llvm-mirror/lib/Target/X86/X86Subtarget.cpp
David Majnemer 11f5ba4322 X86: Disable IsLegalToCallImmediateAddr for Win32
WinCOFF cannot form PC relative relocations to support absolute
MCValues.  We should reenable this once WinCOFF supports emission of
IMAGE_REL_I386_REL32 relocations.

This fixes PR19272.

llvm-svn: 205058
2014-03-28 21:40:47 +00:00

580 lines
19 KiB
C++

//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "subtarget"
#include "X86Subtarget.h"
#include "X86InstrInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "X86GenSubtargetInfo.inc"
using namespace llvm;
#if defined(_MSC_VER)
#include <intrin.h>
#endif
/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char X86Subtarget::ClassifyBlockAddressReference() const {
if (isPICStyleGOT()) // 32-bit ELF targets.
return X86II::MO_GOTOFF;
if (isPICStyleStubPIC()) // Darwin/32 in PIC mode.
return X86II::MO_PIC_BASE_OFFSET;
// Direct static reference to label.
return X86II::MO_NO_FLAG;
}
/// ClassifyGlobalReference - Classify a global variable reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char X86Subtarget::
ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
// DLLImport only exists on windows, it is implemented as a load from a
// DLLIMPORT stub.
if (GV->hasDLLImportStorageClass())
return X86II::MO_DLLIMPORT;
// Determine whether this is a reference to a definition or a declaration.
// Materializable GVs (in JIT lazy compilation mode) do not require an extra
// load from stub.
bool isDecl = GV->hasAvailableExternallyLinkage();
if (GV->isDeclaration() && !GV->isMaterializable())
isDecl = true;
// X86-64 in PIC mode.
if (isPICStyleRIPRel()) {
// Large model never uses stubs.
if (TM.getCodeModel() == CodeModel::Large)
return X86II::MO_NO_FLAG;
if (isTargetDarwin()) {
// If symbol visibility is hidden, the extra load is not needed if
// target is x86-64 or the symbol is definitely defined in the current
// translation unit.
if (GV->hasDefaultVisibility() &&
(isDecl || GV->isWeakForLinker()))
return X86II::MO_GOTPCREL;
} else if (!isTargetWin64()) {
assert(isTargetELF() && "Unknown rip-relative target");
// Extra load is needed for all externally visible.
if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
return X86II::MO_GOTPCREL;
}
return X86II::MO_NO_FLAG;
}
if (isPICStyleGOT()) { // 32-bit ELF targets.
// Extra load is needed for all externally visible.
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
return X86II::MO_GOTOFF;
return X86II::MO_GOT;
}
if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode.
// Determine whether we have a stub reference and/or whether the reference
// is relative to the PIC base or not.
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return X86II::MO_PIC_BASE_OFFSET;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
// If symbol visibility is hidden, we have a stub for common symbol
// references and external declarations.
if (isDecl || GV->hasCommonLinkage()) {
// Hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
}
// Otherwise, no stub.
return X86II::MO_PIC_BASE_OFFSET;
}
if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode.
// Determine whether we have a stub reference.
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return X86II::MO_NO_FLAG;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_NONLAZY;
// Otherwise, no stub.
return X86II::MO_NO_FLAG;
}
// Direct static reference to global.
return X86II::MO_NO_FLAG;
}
/// getBZeroEntry - This function returns the name of a function which has an
/// interface like the non-standard bzero function, if such a function exists on
/// the current subtarget and it is considered prefereable over memset with zero
/// passed as the second argument. Otherwise it returns null.
const char *X86Subtarget::getBZeroEntry() const {
// Darwin 10 has a __bzero entry point for this purpose.
if (getTargetTriple().isMacOSX() &&
!getTargetTriple().isMacOSXVersionLT(10, 6))
return "__bzero";
return 0;
}
bool X86Subtarget::hasSinCos() const {
return getTargetTriple().isMacOSX() &&
!getTargetTriple().isMacOSXVersionLT(10, 9) &&
is64Bit();
}
/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
/// to immediate address.
bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
// FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
// but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
// the following check for Win32 should be removed.
if (In64BitMode || isTargetWin32())
return false;
return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}
static bool OSHasAVXSupport() {
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
#if defined(__GNUC__)
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler used.
int rEAX, rEDX;
__asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (rEAX), "=d" (rEDX) : "c" (0));
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
unsigned long long rEAX = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
#else
int rEAX = 0; // Ensures we return false
#endif
return (rEAX & 6) == 6;
#else
return false;
#endif
}
void X86Subtarget::AutoDetectSubtargetFeatures() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
unsigned MaxLevel;
union {
unsigned u[3];
char c[12];
} text;
if (X86_MC::GetCpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
MaxLevel < 1)
return;
X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
if ((EDX >> 15) & 1) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); }
if ((EDX >> 23) & 1) { X86SSELevel = MMX; ToggleFeature(X86::FeatureMMX); }
if ((EDX >> 25) & 1) { X86SSELevel = SSE1; ToggleFeature(X86::FeatureSSE1); }
if ((EDX >> 26) & 1) { X86SSELevel = SSE2; ToggleFeature(X86::FeatureSSE2); }
if (ECX & 0x1) { X86SSELevel = SSE3; ToggleFeature(X86::FeatureSSE3); }
if ((ECX >> 9) & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);}
if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);}
if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);}
if (((ECX >> 27) & 1) && ((ECX >> 28) & 1) && OSHasAVXSupport()) {
X86SSELevel = AVX; ToggleFeature(X86::FeatureAVX);
}
bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
if ((ECX >> 1) & 0x1) {
HasPCLMUL = true;
ToggleFeature(X86::FeaturePCLMUL);
}
if ((ECX >> 12) & 0x1) {
HasFMA = true;
ToggleFeature(X86::FeatureFMA);
}
if (IsIntel && ((ECX >> 22) & 0x1)) {
HasMOVBE = true;
ToggleFeature(X86::FeatureMOVBE);
}
if ((ECX >> 23) & 0x1) {
HasPOPCNT = true;
ToggleFeature(X86::FeaturePOPCNT);
}
if ((ECX >> 25) & 0x1) {
HasAES = true;
ToggleFeature(X86::FeatureAES);
}
if ((ECX >> 29) & 0x1) {
HasF16C = true;
ToggleFeature(X86::FeatureF16C);
}
if (IsIntel && ((ECX >> 30) & 0x1)) {
HasRDRAND = true;
ToggleFeature(X86::FeatureRDRAND);
}
if ((ECX >> 13) & 0x1) {
HasCmpxchg16b = true;
ToggleFeature(X86::FeatureCMPXCHG16B);
}
if (IsIntel || IsAMD) {
// Determine if bit test memory instructions are slow.
unsigned Family = 0;
unsigned Model = 0;
X86_MC::DetectFamilyModel(EAX, Family, Model);
if (IsAMD || (Family == 6 && Model >= 13)) {
IsBTMemSlow = true;
ToggleFeature(X86::FeatureSlowBTMem);
}
// Determine if SHLD/SHRD instructions have higher latency then the
// equivalent series of shifts/or instructions.
// FIXME: Add Intel's processors that have SHLD instructions with very
// poor latency.
if (IsAMD) {
IsSHLDSlow = true;
ToggleFeature(X86::FeatureSlowSHLD);
}
// If it's an Intel chip since Nehalem and not an Atom chip, unaligned
// memory access is fast. We hard code model numbers here because they
// aren't strictly increasing for Intel chips it seems.
if (IsIntel &&
((Family == 6 && Model == 0x1E) || // Nehalem: Clarksfield, Lynnfield,
// Jasper Froest
(Family == 6 && Model == 0x1A) || // Nehalem: Bloomfield, Nehalem-EP
(Family == 6 && Model == 0x2E) || // Nehalem: Nehalem-EX
(Family == 6 && Model == 0x25) || // Westmere: Arrandale, Clarksdale
(Family == 6 && Model == 0x2C) || // Westmere: Gulftown, Westmere-EP
(Family == 6 && Model == 0x2F) || // Westmere: Westmere-EX
(Family == 6 && Model == 0x2A) || // SandyBridge
(Family == 6 && Model == 0x2D) || // SandyBridge: SandyBridge-E*
(Family == 6 && Model == 0x3A) || // IvyBridge
(Family == 6 && Model == 0x3E) || // IvyBridge EP
(Family == 6 && Model == 0x3C) || // Haswell
(Family == 6 && Model == 0x3F) || // ...
(Family == 6 && Model == 0x45) || // ...
(Family == 6 && Model == 0x46))) { // ...
IsUAMemFast = true;
ToggleFeature(X86::FeatureFastUAMem);
}
// Set processor type. Currently only Atom or Silvermont (SLM) is detected.
if (Family == 6 &&
(Model == 28 || Model == 38 || Model == 39 ||
Model == 53 || Model == 54)) {
X86ProcFamily = IntelAtom;
UseLeaForSP = true;
ToggleFeature(X86::FeatureLeaForSP);
}
else if (Family == 6 &&
(Model == 55 || Model == 74 || Model == 77)) {
X86ProcFamily = IntelSLM;
}
unsigned MaxExtLevel;
X86_MC::GetCpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
if (MaxExtLevel >= 0x80000001) {
X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
if ((EDX >> 29) & 0x1) {
HasX86_64 = true;
ToggleFeature(X86::Feature64Bit);
}
if ((ECX >> 5) & 0x1) {
HasLZCNT = true;
ToggleFeature(X86::FeatureLZCNT);
}
if (IsIntel && ((ECX >> 8) & 0x1)) {
HasPRFCHW = true;
ToggleFeature(X86::FeaturePRFCHW);
}
if (IsAMD) {
if ((ECX >> 6) & 0x1) {
HasSSE4A = true;
ToggleFeature(X86::FeatureSSE4A);
}
if ((ECX >> 11) & 0x1) {
HasXOP = true;
ToggleFeature(X86::FeatureXOP);
}
if ((ECX >> 16) & 0x1) {
HasFMA4 = true;
ToggleFeature(X86::FeatureFMA4);
}
}
}
}
if (MaxLevel >= 7) {
if (!X86_MC::GetCpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX)) {
if (IsIntel && (EBX & 0x1)) {
HasFSGSBase = true;
ToggleFeature(X86::FeatureFSGSBase);
}
if ((EBX >> 3) & 0x1) {
HasBMI = true;
ToggleFeature(X86::FeatureBMI);
}
if ((EBX >> 4) & 0x1) {
HasHLE = true;
ToggleFeature(X86::FeatureHLE);
}
if (IsIntel && ((EBX >> 5) & 0x1)) {
X86SSELevel = AVX2;
ToggleFeature(X86::FeatureAVX2);
}
if (IsIntel && ((EBX >> 8) & 0x1)) {
HasBMI2 = true;
ToggleFeature(X86::FeatureBMI2);
}
if (IsIntel && ((EBX >> 11) & 0x1)) {
HasRTM = true;
ToggleFeature(X86::FeatureRTM);
}
if (IsIntel && ((EBX >> 16) & 0x1)) {
X86SSELevel = AVX512F;
ToggleFeature(X86::FeatureAVX512);
}
if (IsIntel && ((EBX >> 18) & 0x1)) {
HasRDSEED = true;
ToggleFeature(X86::FeatureRDSEED);
}
if (IsIntel && ((EBX >> 19) & 0x1)) {
HasADX = true;
ToggleFeature(X86::FeatureADX);
}
if (IsIntel && ((EBX >> 26) & 0x1)) {
HasPFI = true;
ToggleFeature(X86::FeaturePFI);
}
if (IsIntel && ((EBX >> 27) & 0x1)) {
HasERI = true;
ToggleFeature(X86::FeatureERI);
}
if (IsIntel && ((EBX >> 28) & 0x1)) {
HasCDI = true;
ToggleFeature(X86::FeatureCDI);
}
if (IsIntel && ((EBX >> 29) & 0x1)) {
HasSHA = true;
ToggleFeature(X86::FeatureSHA);
}
}
if (IsAMD && ((ECX >> 21) & 0x1)) {
HasTBM = true;
ToggleFeature(X86::FeatureTBM);
}
}
}
void X86Subtarget::resetSubtargetFeatures(const MachineFunction *MF) {
AttributeSet FnAttrs = MF->getFunction()->getAttributes();
Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
"target-cpu");
Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
"target-features");
std::string CPU =
!CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : "";
std::string FS =
!FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
if (!FS.empty()) {
initializeEnvironment();
resetSubtargetFeatures(CPU, FS);
}
}
void X86Subtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
std::string CPUName = CPU;
if (!FS.empty() || !CPU.empty()) {
if (CPUName.empty()) {
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
CPUName = sys::getHostCPUName();
#else
CPUName = "generic";
#endif
}
// Make sure 64-bit features are available in 64-bit mode. (But make sure
// SSE2 can be turned off explicitly.)
std::string FullFS = FS;
if (In64BitMode) {
if (!FullFS.empty())
FullFS = "+64bit,+sse2," + FullFS;
else
FullFS = "+64bit,+sse2";
}
// If feature string is not empty, parse features string.
ParseSubtargetFeatures(CPUName, FullFS);
} else {
if (CPUName.empty()) {
#if defined (__x86_64__) || defined(__i386__)
CPUName = sys::getHostCPUName();
#else
CPUName = "generic";
#endif
}
// Otherwise, use CPUID to auto-detect feature set.
AutoDetectSubtargetFeatures();
// Make sure 64-bit features are available in 64-bit mode.
if (In64BitMode) {
if (!HasX86_64) { HasX86_64 = true; ToggleFeature(X86::Feature64Bit); }
if (!HasCMov) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); }
if (X86SSELevel < SSE2) {
X86SSELevel = SSE2;
ToggleFeature(X86::FeatureSSE1);
ToggleFeature(X86::FeatureSSE2);
}
}
}
// CPUName may have been set by the CPU detection code. Make sure the
// new MCSchedModel is used.
InitCPUSchedModel(CPUName);
if (X86ProcFamily == IntelAtom || X86ProcFamily == IntelSLM)
PostRAScheduler = true;
InstrItins = getInstrItineraryForCPU(CPUName);
// It's important to keep the MCSubtargetInfo feature bits in sync with
// target data structure which is shared with MC code emitter, etc.
if (In64BitMode)
ToggleFeature(X86::Mode64Bit);
else if (In32BitMode)
ToggleFeature(X86::Mode32Bit);
else if (In16BitMode)
ToggleFeature(X86::Mode16Bit);
else
llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
<< ", 3DNowLevel " << X863DNowLevel
<< ", 64bit " << HasX86_64 << "\n");
assert((!In64BitMode || HasX86_64) &&
"64-bit code requested on a subtarget that doesn't support it!");
// Stack alignment is 16 bytes on Darwin, Linux and Solaris (both
// 32 and 64 bit) and for all 64-bit targets.
if (StackAlignOverride)
stackAlignment = StackAlignOverride;
else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
In64BitMode)
stackAlignment = 16;
}
void X86Subtarget::initializeEnvironment() {
X86SSELevel = NoMMXSSE;
X863DNowLevel = NoThreeDNow;
HasCMov = false;
HasX86_64 = false;
HasPOPCNT = false;
HasSSE4A = false;
HasAES = false;
HasPCLMUL = false;
HasFMA = false;
HasFMA4 = false;
HasXOP = false;
HasTBM = false;
HasMOVBE = false;
HasRDRAND = false;
HasF16C = false;
HasFSGSBase = false;
HasLZCNT = false;
HasBMI = false;
HasBMI2 = false;
HasRTM = false;
HasHLE = false;
HasERI = false;
HasCDI = false;
HasPFI = false;
HasADX = false;
HasSHA = false;
HasPRFCHW = false;
HasRDSEED = false;
IsBTMemSlow = false;
IsSHLDSlow = false;
IsUAMemFast = false;
HasVectorUAMem = false;
HasCmpxchg16b = false;
UseLeaForSP = false;
HasSlowDivide = false;
PostRAScheduler = false;
PadShortFunctions = false;
CallRegIndirect = false;
LEAUsesAG = false;
stackAlignment = 4;
// FIXME: this is a known good value for Yonah. How about others?
MaxInlineSizeThreshold = 128;
}
X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
const std::string &FS,
unsigned StackAlignOverride)
: X86GenSubtargetInfo(TT, CPU, FS)
, X86ProcFamily(Others)
, PICStyle(PICStyles::None)
, TargetTriple(TT)
, StackAlignOverride(StackAlignOverride)
, In64BitMode(TargetTriple.getArch() == Triple::x86_64)
, In32BitMode(TargetTriple.getArch() == Triple::x86 &&
TargetTriple.getEnvironment() != Triple::CODE16)
, In16BitMode(TargetTriple.getArch() == Triple::x86 &&
TargetTriple.getEnvironment() == Triple::CODE16) {
initializeEnvironment();
resetSubtargetFeatures(CPU, FS);
}
bool X86Subtarget::enablePostRAScheduler(
CodeGenOpt::Level OptLevel,
TargetSubtargetInfo::AntiDepBreakMode& Mode,
RegClassVector& CriticalPathRCs) const {
Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL;
CriticalPathRCs.clear();
return PostRAScheduler && OptLevel >= CodeGenOpt::Default;
}