mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-08 12:21:04 +00:00
852aec9243
When we see a SETCC whose only users are zero extend operations, we can replace it with a subtraction. This results in doing all calculations in GPRs and avoids CR use. Currently we do this only for ULT, ULE, UGT and UGE condition codes. There are ways that this can be extended. For example for signed condition codes. In that case we will be introducing additional sign extend instructions, so more careful profitability analysis may be required. Another direction to extend this is for equal, not equal conditions. Also when users of SETCC are any_ext or sign_ext, we might be able to do something similar. llvm-svn: 287329
1026 lines
45 KiB
C++
1026 lines
45 KiB
C++
//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that PPC uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
|
|
#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
|
|
|
|
#include "PPC.h"
|
|
#include "PPCInstrInfo.h"
|
|
#include "PPCRegisterInfo.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
|
|
namespace llvm {
|
|
namespace PPCISD {
|
|
enum NodeType : unsigned {
|
|
// Start the numbering where the builtin ops and target ops leave off.
|
|
FIRST_NUMBER = ISD::BUILTIN_OP_END,
|
|
|
|
/// FSEL - Traditional three-operand fsel node.
|
|
///
|
|
FSEL,
|
|
|
|
/// FCFID - The FCFID instruction, taking an f64 operand and producing
|
|
/// and f64 value containing the FP representation of the integer that
|
|
/// was temporarily in the f64 operand.
|
|
FCFID,
|
|
|
|
/// Newer FCFID[US] integer-to-floating-point conversion instructions for
|
|
/// unsigned integers and single-precision outputs.
|
|
FCFIDU, FCFIDS, FCFIDUS,
|
|
|
|
/// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
|
|
/// operand, producing an f64 value containing the integer representation
|
|
/// of that FP value.
|
|
FCTIDZ, FCTIWZ,
|
|
|
|
/// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
|
|
/// unsigned integers.
|
|
FCTIDUZ, FCTIWUZ,
|
|
|
|
/// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
|
|
/// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
|
|
VEXTS,
|
|
|
|
/// Reciprocal estimate instructions (unary FP ops).
|
|
FRE, FRSQRTE,
|
|
|
|
// VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
|
|
// three v4f32 operands and producing a v4f32 result.
|
|
VMADDFP, VNMSUBFP,
|
|
|
|
/// VPERM - The PPC VPERM Instruction.
|
|
///
|
|
VPERM,
|
|
|
|
/// XXSPLT - The PPC VSX splat instructions
|
|
///
|
|
XXSPLT,
|
|
|
|
/// XXINSERT - The PPC VSX insert instruction
|
|
///
|
|
XXINSERT,
|
|
|
|
/// VECSHL - The PPC VSX shift left instruction
|
|
///
|
|
VECSHL,
|
|
|
|
/// The CMPB instruction (takes two operands of i32 or i64).
|
|
CMPB,
|
|
|
|
/// Hi/Lo - These represent the high and low 16-bit parts of a global
|
|
/// address respectively. These nodes have two operands, the first of
|
|
/// which must be a TargetGlobalAddress, and the second of which must be a
|
|
/// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
|
|
/// though these are usually folded into other nodes.
|
|
Hi, Lo,
|
|
|
|
/// The following two target-specific nodes are used for calls through
|
|
/// function pointers in the 64-bit SVR4 ABI.
|
|
|
|
/// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
|
|
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
|
|
/// compute an allocation on the stack.
|
|
DYNALLOC,
|
|
|
|
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
|
|
/// compute an offset from native SP to the address of the most recent
|
|
/// dynamic alloca.
|
|
DYNAREAOFFSET,
|
|
|
|
/// GlobalBaseReg - On Darwin, this node represents the result of the mflr
|
|
/// at function entry, used for PIC code.
|
|
GlobalBaseReg,
|
|
|
|
/// These nodes represent the 32-bit PPC shifts that operate on 6-bit
|
|
/// shift amounts. These nodes are generated by the multi-precision shift
|
|
/// code.
|
|
SRL, SRA, SHL,
|
|
|
|
/// The combination of sra[wd]i and addze used to implemented signed
|
|
/// integer division by a power of 2. The first operand is the dividend,
|
|
/// and the second is the constant shift amount (representing the
|
|
/// divisor).
|
|
SRA_ADDZE,
|
|
|
|
/// CALL - A direct function call.
|
|
/// CALL_NOP is a call with the special NOP which follows 64-bit
|
|
/// SVR4 calls.
|
|
CALL, CALL_NOP,
|
|
|
|
/// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
|
|
/// MTCTR instruction.
|
|
MTCTR,
|
|
|
|
/// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
|
|
/// BCTRL instruction.
|
|
BCTRL,
|
|
|
|
/// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
|
|
/// instruction and the TOC reload required on SVR4 PPC64.
|
|
BCTRL_LOAD_TOC,
|
|
|
|
/// Return with a flag operand, matched by 'blr'
|
|
RET_FLAG,
|
|
|
|
/// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
|
|
/// This copies the bits corresponding to the specified CRREG into the
|
|
/// resultant GPR. Bits corresponding to other CR regs are undefined.
|
|
MFOCRF,
|
|
|
|
/// Direct move from a VSX register to a GPR
|
|
MFVSR,
|
|
|
|
/// Direct move from a GPR to a VSX register (algebraic)
|
|
MTVSRA,
|
|
|
|
/// Direct move from a GPR to a VSX register (zero)
|
|
MTVSRZ,
|
|
|
|
/// Extract a subvector from signed integer vector and convert to FP.
|
|
/// It is primarily used to convert a (widened) illegal integer vector
|
|
/// type to a legal floating point vector type.
|
|
/// For example v2i32 -> widened to v4i32 -> v2f64
|
|
SINT_VEC_TO_FP,
|
|
|
|
/// Extract a subvector from unsigned integer vector and convert to FP.
|
|
/// As with SINT_VEC_TO_FP, used for converting illegal types.
|
|
UINT_VEC_TO_FP,
|
|
|
|
// FIXME: Remove these once the ANDI glue bug is fixed:
|
|
/// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
|
|
/// eq or gt bit of CR0 after executing andi. x, 1. This is used to
|
|
/// implement truncation of i32 or i64 to i1.
|
|
ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
|
|
|
|
// READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
|
|
// target (returns (Lo, Hi)). It takes a chain operand.
|
|
READ_TIME_BASE,
|
|
|
|
// EH_SJLJ_SETJMP - SjLj exception handling setjmp.
|
|
EH_SJLJ_SETJMP,
|
|
|
|
// EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
|
|
EH_SJLJ_LONGJMP,
|
|
|
|
/// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
|
|
/// instructions. For lack of better number, we use the opcode number
|
|
/// encoding for the OPC field to identify the compare. For example, 838
|
|
/// is VCMPGTSH.
|
|
VCMP,
|
|
|
|
/// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
|
|
/// altivec VCMP*o instructions. For lack of better number, we use the
|
|
/// opcode number encoding for the OPC field to identify the compare. For
|
|
/// example, 838 is VCMPGTSH.
|
|
VCMPo,
|
|
|
|
/// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
|
|
/// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
|
|
/// condition register to branch on, OPC is the branch opcode to use (e.g.
|
|
/// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
|
|
/// an optional input flag argument.
|
|
COND_BRANCH,
|
|
|
|
/// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
|
|
/// loops.
|
|
BDNZ, BDZ,
|
|
|
|
/// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
|
|
/// towards zero. Used only as part of the long double-to-int
|
|
/// conversion sequence.
|
|
FADDRTZ,
|
|
|
|
/// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
|
|
MFFS,
|
|
|
|
/// TC_RETURN - A tail call return.
|
|
/// operand #0 chain
|
|
/// operand #1 callee (register or absolute)
|
|
/// operand #2 stack adjustment
|
|
/// operand #3 optional in flag
|
|
TC_RETURN,
|
|
|
|
/// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
|
|
CR6SET,
|
|
CR6UNSET,
|
|
|
|
/// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
|
|
/// on PPC32.
|
|
PPC32_GOT,
|
|
|
|
/// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
|
|
/// local dynamic TLS on PPC32.
|
|
PPC32_PICGOT,
|
|
|
|
/// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
|
|
/// TLS model, produces an ADDIS8 instruction that adds the GOT
|
|
/// base to sym\@got\@tprel\@ha.
|
|
ADDIS_GOT_TPREL_HA,
|
|
|
|
/// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
|
|
/// TLS model, produces a LD instruction with base register G8RReg
|
|
/// and offset sym\@got\@tprel\@l. This completes the addition that
|
|
/// finds the offset of "sym" relative to the thread pointer.
|
|
LD_GOT_TPREL_L,
|
|
|
|
/// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
|
|
/// model, produces an ADD instruction that adds the contents of
|
|
/// G8RReg to the thread pointer. Symbol contains a relocation
|
|
/// sym\@tls which is to be replaced by the thread pointer and
|
|
/// identifies to the linker that the instruction is part of a
|
|
/// TLS sequence.
|
|
ADD_TLS,
|
|
|
|
/// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
|
|
/// model, produces an ADDIS8 instruction that adds the GOT base
|
|
/// register to sym\@got\@tlsgd\@ha.
|
|
ADDIS_TLSGD_HA,
|
|
|
|
/// %X3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
|
|
/// model, produces an ADDI8 instruction that adds G8RReg to
|
|
/// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
|
|
/// ADDIS_TLSGD_L_ADDR until after register assignment.
|
|
ADDI_TLSGD_L,
|
|
|
|
/// %X3 = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
|
|
/// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
|
|
/// ADDIS_TLSGD_L_ADDR until after register assignment.
|
|
GET_TLS_ADDR,
|
|
|
|
/// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
|
|
/// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
|
|
/// register assignment.
|
|
ADDI_TLSGD_L_ADDR,
|
|
|
|
/// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDIS8 instruction that adds the GOT base
|
|
/// register to sym\@got\@tlsld\@ha.
|
|
ADDIS_TLSLD_HA,
|
|
|
|
/// %X3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDI8 instruction that adds G8RReg to
|
|
/// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
|
|
/// ADDIS_TLSLD_L_ADDR until after register assignment.
|
|
ADDI_TLSLD_L,
|
|
|
|
/// %X3 = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
|
|
/// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
|
|
/// ADDIS_TLSLD_L_ADDR until after register assignment.
|
|
GET_TLSLD_ADDR,
|
|
|
|
/// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
|
|
/// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
|
|
/// following register assignment.
|
|
ADDI_TLSLD_L_ADDR,
|
|
|
|
/// G8RC = ADDIS_DTPREL_HA %X3, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDIS8 instruction that adds X3 to
|
|
/// sym\@dtprel\@ha.
|
|
ADDIS_DTPREL_HA,
|
|
|
|
/// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDI8 instruction that adds G8RReg to
|
|
/// sym\@got\@dtprel\@l.
|
|
ADDI_DTPREL_L,
|
|
|
|
/// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
|
|
/// during instruction selection to optimize a BUILD_VECTOR into
|
|
/// operations on splats. This is necessary to avoid losing these
|
|
/// optimizations due to constant folding.
|
|
VADD_SPLAT,
|
|
|
|
/// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
|
|
/// operand identifies the operating system entry point.
|
|
SC,
|
|
|
|
/// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
|
|
CLRBHRB,
|
|
|
|
/// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
|
|
/// history rolling buffer entry.
|
|
MFBHRBE,
|
|
|
|
/// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
|
|
RFEBB,
|
|
|
|
/// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
|
|
/// endian. Maps to an xxswapd instruction that corrects an lxvd2x
|
|
/// or stxvd2x instruction. The chain is necessary because the
|
|
/// sequence replaces a load and needs to provide the same number
|
|
/// of outputs.
|
|
XXSWAPD,
|
|
|
|
/// An SDNode for swaps that are not associated with any loads/stores
|
|
/// and thereby have no chain.
|
|
SWAP_NO_CHAIN,
|
|
|
|
/// QVFPERM = This corresponds to the QPX qvfperm instruction.
|
|
QVFPERM,
|
|
|
|
/// QVGPCI = This corresponds to the QPX qvgpci instruction.
|
|
QVGPCI,
|
|
|
|
/// QVALIGNI = This corresponds to the QPX qvaligni instruction.
|
|
QVALIGNI,
|
|
|
|
/// QVESPLATI = This corresponds to the QPX qvesplati instruction.
|
|
QVESPLATI,
|
|
|
|
/// QBFLT = Access the underlying QPX floating-point boolean
|
|
/// representation.
|
|
QBFLT,
|
|
|
|
/// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
|
|
/// byte-swapping store instruction. It byte-swaps the low "Type" bits of
|
|
/// the GPRC input, then stores it through Ptr. Type can be either i16 or
|
|
/// i32.
|
|
STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
|
|
|
|
/// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
|
|
/// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
|
|
/// then puts it in the bottom bits of the GPRC. TYPE can be either i16
|
|
/// or i32.
|
|
LBRX,
|
|
|
|
/// STFIWX - The STFIWX instruction. The first operand is an input token
|
|
/// chain, then an f64 value to store, then an address to store it to.
|
|
STFIWX,
|
|
|
|
/// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
|
|
/// load which sign-extends from a 32-bit integer value into the
|
|
/// destination 64-bit register.
|
|
LFIWAX,
|
|
|
|
/// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
|
|
/// load which zero-extends from a 32-bit integer value into the
|
|
/// destination 64-bit register.
|
|
LFIWZX,
|
|
|
|
/// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
|
|
/// integer smaller than 64 bits into a VSR. The integer is zero-extended.
|
|
/// This can be used for converting loaded integers to floating point.
|
|
LXSIZX,
|
|
|
|
/// STXSIX - The STXSI[bh]X instruction. The first operand is an input
|
|
/// chain, then an f64 value to store, then an address to store it to,
|
|
/// followed by a byte-width for the store.
|
|
STXSIX,
|
|
|
|
/// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
|
|
/// Maps directly to an lxvd2x instruction that will be followed by
|
|
/// an xxswapd.
|
|
LXVD2X,
|
|
|
|
/// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
|
|
/// Maps directly to an stxvd2x instruction that will be preceded by
|
|
/// an xxswapd.
|
|
STXVD2X,
|
|
|
|
/// QBRC, CHAIN = QVLFSb CHAIN, Ptr
|
|
/// The 4xf32 load used for v4i1 constants.
|
|
QVLFSb,
|
|
|
|
/// GPRC = TOC_ENTRY GA, TOC
|
|
/// Loads the entry for GA from the TOC, where the TOC base is given by
|
|
/// the last operand.
|
|
TOC_ENTRY
|
|
};
|
|
}
|
|
|
|
/// Define some predicates that are used for node matching.
|
|
namespace PPC {
|
|
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUHUM instruction.
|
|
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUWUM instruction.
|
|
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUDUM instruction.
|
|
bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
unsigned ShuffleKind, SelectionDAG &DAG);
|
|
|
|
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
unsigned ShuffleKind, SelectionDAG &DAG);
|
|
|
|
/// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VMRGEW or VMRGOW instruction
|
|
bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
|
|
unsigned ShuffleKind, SelectionDAG &DAG);
|
|
|
|
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
|
|
/// shift amount, otherwise return -1.
|
|
int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a splat of a single element that is suitable for input to
|
|
/// VSPLTB/VSPLTH/VSPLTW.
|
|
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
|
|
|
|
/// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
|
|
/// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
|
|
/// shuffle of v4f32/v4i32 vectors that just inserts one element from one
|
|
/// vector into the other. This function will also set a couple of
|
|
/// output parameters for how much the source vector needs to be shifted and
|
|
/// what byte number needs to be specified for the instruction to put the
|
|
/// element in the desired location of the target vector.
|
|
bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
|
|
unsigned &InsertAtByte, bool &Swap, bool IsLE);
|
|
|
|
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
|
|
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
|
|
unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
|
|
|
|
/// get_VSPLTI_elt - If this is a build_vector of constants which can be
|
|
/// formed by using a vspltis[bhw] instruction of the specified element
|
|
/// size, return the constant being splatted. The ByteSize field indicates
|
|
/// the number of bytes of each element [124] -> [bhw].
|
|
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
|
|
|
|
/// If this is a qvaligni shuffle mask, return the shift
|
|
/// amount, otherwise return -1.
|
|
int isQVALIGNIShuffleMask(SDNode *N);
|
|
}
|
|
|
|
class PPCTargetLowering : public TargetLowering {
|
|
const PPCSubtarget &Subtarget;
|
|
|
|
public:
|
|
explicit PPCTargetLowering(const PPCTargetMachine &TM,
|
|
const PPCSubtarget &STI);
|
|
|
|
/// getTargetNodeName() - This method returns the name of a target specific
|
|
/// DAG node.
|
|
const char *getTargetNodeName(unsigned Opcode) const override;
|
|
|
|
/// getPreferredVectorAction - The code we generate when vector types are
|
|
/// legalized by promoting the integer element type is often much worse
|
|
/// than code we generate if we widen the type for applicable vector types.
|
|
/// The issue with promoting is that the vector is scalaraized, individual
|
|
/// elements promoted and then the vector is rebuilt. So say we load a pair
|
|
/// of v4i8's and shuffle them. This will turn into a mess of 8 extending
|
|
/// loads, moves back into VSR's (or memory ops if we don't have moves) and
|
|
/// then the VPERM for the shuffle. All in all a very slow sequence.
|
|
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
|
|
const override {
|
|
if (VT.getScalarSizeInBits() % 8 == 0)
|
|
return TypeWidenVector;
|
|
return TargetLoweringBase::getPreferredVectorAction(VT);
|
|
}
|
|
bool useSoftFloat() const override;
|
|
|
|
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
|
|
return MVT::i32;
|
|
}
|
|
|
|
bool isCheapToSpeculateCttz() const override {
|
|
return true;
|
|
}
|
|
|
|
bool isCheapToSpeculateCtlz() const override {
|
|
return true;
|
|
}
|
|
|
|
bool isCtlzFast() const override {
|
|
return true;
|
|
}
|
|
|
|
bool hasAndNotCompare(SDValue) const override {
|
|
return true;
|
|
}
|
|
|
|
bool supportSplitCSR(MachineFunction *MF) const override {
|
|
return
|
|
MF->getFunction()->getCallingConv() == CallingConv::CXX_FAST_TLS &&
|
|
MF->getFunction()->hasFnAttribute(Attribute::NoUnwind);
|
|
}
|
|
|
|
void initializeSplitCSR(MachineBasicBlock *Entry) const override;
|
|
|
|
void insertCopiesSplitCSR(
|
|
MachineBasicBlock *Entry,
|
|
const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
|
|
|
|
/// getSetCCResultType - Return the ISD::SETCC ValueType
|
|
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
|
|
EVT VT) const override;
|
|
|
|
/// Return true if target always beneficiates from combining into FMA for a
|
|
/// given value type. This must typically return false on targets where FMA
|
|
/// takes more cycles to execute than FADD.
|
|
bool enableAggressiveFMAFusion(EVT VT) const override;
|
|
|
|
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
/// SelectAddressRegReg - Given the specified addressed, check to see if it
|
|
/// can be represented as an indexed [r+r] operation. Returns false if it
|
|
/// can be more efficiently represented with [r+imm].
|
|
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// SelectAddressRegImm - Returns true if the address N can be represented
|
|
/// by a base register plus a signed 16-bit displacement [r+imm], and if it
|
|
/// is not better represented as reg+reg. If Aligned is true, only accept
|
|
/// displacements suitable for STD and friends, i.e. multiples of 4.
|
|
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
|
|
SelectionDAG &DAG, bool Aligned) const;
|
|
|
|
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
|
|
/// represented as an indexed [r+r] operation.
|
|
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
|
|
SelectionDAG &DAG) const;
|
|
|
|
Sched::Preference getSchedulingPreference(SDNode *N) const override;
|
|
|
|
/// LowerOperation - Provide custom lowering hooks for some operations.
|
|
///
|
|
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
|
|
|
|
/// ReplaceNodeResults - Replace the results of node with an illegal result
|
|
/// type with new values built out of custom code.
|
|
///
|
|
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
|
|
|
|
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
|
|
std::vector<SDNode *> *Created) const override;
|
|
|
|
unsigned getRegisterByName(const char* RegName, EVT VT,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
void computeKnownBitsForTargetNode(const SDValue Op,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth = 0) const override;
|
|
|
|
unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
|
|
|
|
bool shouldInsertFencesForAtomic(const Instruction *I) const override {
|
|
return true;
|
|
}
|
|
|
|
Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
|
|
bool IsStore, bool IsLoad) const override;
|
|
Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
|
|
bool IsStore, bool IsLoad) const override;
|
|
|
|
MachineBasicBlock *
|
|
EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const override;
|
|
MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned AtomicSize,
|
|
unsigned BinOpcode,
|
|
unsigned CmpOpcode = 0,
|
|
unsigned CmpPred = 0) const;
|
|
MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
|
|
MachineBasicBlock *MBB,
|
|
bool is8bit,
|
|
unsigned Opcode,
|
|
unsigned CmpOpcode = 0,
|
|
unsigned CmpPred = 0) const;
|
|
|
|
MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
ConstraintType getConstraintType(StringRef Constraint) const override;
|
|
|
|
/// Examine constraint string and operand type and determine a weight value.
|
|
/// The operand object must already have been set up with the operand type.
|
|
ConstraintWeight getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const override;
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
StringRef Constraint, MVT VT) const override;
|
|
|
|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area. This is the actual
|
|
/// alignment, not its logarithm.
|
|
unsigned getByValTypeAlignment(Type *Ty,
|
|
const DataLayout &DL) const override;
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
unsigned
|
|
getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
|
|
if (ConstraintCode == "es")
|
|
return InlineAsm::Constraint_es;
|
|
else if (ConstraintCode == "o")
|
|
return InlineAsm::Constraint_o;
|
|
else if (ConstraintCode == "Q")
|
|
return InlineAsm::Constraint_Q;
|
|
else if (ConstraintCode == "Z")
|
|
return InlineAsm::Constraint_Z;
|
|
else if (ConstraintCode == "Zy")
|
|
return InlineAsm::Constraint_Zy;
|
|
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
|
|
}
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
|
|
Type *Ty, unsigned AS) const override;
|
|
|
|
/// isLegalICmpImmediate - Return true if the specified immediate is legal
|
|
/// icmp immediate, that is the target has icmp instructions which can
|
|
/// compare a register against the immediate without having to materialize
|
|
/// the immediate into a register.
|
|
bool isLegalICmpImmediate(int64_t Imm) const override;
|
|
|
|
/// isLegalAddImmediate - Return true if the specified immediate is legal
|
|
/// add immediate, that is the target has add instructions which can
|
|
/// add a register and the immediate without having to materialize
|
|
/// the immediate into a register.
|
|
bool isLegalAddImmediate(int64_t Imm) const override;
|
|
|
|
/// isTruncateFree - Return true if it's free to truncate a value of
|
|
/// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
|
|
/// register X1 to i32 by referencing its sub-register R1.
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
|
|
bool isTruncateFree(EVT VT1, EVT VT2) const override;
|
|
|
|
bool isZExtFree(SDValue Val, EVT VT2) const override;
|
|
|
|
bool isFPExtFree(EVT VT) const override;
|
|
|
|
/// \brief Returns true if it is beneficial to convert a load of a constant
|
|
/// to just the constant itself.
|
|
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const override;
|
|
|
|
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
|
|
|
|
bool getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
unsigned Intrinsic) const override;
|
|
|
|
/// getOptimalMemOpType - Returns the target specific optimal type for load
|
|
/// and store operations as a result of memset, memcpy, and memmove
|
|
/// lowering. If DstAlign is zero that means it's safe to destination
|
|
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
|
/// means there isn't a need to check it against alignment requirement,
|
|
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
|
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
|
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
|
/// source is constant so it does not need to be loaded.
|
|
/// It returns EVT::Other if the type should be determined using generic
|
|
/// target-independent logic.
|
|
EVT
|
|
getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
|
|
bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
|
|
MachineFunction &MF) const override;
|
|
|
|
/// Is unaligned memory access allowed for the given type, and is it fast
|
|
/// relative to software emulation.
|
|
bool allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned AddrSpace,
|
|
unsigned Align = 1,
|
|
bool *Fast = nullptr) const override;
|
|
|
|
/// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
|
|
/// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
|
|
/// expanded to FMAs when this method returns true, otherwise fmuladd is
|
|
/// expanded to fmul + fadd.
|
|
bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
|
|
|
|
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
|
|
|
|
// Should we expand the build vector with shuffles?
|
|
bool
|
|
shouldExpandBuildVectorWithShuffles(EVT VT,
|
|
unsigned DefinedValues) const override;
|
|
|
|
/// createFastISel - This method returns a target-specific FastISel object,
|
|
/// or null if the target does not support "fast" instruction selection.
|
|
FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
|
|
const TargetLibraryInfo *LibInfo) const override;
|
|
|
|
/// \brief Returns true if an argument of type Ty needs to be passed in a
|
|
/// contiguous block of registers in calling convention CallConv.
|
|
bool functionArgumentNeedsConsecutiveRegisters(
|
|
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
|
|
// We support any array type as "consecutive" block in the parameter
|
|
// save area. The element type defines the alignment requirement and
|
|
// whether the argument should go in GPRs, FPRs, or VRs if available.
|
|
//
|
|
// Note that clang uses this capability both to implement the ELFv2
|
|
// homogeneous float/vector aggregate ABI, and to avoid having to use
|
|
// "byval" when passing aggregates that might fully fit in registers.
|
|
return Ty->isArrayTy();
|
|
}
|
|
|
|
/// If a physical register, this returns the register that receives the
|
|
/// exception address on entry to an EH pad.
|
|
unsigned
|
|
getExceptionPointerRegister(const Constant *PersonalityFn) const override;
|
|
|
|
/// If a physical register, this returns the register that receives the
|
|
/// exception typeid on entry to a landing pad.
|
|
unsigned
|
|
getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
|
|
|
|
/// Override to support customized stack guard loading.
|
|
bool useLoadStackGuardNode() const override;
|
|
void insertSSPDeclarations(Module &M) const override;
|
|
|
|
bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
|
|
|
|
unsigned getJumpTableEncoding() const override;
|
|
bool isJumpTableRelative() const override;
|
|
SDValue getPICJumpTableRelocBase(SDValue Table,
|
|
SelectionDAG &DAG) const override;
|
|
const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
|
|
unsigned JTI,
|
|
MCContext &Ctx) const override;
|
|
|
|
private:
|
|
struct ReuseLoadInfo {
|
|
SDValue Ptr;
|
|
SDValue Chain;
|
|
SDValue ResChain;
|
|
MachinePointerInfo MPI;
|
|
bool IsDereferenceable;
|
|
bool IsInvariant;
|
|
unsigned Alignment;
|
|
AAMDNodes AAInfo;
|
|
const MDNode *Ranges;
|
|
|
|
ReuseLoadInfo()
|
|
: IsDereferenceable(false), IsInvariant(false), Alignment(0),
|
|
Ranges(nullptr) {}
|
|
|
|
MachineMemOperand::Flags MMOFlags() const {
|
|
MachineMemOperand::Flags F = MachineMemOperand::MONone;
|
|
if (IsDereferenceable)
|
|
F |= MachineMemOperand::MODereferenceable;
|
|
if (IsInvariant)
|
|
F |= MachineMemOperand::MOInvariant;
|
|
return F;
|
|
}
|
|
};
|
|
|
|
bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
|
|
SelectionDAG &DAG,
|
|
ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
|
|
void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
|
|
SelectionDAG &DAG) const;
|
|
|
|
void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
|
|
SelectionDAG &DAG, const SDLoc &dl) const;
|
|
SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
|
|
const SDLoc &dl) const;
|
|
SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
|
|
const SDLoc &dl) const;
|
|
|
|
SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
|
|
SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
|
|
|
|
bool
|
|
IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const;
|
|
|
|
bool
|
|
IsEligibleForTailCallOptimization_64SVR4(
|
|
SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
ImmutableCallSite *CS,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const;
|
|
|
|
SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
|
|
SDValue Chain, SDValue &LROpOut,
|
|
SDValue &FPOpOut,
|
|
const SDLoc &dl) const;
|
|
|
|
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
|
|
const SDLoc &dl) const;
|
|
SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const;
|
|
SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl,
|
|
bool isTailCall, bool isVarArg, bool isPatchPoint,
|
|
bool hasNest, SelectionDAG &DAG,
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
|
|
SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
|
|
SDValue &Callee, int SPDiff, unsigned NumBytes,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite *CS) const;
|
|
|
|
SDValue
|
|
LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
|
|
SDValue
|
|
LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
|
|
bool
|
|
CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const override;
|
|
|
|
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &dl, SelectionDAG &DAG) const override;
|
|
|
|
SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
|
|
SelectionDAG &DAG, SDValue ArgVal,
|
|
const SDLoc &dl) const;
|
|
|
|
SDValue LowerFormalArguments_Darwin(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
|
|
SDValue LowerFormalArguments_64SVR4(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
|
|
SDValue LowerFormalArguments_32SVR4(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
|
|
|
|
SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
|
|
SDValue CallSeqStart,
|
|
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
|
|
const SDLoc &dl) const;
|
|
|
|
SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall, bool isPatchPoint,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite *CS) const;
|
|
SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall, bool isPatchPoint,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite *CS) const;
|
|
SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall, bool isPatchPoint,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite *CS) const;
|
|
|
|
SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
/// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
|
|
/// SETCC with integer subtraction when (1) there is a legal way of doing it
|
|
/// (2) keeping the result of comparison in GPR has performance benefit.
|
|
SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
|
|
int &RefinementSteps, bool &UseOneConstNR,
|
|
bool Reciprocal) const override;
|
|
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
|
|
int &RefinementSteps) const override;
|
|
unsigned combineRepeatedFPDivisors() const override;
|
|
|
|
CCAssignFn *useFastISelCCs(unsigned Flag) const;
|
|
};
|
|
|
|
namespace PPC {
|
|
FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
|
|
const TargetLibraryInfo *LibInfo);
|
|
}
|
|
|
|
bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
|
|
bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
|
|
bool
|
|
CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
|
|
bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
}
|
|
|
|
#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
|