *Ptr = N->getNextInBucket();
if (Ptr == 0) return false; // Not in folding set.
--NumNodes;
N->SetNextInBucket(0);
// Remember what N originally pointed to, either a bucket or another node.
void *NodeNextPtr = Ptr;
// Chase around the list until we find the node (or bucket) which points to N.
while (true) {
if (Node *NodeInBucket = GetNextPtr(Ptr, Buckets, NumBuckets)) {
// Advance pointer.
Ptr = NodeInBucket->getNextInBucket();
// We found a node that points to N, change it to point to N's next node,
// removing N from the list.
if (Ptr == N) {
NodeInBucket->SetNextInBucket(NodeNextPtr);
return true;
}
} else {
void **Bucket = GetBucketPtr(Ptr);
Ptr = *Bucket;
// If we found that the bucket points to N, update the bucket to point to
// whatever is next.
if (Ptr == N) {
*Bucket = NodeNextPtr;
return true;
}
}
}
}
/// GetOrInsertNode - If there is an existing simple Node exactly
/// equal to the specified node, return it. Otherwise, insert 'N' and it
/// instead.
FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) {
NodeID ID;
GetNodeProfile(ID, N);
void *IP;
if (Node *E = FindNodeOrInsertPos(ID, IP))
return E;
InsertNode(N, IP);
return N;
}