Matthias Braun 5ca7af07c9 ARM: Introduce conservative load/store optimization mode
Most of the time ARM has the CCR.UNALIGN_TRP bit set to false which
means that unaligned loads/stores do not trap and even extensive testing
will not catch these bugs. However the multi/double variants are not
affected by this bit and will still trap. In effect a more aggressive
load/store optimization will break existing (bad) code.

These bugs do not necessarily manifest in the broken code where the
misaligned pointer is formed but often later in perfectly legal code
where it is accessed. This means recompiling system libraries (which
have no alignment bugs) with a newer compiler will break existing
applications (with alignment bugs) that worked before.

So (under protest) I implemented this safe mode which limits the
formation of multi/double operations to cases that are not affected by
user code (stack operations like spills/reloads) or cases where the
normal operations trap anyway (floating point load/stores). It is
disabled by default.

Differential Revision: http://reviews.llvm.org/D17015

llvm-svn: 262504
2016-03-02 19:20:00 +00:00
2016-02-16 00:22:02 +00:00
2016-01-26 21:29:08 +00:00
2014-04-07 03:57:04 +00:00
2014-03-02 13:08:46 +00:00
2016-01-26 21:29:08 +00:00
2015-03-12 01:25:29 +00:00
2016-01-04 19:13:29 +00:00

Low Level Virtual Machine (LLVM)
================================

This directory and its subdirectories contain source code for LLVM,
a toolkit for the construction of highly optimized compilers,
optimizers, and runtime environments.

LLVM is open source software. You may freely distribute it under the terms of
the license agreement found in LICENSE.txt.

Please see the documentation provided in docs/ for further
assistance with LLVM, and in particular docs/GettingStarted.rst for getting
started with LLVM and docs/README.txt for an overview of LLVM's
documentation setup.

If you are writing a package for LLVM, see docs/Packaging.rst for our
suggestions.
Description
Fork of llvm with experimental commits and workarounds for RPCS3
Readme 634 MiB
Languages
C++ 96.9%
C 1%
Python 1%
CMake 0.6%
OCaml 0.2%
Other 0.1%