mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-04-02 15:51:54 +00:00

This patch introduces a way to set custom OptPassGate instances to LLVMContext. A new instance field OptBisector and a new method setOptBisect() are added to the LLVMContext classes. These changes allow to set a custom OptBisect class that can make its own decisions on skipping optional passes. Another important feature of this change is ability to set different instances of OptPassGate to different LLVMContexts. So the different contexts can be used independently in several compiling threads of one process. One unit test is added. Patch by Yevgeny Rouban. Reviewers: andrew.w.kaylor, fedor.sergeev, vsk, dberlin, Eugene.Zelenko, reames, skatkov Reviewed By: andrew.w.kaylor, fedor.sergeev Differential Revision: https://reviews.llvm.org/D44464 llvm-svn: 329267
245 lines
7.6 KiB
C++
245 lines
7.6 KiB
C++
//===- LLVMContextImpl.cpp - Implement LLVMContextImpl --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the opaque LLVMContextImpl.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "LLVMContextImpl.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/OptBisect.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include <cassert>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
LLVMContextImpl::LLVMContextImpl(LLVMContext &C)
|
|
: DiagHandler(llvm::make_unique<DiagnosticHandler>()),
|
|
VoidTy(C, Type::VoidTyID),
|
|
LabelTy(C, Type::LabelTyID),
|
|
HalfTy(C, Type::HalfTyID),
|
|
FloatTy(C, Type::FloatTyID),
|
|
DoubleTy(C, Type::DoubleTyID),
|
|
MetadataTy(C, Type::MetadataTyID),
|
|
TokenTy(C, Type::TokenTyID),
|
|
X86_FP80Ty(C, Type::X86_FP80TyID),
|
|
FP128Ty(C, Type::FP128TyID),
|
|
PPC_FP128Ty(C, Type::PPC_FP128TyID),
|
|
X86_MMXTy(C, Type::X86_MMXTyID),
|
|
Int1Ty(C, 1),
|
|
Int8Ty(C, 8),
|
|
Int16Ty(C, 16),
|
|
Int32Ty(C, 32),
|
|
Int64Ty(C, 64),
|
|
Int128Ty(C, 128) {}
|
|
|
|
LLVMContextImpl::~LLVMContextImpl() {
|
|
// NOTE: We need to delete the contents of OwnedModules, but Module's dtor
|
|
// will call LLVMContextImpl::removeModule, thus invalidating iterators into
|
|
// the container. Avoid iterators during this operation:
|
|
while (!OwnedModules.empty())
|
|
delete *OwnedModules.begin();
|
|
|
|
// Drop references for MDNodes. Do this before Values get deleted to avoid
|
|
// unnecessary RAUW when nodes are still unresolved.
|
|
for (auto *I : DistinctMDNodes)
|
|
I->dropAllReferences();
|
|
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
|
|
for (auto *I : CLASS##s) \
|
|
I->dropAllReferences();
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
// Also drop references that come from the Value bridges.
|
|
for (auto &Pair : ValuesAsMetadata)
|
|
Pair.second->dropUsers();
|
|
for (auto &Pair : MetadataAsValues)
|
|
Pair.second->dropUse();
|
|
|
|
// Destroy MDNodes.
|
|
for (MDNode *I : DistinctMDNodes)
|
|
I->deleteAsSubclass();
|
|
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
|
|
for (CLASS * I : CLASS##s) \
|
|
delete I;
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
// Free the constants.
|
|
for (auto *I : ExprConstants)
|
|
I->dropAllReferences();
|
|
for (auto *I : ArrayConstants)
|
|
I->dropAllReferences();
|
|
for (auto *I : StructConstants)
|
|
I->dropAllReferences();
|
|
for (auto *I : VectorConstants)
|
|
I->dropAllReferences();
|
|
ExprConstants.freeConstants();
|
|
ArrayConstants.freeConstants();
|
|
StructConstants.freeConstants();
|
|
VectorConstants.freeConstants();
|
|
InlineAsms.freeConstants();
|
|
|
|
CAZConstants.clear();
|
|
CPNConstants.clear();
|
|
UVConstants.clear();
|
|
IntConstants.clear();
|
|
FPConstants.clear();
|
|
|
|
for (auto &CDSConstant : CDSConstants)
|
|
delete CDSConstant.second;
|
|
CDSConstants.clear();
|
|
|
|
// Destroy attributes.
|
|
for (FoldingSetIterator<AttributeImpl> I = AttrsSet.begin(),
|
|
E = AttrsSet.end(); I != E; ) {
|
|
FoldingSetIterator<AttributeImpl> Elem = I++;
|
|
delete &*Elem;
|
|
}
|
|
|
|
// Destroy attribute lists.
|
|
for (FoldingSetIterator<AttributeListImpl> I = AttrsLists.begin(),
|
|
E = AttrsLists.end();
|
|
I != E;) {
|
|
FoldingSetIterator<AttributeListImpl> Elem = I++;
|
|
delete &*Elem;
|
|
}
|
|
|
|
// Destroy attribute node lists.
|
|
for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(),
|
|
E = AttrsSetNodes.end(); I != E; ) {
|
|
FoldingSetIterator<AttributeSetNode> Elem = I++;
|
|
delete &*Elem;
|
|
}
|
|
|
|
// Destroy MetadataAsValues.
|
|
{
|
|
SmallVector<MetadataAsValue *, 8> MDVs;
|
|
MDVs.reserve(MetadataAsValues.size());
|
|
for (auto &Pair : MetadataAsValues)
|
|
MDVs.push_back(Pair.second);
|
|
MetadataAsValues.clear();
|
|
for (auto *V : MDVs)
|
|
delete V;
|
|
}
|
|
|
|
// Destroy ValuesAsMetadata.
|
|
for (auto &Pair : ValuesAsMetadata)
|
|
delete Pair.second;
|
|
}
|
|
|
|
void LLVMContextImpl::dropTriviallyDeadConstantArrays() {
|
|
bool Changed;
|
|
do {
|
|
Changed = false;
|
|
|
|
for (auto I = ArrayConstants.begin(), E = ArrayConstants.end(); I != E;) {
|
|
auto *C = *I++;
|
|
if (C->use_empty()) {
|
|
Changed = true;
|
|
C->destroyConstant();
|
|
}
|
|
}
|
|
} while (Changed);
|
|
}
|
|
|
|
void Module::dropTriviallyDeadConstantArrays() {
|
|
Context.pImpl->dropTriviallyDeadConstantArrays();
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
/// \brief Make MDOperand transparent for hashing.
|
|
///
|
|
/// This overload of an implementation detail of the hashing library makes
|
|
/// MDOperand hash to the same value as a \a Metadata pointer.
|
|
///
|
|
/// Note that overloading \a hash_value() as follows:
|
|
///
|
|
/// \code
|
|
/// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); }
|
|
/// \endcode
|
|
///
|
|
/// does not cause MDOperand to be transparent. In particular, a bare pointer
|
|
/// doesn't get hashed before it's combined, whereas \a MDOperand would.
|
|
static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); }
|
|
|
|
} // end namespace llvm
|
|
|
|
unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) {
|
|
unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end());
|
|
#ifndef NDEBUG
|
|
{
|
|
SmallVector<Metadata *, 8> MDs(N->op_begin() + Offset, N->op_end());
|
|
unsigned RawHash = calculateHash(MDs);
|
|
assert(Hash == RawHash &&
|
|
"Expected hash of MDOperand to equal hash of Metadata*");
|
|
}
|
|
#endif
|
|
return Hash;
|
|
}
|
|
|
|
unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) {
|
|
return hash_combine_range(Ops.begin(), Ops.end());
|
|
}
|
|
|
|
StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) {
|
|
uint32_t NewIdx = BundleTagCache.size();
|
|
return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first);
|
|
}
|
|
|
|
void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const {
|
|
Tags.resize(BundleTagCache.size());
|
|
for (const auto &T : BundleTagCache)
|
|
Tags[T.second] = T.first();
|
|
}
|
|
|
|
uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const {
|
|
auto I = BundleTagCache.find(Tag);
|
|
assert(I != BundleTagCache.end() && "Unknown tag!");
|
|
return I->second;
|
|
}
|
|
|
|
SyncScope::ID LLVMContextImpl::getOrInsertSyncScopeID(StringRef SSN) {
|
|
auto NewSSID = SSC.size();
|
|
assert(NewSSID < std::numeric_limits<SyncScope::ID>::max() &&
|
|
"Hit the maximum number of synchronization scopes allowed!");
|
|
return SSC.insert(std::make_pair(SSN, SyncScope::ID(NewSSID))).first->second;
|
|
}
|
|
|
|
void LLVMContextImpl::getSyncScopeNames(
|
|
SmallVectorImpl<StringRef> &SSNs) const {
|
|
SSNs.resize(SSC.size());
|
|
for (const auto &SSE : SSC)
|
|
SSNs[SSE.second] = SSE.first();
|
|
}
|
|
|
|
/// Singleton instance of the OptBisect class.
|
|
///
|
|
/// This singleton is accessed via the LLVMContext::getOptPassGate() function.
|
|
/// It provides a mechanism to disable passes and individual optimizations at
|
|
/// compile time based on a command line option (-opt-bisect-limit) in order to
|
|
/// perform a bisecting search for optimization-related problems.
|
|
///
|
|
/// Even if multiple LLVMContext objects are created, they will all return the
|
|
/// same instance of OptBisect in order to provide a single bisect count. Any
|
|
/// code that uses the OptBisect object should be serialized when bisection is
|
|
/// enabled in order to enable a consistent bisect count.
|
|
static ManagedStatic<OptBisect> OptBisector;
|
|
|
|
OptPassGate &LLVMContextImpl::getOptPassGate() const {
|
|
if (!OPG)
|
|
OPG = &(*OptBisector);
|
|
return *OPG;
|
|
}
|
|
|
|
void LLVMContextImpl::setOptPassGate(OptPassGate& OPG) {
|
|
this->OPG = &OPG;
|
|
}
|