mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-08 20:30:50 +00:00
08e261a5f6
not to overflow 64-bits and end up with a 0 mask. This caused i64 values to always be stored as 0 with lots of consequential damage to nightly test. llvm-svn: 33335
868 lines
33 KiB
C++
868 lines
33 KiB
C++
//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the common interface used by the various execution engine
|
|
// subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "jit"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/ModuleProvider.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
|
|
#include "llvm/ExecutionEngine/GenericValue.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MutexGuard.h"
|
|
#include "llvm/System/DynamicLibrary.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
|
|
STATISTIC(NumGlobals , "Number of global vars initialized");
|
|
|
|
ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
|
|
ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
|
|
|
|
ExecutionEngine::ExecutionEngine(ModuleProvider *P) {
|
|
LazyCompilationDisabled = false;
|
|
Modules.push_back(P);
|
|
assert(P && "ModuleProvider is null?");
|
|
}
|
|
|
|
ExecutionEngine::ExecutionEngine(Module *M) {
|
|
LazyCompilationDisabled = false;
|
|
assert(M && "Module is null?");
|
|
Modules.push_back(new ExistingModuleProvider(M));
|
|
}
|
|
|
|
ExecutionEngine::~ExecutionEngine() {
|
|
for (unsigned i = 0, e = Modules.size(); i != e; ++i)
|
|
delete Modules[i];
|
|
}
|
|
|
|
/// FindFunctionNamed - Search all of the active modules to find the one that
|
|
/// defines FnName. This is very slow operation and shouldn't be used for
|
|
/// general code.
|
|
Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
|
|
for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
|
|
if (Function *F = Modules[i]->getModule()->getNamedFunction(FnName))
|
|
return F;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// addGlobalMapping - Tell the execution engine that the specified global is
|
|
/// at the specified location. This is used internally as functions are JIT'd
|
|
/// and as global variables are laid out in memory. It can and should also be
|
|
/// used by clients of the EE that want to have an LLVM global overlay
|
|
/// existing data in memory.
|
|
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
|
|
MutexGuard locked(lock);
|
|
|
|
void *&CurVal = state.getGlobalAddressMap(locked)[GV];
|
|
assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
|
|
CurVal = Addr;
|
|
|
|
// If we are using the reverse mapping, add it too
|
|
if (!state.getGlobalAddressReverseMap(locked).empty()) {
|
|
const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
|
|
assert((V == 0 || GV == 0) && "GlobalMapping already established!");
|
|
V = GV;
|
|
}
|
|
}
|
|
|
|
/// clearAllGlobalMappings - Clear all global mappings and start over again
|
|
/// use in dynamic compilation scenarios when you want to move globals
|
|
void ExecutionEngine::clearAllGlobalMappings() {
|
|
MutexGuard locked(lock);
|
|
|
|
state.getGlobalAddressMap(locked).clear();
|
|
state.getGlobalAddressReverseMap(locked).clear();
|
|
}
|
|
|
|
/// updateGlobalMapping - Replace an existing mapping for GV with a new
|
|
/// address. This updates both maps as required. If "Addr" is null, the
|
|
/// entry for the global is removed from the mappings.
|
|
void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
|
|
MutexGuard locked(lock);
|
|
|
|
// Deleting from the mapping?
|
|
if (Addr == 0) {
|
|
state.getGlobalAddressMap(locked).erase(GV);
|
|
if (!state.getGlobalAddressReverseMap(locked).empty())
|
|
state.getGlobalAddressReverseMap(locked).erase(Addr);
|
|
return;
|
|
}
|
|
|
|
void *&CurVal = state.getGlobalAddressMap(locked)[GV];
|
|
if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
|
|
state.getGlobalAddressReverseMap(locked).erase(CurVal);
|
|
CurVal = Addr;
|
|
|
|
// If we are using the reverse mapping, add it too
|
|
if (!state.getGlobalAddressReverseMap(locked).empty()) {
|
|
const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
|
|
assert((V == 0 || GV == 0) && "GlobalMapping already established!");
|
|
V = GV;
|
|
}
|
|
}
|
|
|
|
/// getPointerToGlobalIfAvailable - This returns the address of the specified
|
|
/// global value if it is has already been codegen'd, otherwise it returns null.
|
|
///
|
|
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
|
|
MutexGuard locked(lock);
|
|
|
|
std::map<const GlobalValue*, void*>::iterator I =
|
|
state.getGlobalAddressMap(locked).find(GV);
|
|
return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
|
|
}
|
|
|
|
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
|
|
/// at the specified address.
|
|
///
|
|
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
|
|
MutexGuard locked(lock);
|
|
|
|
// If we haven't computed the reverse mapping yet, do so first.
|
|
if (state.getGlobalAddressReverseMap(locked).empty()) {
|
|
for (std::map<const GlobalValue*, void *>::iterator
|
|
I = state.getGlobalAddressMap(locked).begin(),
|
|
E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
|
|
state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
|
|
I->first));
|
|
}
|
|
|
|
std::map<void *, const GlobalValue*>::iterator I =
|
|
state.getGlobalAddressReverseMap(locked).find(Addr);
|
|
return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
|
|
}
|
|
|
|
// CreateArgv - Turn a vector of strings into a nice argv style array of
|
|
// pointers to null terminated strings.
|
|
//
|
|
static void *CreateArgv(ExecutionEngine *EE,
|
|
const std::vector<std::string> &InputArgv) {
|
|
unsigned PtrSize = EE->getTargetData()->getPointerSize();
|
|
char *Result = new char[(InputArgv.size()+1)*PtrSize];
|
|
|
|
DOUT << "ARGV = " << (void*)Result << "\n";
|
|
const Type *SBytePtr = PointerType::get(Type::Int8Ty);
|
|
|
|
for (unsigned i = 0; i != InputArgv.size(); ++i) {
|
|
unsigned Size = InputArgv[i].size()+1;
|
|
char *Dest = new char[Size];
|
|
DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
|
|
|
|
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
|
|
Dest[Size-1] = 0;
|
|
|
|
// Endian safe: Result[i] = (PointerTy)Dest;
|
|
EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
|
|
SBytePtr);
|
|
}
|
|
|
|
// Null terminate it
|
|
EE->StoreValueToMemory(PTOGV(0),
|
|
(GenericValue*)(Result+InputArgv.size()*PtrSize),
|
|
SBytePtr);
|
|
return Result;
|
|
}
|
|
|
|
|
|
/// runStaticConstructorsDestructors - This method is used to execute all of
|
|
/// the static constructors or destructors for a program, depending on the
|
|
/// value of isDtors.
|
|
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
|
|
const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
|
|
|
|
// Execute global ctors/dtors for each module in the program.
|
|
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
|
|
GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
|
|
|
|
// If this global has internal linkage, or if it has a use, then it must be
|
|
// an old-style (llvmgcc3) static ctor with __main linked in and in use. If
|
|
// this is the case, don't execute any of the global ctors, __main will do
|
|
// it.
|
|
if (!GV || GV->isExternal() || GV->hasInternalLinkage()) continue;
|
|
|
|
// Should be an array of '{ int, void ()* }' structs. The first value is
|
|
// the init priority, which we ignore.
|
|
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
|
|
if (!InitList) continue;
|
|
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
|
|
if (ConstantStruct *CS =
|
|
dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
|
|
if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
|
|
|
|
Constant *FP = CS->getOperand(1);
|
|
if (FP->isNullValue())
|
|
break; // Found a null terminator, exit.
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
|
|
if (CE->isCast())
|
|
FP = CE->getOperand(0);
|
|
if (Function *F = dyn_cast<Function>(FP)) {
|
|
// Execute the ctor/dtor function!
|
|
runFunction(F, std::vector<GenericValue>());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// runFunctionAsMain - This is a helper function which wraps runFunction to
|
|
/// handle the common task of starting up main with the specified argc, argv,
|
|
/// and envp parameters.
|
|
int ExecutionEngine::runFunctionAsMain(Function *Fn,
|
|
const std::vector<std::string> &argv,
|
|
const char * const * envp) {
|
|
std::vector<GenericValue> GVArgs;
|
|
GenericValue GVArgc;
|
|
GVArgc.Int32Val = argv.size();
|
|
unsigned NumArgs = Fn->getFunctionType()->getNumParams();
|
|
if (NumArgs) {
|
|
GVArgs.push_back(GVArgc); // Arg #0 = argc.
|
|
if (NumArgs > 1) {
|
|
GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
|
|
assert(((char **)GVTOP(GVArgs[1]))[0] &&
|
|
"argv[0] was null after CreateArgv");
|
|
if (NumArgs > 2) {
|
|
std::vector<std::string> EnvVars;
|
|
for (unsigned i = 0; envp[i]; ++i)
|
|
EnvVars.push_back(envp[i]);
|
|
GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
|
|
}
|
|
}
|
|
}
|
|
return runFunction(Fn, GVArgs).Int32Val;
|
|
}
|
|
|
|
/// If possible, create a JIT, unless the caller specifically requests an
|
|
/// Interpreter or there's an error. If even an Interpreter cannot be created,
|
|
/// NULL is returned.
|
|
///
|
|
ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
|
|
bool ForceInterpreter) {
|
|
ExecutionEngine *EE = 0;
|
|
|
|
// Unless the interpreter was explicitly selected, try making a JIT.
|
|
if (!ForceInterpreter && JITCtor)
|
|
EE = JITCtor(MP);
|
|
|
|
// If we can't make a JIT, make an interpreter instead.
|
|
if (EE == 0 && InterpCtor)
|
|
EE = InterpCtor(MP);
|
|
|
|
if (EE) {
|
|
// Make sure we can resolve symbols in the program as well. The zero arg
|
|
// to the function tells DynamicLibrary to load the program, not a library.
|
|
try {
|
|
sys::DynamicLibrary::LoadLibraryPermanently(0);
|
|
} catch (...) {
|
|
}
|
|
}
|
|
|
|
return EE;
|
|
}
|
|
|
|
/// getPointerToGlobal - This returns the address of the specified global
|
|
/// value. This may involve code generation if it's a function.
|
|
///
|
|
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
|
|
if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
|
|
return getPointerToFunction(F);
|
|
|
|
MutexGuard locked(lock);
|
|
void *p = state.getGlobalAddressMap(locked)[GV];
|
|
if (p)
|
|
return p;
|
|
|
|
// Global variable might have been added since interpreter started.
|
|
if (GlobalVariable *GVar =
|
|
const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
|
|
EmitGlobalVariable(GVar);
|
|
else
|
|
assert("Global hasn't had an address allocated yet!");
|
|
return state.getGlobalAddressMap(locked)[GV];
|
|
}
|
|
|
|
/// This macro is used to handle a variety of situations involing integer
|
|
/// values where the action should be done to one of the GenericValue members.
|
|
/// THEINTTY is a const Type * for the integer type. ACTION1 comes before
|
|
/// the GenericValue, ACTION2 comes after.
|
|
#define DO_FOR_INTEGER(THEINTTY, ACTION) \
|
|
{ \
|
|
unsigned BitWidth = cast<IntegerType>(THEINTTY)->getBitWidth(); \
|
|
if (BitWidth == 1) {\
|
|
ACTION(Int1Val); \
|
|
} else if (BitWidth <= 8) {\
|
|
ACTION(Int8Val); \
|
|
} else if (BitWidth <= 16) {\
|
|
ACTION(Int16Val); \
|
|
} else if (BitWidth <= 32) { \
|
|
ACTION(Int32Val); \
|
|
} else if (BitWidth <= 64) { \
|
|
ACTION(Int64Val); \
|
|
} else {\
|
|
assert(0 && "Not implemented: integer types > 64 bits"); \
|
|
} \
|
|
}
|
|
|
|
/// This function converts a Constant* into a GenericValue. The interesting
|
|
/// part is if C is a ConstantExpr.
|
|
/// @brief Get a GenericValue for a Constnat*
|
|
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
|
|
// Declare the result as garbage.
|
|
GenericValue Result;
|
|
|
|
// If its undefined, return the garbage.
|
|
if (isa<UndefValue>(C)) return Result;
|
|
|
|
// If the value is a ConstantExpr
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::GetElementPtr: {
|
|
// Compute the index
|
|
Result = getConstantValue(CE->getOperand(0));
|
|
std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end());
|
|
uint64_t Offset =
|
|
TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes);
|
|
|
|
if (getTargetData()->getPointerSize() == 4)
|
|
Result.Int32Val += Offset;
|
|
else
|
|
Result.Int64Val += Offset;
|
|
return Result;
|
|
}
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
break;
|
|
case Instruction::PtrToInt: {
|
|
Constant *Op = CE->getOperand(0);
|
|
GenericValue GV = getConstantValue(Op);
|
|
return GV;
|
|
}
|
|
case Instruction::BitCast: {
|
|
// Bit casts are no-ops but we can only return the GV of the operand if
|
|
// they are the same basic type (pointer->pointer, packed->packed, etc.)
|
|
Constant *Op = CE->getOperand(0);
|
|
GenericValue GV = getConstantValue(Op);
|
|
if (Op->getType()->getTypeID() == C->getType()->getTypeID())
|
|
return GV;
|
|
break;
|
|
}
|
|
case Instruction::IntToPtr: {
|
|
// IntToPtr casts are just so special. Cast to intptr_t first.
|
|
Constant *Op = CE->getOperand(0);
|
|
GenericValue GV = getConstantValue(Op);
|
|
#define INT_TO_PTR_ACTION(FIELD) \
|
|
return PTOGV((void*)(uintptr_t)GV.FIELD)
|
|
DO_FOR_INTEGER(Op->getType(), INT_TO_PTR_ACTION)
|
|
#undef INT_TO_PTR_ACTION
|
|
break;
|
|
}
|
|
case Instruction::Add:
|
|
switch (CE->getOperand(0)->getType()->getTypeID()) {
|
|
default: assert(0 && "Bad add type!"); abort();
|
|
case Type::IntegerTyID:
|
|
#define ADD_ACTION(FIELD) \
|
|
Result.FIELD = getConstantValue(CE->getOperand(0)).FIELD + \
|
|
getConstantValue(CE->getOperand(1)).FIELD;
|
|
DO_FOR_INTEGER(CE->getOperand(0)->getType(),ADD_ACTION);
|
|
#undef ADD_ACTION
|
|
break;
|
|
case Type::FloatTyID:
|
|
Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal +
|
|
getConstantValue(CE->getOperand(1)).FloatVal;
|
|
break;
|
|
case Type::DoubleTyID:
|
|
Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal +
|
|
getConstantValue(CE->getOperand(1)).DoubleVal;
|
|
break;
|
|
}
|
|
return Result;
|
|
default:
|
|
break;
|
|
}
|
|
cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
|
|
abort();
|
|
}
|
|
|
|
switch (C->getType()->getTypeID()) {
|
|
#define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \
|
|
case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break
|
|
GET_CONST_VAL(Float , float , ConstantFP, getValue);
|
|
GET_CONST_VAL(Double, double , ConstantFP, getValue);
|
|
#undef GET_CONST_VAL
|
|
case Type::IntegerTyID: {
|
|
unsigned BitWidth = cast<IntegerType>(C->getType())->getBitWidth();
|
|
if (BitWidth == 1)
|
|
Result.Int1Val = (bool)cast<ConstantInt>(C)->getZExtValue();
|
|
else if (BitWidth <= 8)
|
|
Result.Int8Val = (uint8_t )cast<ConstantInt>(C)->getZExtValue();
|
|
else if (BitWidth <= 16)
|
|
Result.Int16Val = (uint16_t )cast<ConstantInt>(C)->getZExtValue();
|
|
else if (BitWidth <= 32)
|
|
Result.Int32Val = (uint32_t )cast<ConstantInt>(C)->getZExtValue();
|
|
else if (BitWidth <= 64)
|
|
Result.Int64Val = (uint64_t )cast<ConstantInt>(C)->getZExtValue();
|
|
else
|
|
assert("Integers with > 64-bits not implemented");
|
|
break;
|
|
}
|
|
|
|
case Type::PointerTyID:
|
|
if (isa<ConstantPointerNull>(C))
|
|
Result.PointerVal = 0;
|
|
else if (const Function *F = dyn_cast<Function>(C))
|
|
Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
|
|
else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
|
|
Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
|
|
else
|
|
assert(0 && "Unknown constant pointer type!");
|
|
break;
|
|
default:
|
|
cerr << "ERROR: Constant unimp for type: " << *C->getType() << "\n";
|
|
abort();
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
|
|
/// is the address of the memory at which to store Val, cast to GenericValue *.
|
|
/// It is not a pointer to a GenericValue containing the address at which to
|
|
/// store Val.
|
|
///
|
|
void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
|
|
const Type *Ty) {
|
|
if (getTargetData()->isLittleEndian()) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::IntegerTyID: {
|
|
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
|
|
uint64_t BitMask = (1ull << BitWidth) - 1;
|
|
if (BitWidth >= 64)
|
|
BitMask = (uint64_t)-1;
|
|
GenericValue TmpVal = Val;
|
|
if (BitWidth <= 8)
|
|
Ptr->Untyped[0] = Val.Int8Val & BitMask;
|
|
else if (BitWidth <= 16) {
|
|
TmpVal.Int16Val &= BitMask;
|
|
Ptr->Untyped[0] = TmpVal.Int16Val & 255;
|
|
Ptr->Untyped[1] = (TmpVal.Int16Val >> 8) & 255;
|
|
} else if (BitWidth <= 32) {
|
|
TmpVal.Int32Val &= BitMask;
|
|
Ptr->Untyped[0] = TmpVal.Int32Val & 255;
|
|
Ptr->Untyped[1] = (TmpVal.Int32Val >> 8) & 255;
|
|
Ptr->Untyped[2] = (TmpVal.Int32Val >> 16) & 255;
|
|
Ptr->Untyped[3] = (TmpVal.Int32Val >> 24) & 255;
|
|
} else if (BitWidth <= 64) {
|
|
TmpVal.Int64Val &= BitMask;
|
|
Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val );
|
|
Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 8);
|
|
Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 16);
|
|
Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 24);
|
|
Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 32);
|
|
Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 40);
|
|
Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 48);
|
|
Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val >> 56);
|
|
} else
|
|
assert(0 && "Integer types > 64 bits not supported");
|
|
break;
|
|
}
|
|
Store4BytesLittleEndian:
|
|
case Type::FloatTyID:
|
|
Ptr->Untyped[0] = Val.Int32Val & 255;
|
|
Ptr->Untyped[1] = (Val.Int32Val >> 8) & 255;
|
|
Ptr->Untyped[2] = (Val.Int32Val >> 16) & 255;
|
|
Ptr->Untyped[3] = (Val.Int32Val >> 24) & 255;
|
|
break;
|
|
case Type::PointerTyID:
|
|
if (getTargetData()->getPointerSize() == 4)
|
|
goto Store4BytesLittleEndian;
|
|
/* FALL THROUGH */
|
|
case Type::DoubleTyID:
|
|
Ptr->Untyped[0] = (unsigned char)(Val.Int64Val );
|
|
Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 8);
|
|
Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 16);
|
|
Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 24);
|
|
Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 32);
|
|
Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 40);
|
|
Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 48);
|
|
Ptr->Untyped[7] = (unsigned char)(Val.Int64Val >> 56);
|
|
break;
|
|
default:
|
|
cerr << "Cannot store value of type " << *Ty << "!\n";
|
|
}
|
|
} else {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::IntegerTyID: {
|
|
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
|
|
uint64_t BitMask = (1ull << BitWidth) - 1;
|
|
if (BitWidth >= 64)
|
|
BitMask = (uint64_t)-1;
|
|
GenericValue TmpVal = Val;
|
|
if (BitWidth <= 8)
|
|
Ptr->Untyped[0] = Val.Int8Val & BitMask;
|
|
else if (BitWidth <= 16) {
|
|
TmpVal.Int16Val &= BitMask;
|
|
Ptr->Untyped[1] = TmpVal.Int16Val & 255;
|
|
Ptr->Untyped[0] = (TmpVal.Int16Val >> 8) & 255;
|
|
} else if (BitWidth <= 32) {
|
|
TmpVal.Int32Val &= BitMask;
|
|
Ptr->Untyped[3] = TmpVal.Int32Val & 255;
|
|
Ptr->Untyped[2] = (TmpVal.Int32Val >> 8) & 255;
|
|
Ptr->Untyped[1] = (TmpVal.Int32Val >> 16) & 255;
|
|
Ptr->Untyped[0] = (TmpVal.Int32Val >> 24) & 255;
|
|
} else if (BitWidth <= 64) {
|
|
TmpVal.Int64Val &= BitMask;
|
|
Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val );
|
|
Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 8);
|
|
Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 16);
|
|
Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 24);
|
|
Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 32);
|
|
Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 40);
|
|
Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 48);
|
|
Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val >> 56);
|
|
} else
|
|
assert(0 && "Integer types > 64 bits not supported");
|
|
break;
|
|
}
|
|
Store4BytesBigEndian:
|
|
case Type::FloatTyID:
|
|
Ptr->Untyped[3] = Val.Int32Val & 255;
|
|
Ptr->Untyped[2] = (Val.Int32Val >> 8) & 255;
|
|
Ptr->Untyped[1] = (Val.Int32Val >> 16) & 255;
|
|
Ptr->Untyped[0] = (Val.Int32Val >> 24) & 255;
|
|
break;
|
|
case Type::PointerTyID:
|
|
if (getTargetData()->getPointerSize() == 4)
|
|
goto Store4BytesBigEndian;
|
|
/* FALL THROUGH */
|
|
case Type::DoubleTyID:
|
|
Ptr->Untyped[7] = (unsigned char)(Val.Int64Val );
|
|
Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 8);
|
|
Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 16);
|
|
Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 24);
|
|
Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 32);
|
|
Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 40);
|
|
Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 48);
|
|
Ptr->Untyped[0] = (unsigned char)(Val.Int64Val >> 56);
|
|
break;
|
|
default:
|
|
cerr << "Cannot store value of type " << *Ty << "!\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
/// FIXME: document
|
|
///
|
|
GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
|
|
const Type *Ty) {
|
|
GenericValue Result;
|
|
if (getTargetData()->isLittleEndian()) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::IntegerTyID: {
|
|
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
|
|
if (BitWidth <= 8)
|
|
Result.Int8Val = Ptr->Untyped[0];
|
|
else if (BitWidth <= 16) {
|
|
Result.Int16Val = (unsigned)Ptr->Untyped[0] |
|
|
((unsigned)Ptr->Untyped[1] << 8);
|
|
} else if (BitWidth <= 32) {
|
|
Result.Int32Val = (unsigned)Ptr->Untyped[0] |
|
|
((unsigned)Ptr->Untyped[1] << 8) |
|
|
((unsigned)Ptr->Untyped[2] << 16) |
|
|
((unsigned)Ptr->Untyped[3] << 24);
|
|
} else if (BitWidth <= 64) {
|
|
Result.Int64Val = (uint64_t)Ptr->Untyped[0] |
|
|
((uint64_t)Ptr->Untyped[1] << 8) |
|
|
((uint64_t)Ptr->Untyped[2] << 16) |
|
|
((uint64_t)Ptr->Untyped[3] << 24) |
|
|
((uint64_t)Ptr->Untyped[4] << 32) |
|
|
((uint64_t)Ptr->Untyped[5] << 40) |
|
|
((uint64_t)Ptr->Untyped[6] << 48) |
|
|
((uint64_t)Ptr->Untyped[7] << 56);
|
|
} else
|
|
assert(0 && "Integer types > 64 bits not supported");
|
|
break;
|
|
}
|
|
Load4BytesLittleEndian:
|
|
case Type::FloatTyID:
|
|
Result.Int32Val = (unsigned)Ptr->Untyped[0] |
|
|
((unsigned)Ptr->Untyped[1] << 8) |
|
|
((unsigned)Ptr->Untyped[2] << 16) |
|
|
((unsigned)Ptr->Untyped[3] << 24);
|
|
break;
|
|
case Type::PointerTyID:
|
|
if (getTargetData()->getPointerSize() == 4)
|
|
goto Load4BytesLittleEndian;
|
|
/* FALL THROUGH */
|
|
case Type::DoubleTyID:
|
|
Result.Int64Val = (uint64_t)Ptr->Untyped[0] |
|
|
((uint64_t)Ptr->Untyped[1] << 8) |
|
|
((uint64_t)Ptr->Untyped[2] << 16) |
|
|
((uint64_t)Ptr->Untyped[3] << 24) |
|
|
((uint64_t)Ptr->Untyped[4] << 32) |
|
|
((uint64_t)Ptr->Untyped[5] << 40) |
|
|
((uint64_t)Ptr->Untyped[6] << 48) |
|
|
((uint64_t)Ptr->Untyped[7] << 56);
|
|
break;
|
|
default:
|
|
cerr << "Cannot load value of type " << *Ty << "!\n";
|
|
abort();
|
|
}
|
|
} else {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::IntegerTyID: {
|
|
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
|
|
if (BitWidth <= 8)
|
|
Result.Int8Val = Ptr->Untyped[0];
|
|
else if (BitWidth <= 16) {
|
|
Result.Int16Val = (unsigned)Ptr->Untyped[1] |
|
|
((unsigned)Ptr->Untyped[0] << 8);
|
|
} else if (BitWidth <= 32) {
|
|
Result.Int32Val = (unsigned)Ptr->Untyped[3] |
|
|
((unsigned)Ptr->Untyped[2] << 8) |
|
|
((unsigned)Ptr->Untyped[1] << 16) |
|
|
((unsigned)Ptr->Untyped[0] << 24);
|
|
} else if (BitWidth <= 64) {
|
|
Result.Int64Val = (uint64_t)Ptr->Untyped[7] |
|
|
((uint64_t)Ptr->Untyped[6] << 8) |
|
|
((uint64_t)Ptr->Untyped[5] << 16) |
|
|
((uint64_t)Ptr->Untyped[4] << 24) |
|
|
((uint64_t)Ptr->Untyped[3] << 32) |
|
|
((uint64_t)Ptr->Untyped[2] << 40) |
|
|
((uint64_t)Ptr->Untyped[1] << 48) |
|
|
((uint64_t)Ptr->Untyped[0] << 56);
|
|
} else
|
|
assert(0 && "Integer types > 64 bits not supported");
|
|
break;
|
|
}
|
|
Load4BytesBigEndian:
|
|
case Type::FloatTyID:
|
|
Result.Int32Val = (unsigned)Ptr->Untyped[3] |
|
|
((unsigned)Ptr->Untyped[2] << 8) |
|
|
((unsigned)Ptr->Untyped[1] << 16) |
|
|
((unsigned)Ptr->Untyped[0] << 24);
|
|
break;
|
|
case Type::PointerTyID:
|
|
if (getTargetData()->getPointerSize() == 4)
|
|
goto Load4BytesBigEndian;
|
|
/* FALL THROUGH */
|
|
case Type::DoubleTyID:
|
|
Result.Int64Val = (uint64_t)Ptr->Untyped[7] |
|
|
((uint64_t)Ptr->Untyped[6] << 8) |
|
|
((uint64_t)Ptr->Untyped[5] << 16) |
|
|
((uint64_t)Ptr->Untyped[4] << 24) |
|
|
((uint64_t)Ptr->Untyped[3] << 32) |
|
|
((uint64_t)Ptr->Untyped[2] << 40) |
|
|
((uint64_t)Ptr->Untyped[1] << 48) |
|
|
((uint64_t)Ptr->Untyped[0] << 56);
|
|
break;
|
|
default:
|
|
cerr << "Cannot load value of type " << *Ty << "!\n";
|
|
abort();
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// InitializeMemory - Recursive function to apply a Constant value into the
|
|
// specified memory location...
|
|
//
|
|
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
|
|
if (isa<UndefValue>(Init)) {
|
|
return;
|
|
} else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) {
|
|
unsigned ElementSize =
|
|
getTargetData()->getTypeSize(CP->getType()->getElementType());
|
|
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
|
|
InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
|
|
return;
|
|
} else if (Init->getType()->isFirstClassType()) {
|
|
GenericValue Val = getConstantValue(Init);
|
|
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
|
|
return;
|
|
} else if (isa<ConstantAggregateZero>(Init)) {
|
|
memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType()));
|
|
return;
|
|
}
|
|
|
|
switch (Init->getType()->getTypeID()) {
|
|
case Type::ArrayTyID: {
|
|
const ConstantArray *CPA = cast<ConstantArray>(Init);
|
|
unsigned ElementSize =
|
|
getTargetData()->getTypeSize(CPA->getType()->getElementType());
|
|
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
|
|
InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
|
|
return;
|
|
}
|
|
|
|
case Type::StructTyID: {
|
|
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
|
|
const StructLayout *SL =
|
|
getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
|
|
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
|
|
InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]);
|
|
return;
|
|
}
|
|
|
|
default:
|
|
cerr << "Bad Type: " << *Init->getType() << "\n";
|
|
assert(0 && "Unknown constant type to initialize memory with!");
|
|
}
|
|
}
|
|
|
|
/// EmitGlobals - Emit all of the global variables to memory, storing their
|
|
/// addresses into GlobalAddress. This must make sure to copy the contents of
|
|
/// their initializers into the memory.
|
|
///
|
|
void ExecutionEngine::emitGlobals() {
|
|
const TargetData *TD = getTargetData();
|
|
|
|
// Loop over all of the global variables in the program, allocating the memory
|
|
// to hold them. If there is more than one module, do a prepass over globals
|
|
// to figure out how the different modules should link together.
|
|
//
|
|
std::map<std::pair<std::string, const Type*>,
|
|
const GlobalValue*> LinkedGlobalsMap;
|
|
|
|
if (Modules.size() != 1) {
|
|
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
|
|
Module &M = *Modules[m]->getModule();
|
|
for (Module::const_global_iterator I = M.global_begin(),
|
|
E = M.global_end(); I != E; ++I) {
|
|
const GlobalValue *GV = I;
|
|
if (GV->hasInternalLinkage() || GV->isExternal() ||
|
|
GV->hasAppendingLinkage() || !GV->hasName())
|
|
continue;// Ignore external globals and globals with internal linkage.
|
|
|
|
const GlobalValue *&GVEntry =
|
|
LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
|
|
|
|
// If this is the first time we've seen this global, it is the canonical
|
|
// version.
|
|
if (!GVEntry) {
|
|
GVEntry = GV;
|
|
continue;
|
|
}
|
|
|
|
// If the existing global is strong, never replace it.
|
|
if (GVEntry->hasExternalLinkage() ||
|
|
GVEntry->hasDLLImportLinkage() ||
|
|
GVEntry->hasDLLExportLinkage())
|
|
continue;
|
|
|
|
// Otherwise, we know it's linkonce/weak, replace it if this is a strong
|
|
// symbol.
|
|
if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
|
|
GVEntry = GV;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<const GlobalValue*> NonCanonicalGlobals;
|
|
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
|
|
Module &M = *Modules[m]->getModule();
|
|
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E; ++I) {
|
|
// In the multi-module case, see what this global maps to.
|
|
if (!LinkedGlobalsMap.empty()) {
|
|
if (const GlobalValue *GVEntry =
|
|
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
|
|
// If something else is the canonical global, ignore this one.
|
|
if (GVEntry != &*I) {
|
|
NonCanonicalGlobals.push_back(I);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!I->isExternal()) {
|
|
// Get the type of the global.
|
|
const Type *Ty = I->getType()->getElementType();
|
|
|
|
// Allocate some memory for it!
|
|
unsigned Size = TD->getTypeSize(Ty);
|
|
addGlobalMapping(I, new char[Size]);
|
|
} else {
|
|
// External variable reference. Try to use the dynamic loader to
|
|
// get a pointer to it.
|
|
if (void *SymAddr =
|
|
sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
|
|
addGlobalMapping(I, SymAddr);
|
|
else {
|
|
cerr << "Could not resolve external global address: "
|
|
<< I->getName() << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there are multiple modules, map the non-canonical globals to their
|
|
// canonical location.
|
|
if (!NonCanonicalGlobals.empty()) {
|
|
for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
|
|
const GlobalValue *GV = NonCanonicalGlobals[i];
|
|
const GlobalValue *CGV =
|
|
LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
|
|
void *Ptr = getPointerToGlobalIfAvailable(CGV);
|
|
assert(Ptr && "Canonical global wasn't codegen'd!");
|
|
addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
|
|
}
|
|
}
|
|
|
|
// Now that all of the globals are set up in memory, loop through them all
|
|
// and initialize their contents.
|
|
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E; ++I) {
|
|
if (!I->isExternal()) {
|
|
if (!LinkedGlobalsMap.empty()) {
|
|
if (const GlobalValue *GVEntry =
|
|
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
|
|
if (GVEntry != &*I) // Not the canonical variable.
|
|
continue;
|
|
}
|
|
EmitGlobalVariable(I);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// EmitGlobalVariable - This method emits the specified global variable to the
|
|
// address specified in GlobalAddresses, or allocates new memory if it's not
|
|
// already in the map.
|
|
void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
|
|
void *GA = getPointerToGlobalIfAvailable(GV);
|
|
DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
|
|
|
|
const Type *ElTy = GV->getType()->getElementType();
|
|
size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy);
|
|
if (GA == 0) {
|
|
// If it's not already specified, allocate memory for the global.
|
|
GA = new char[GVSize];
|
|
addGlobalMapping(GV, GA);
|
|
}
|
|
|
|
InitializeMemory(GV->getInitializer(), GA);
|
|
NumInitBytes += (unsigned)GVSize;
|
|
++NumGlobals;
|
|
}
|