mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-28 14:36:34 +00:00
5feffd1b9b
llvm-svn: 60242
550 lines
21 KiB
C++
550 lines
21 KiB
C++
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements an analysis that determines, for a given memory
|
|
// operation, what preceding memory operations it depends on. It builds on
|
|
// alias analysis information, and tries to provide a lazy, caching interface to
|
|
// a common kind of alias information query.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "memdep"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
using namespace llvm;
|
|
|
|
// Control the calculation of non-local dependencies by only examining the
|
|
// predecessors if the basic block has less than X amount (50 by default).
|
|
static cl::opt<int>
|
|
PredLimit("nonlocaldep-threshold", cl::Hidden, cl::init(50),
|
|
cl::desc("Control the calculation of non-local"
|
|
"dependencies (default = 50)"));
|
|
|
|
STATISTIC(NumCacheNonlocal, "Number of cached non-local responses");
|
|
STATISTIC(NumUncacheNonlocal, "Number of uncached non-local responses");
|
|
|
|
char MemoryDependenceAnalysis::ID = 0;
|
|
|
|
// Register this pass...
|
|
static RegisterPass<MemoryDependenceAnalysis> X("memdep",
|
|
"Memory Dependence Analysis", false, true);
|
|
|
|
/// verifyRemoved - Verify that the specified instruction does not occur
|
|
/// in our internal data structures.
|
|
void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
|
|
for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
|
|
E = LocalDeps.end(); I != E; ++I) {
|
|
assert(I->first != D && "Inst occurs in data structures");
|
|
assert(I->second.getPointer() != D &&
|
|
"Inst occurs in data structures");
|
|
}
|
|
|
|
for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
|
|
E = NonLocalDeps.end(); I != E; ++I) {
|
|
assert(I->first != D && "Inst occurs in data structures");
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator II = I->second.begin(),
|
|
EE = I->second.end(); II != EE; ++II)
|
|
assert(II->second.getPointer() != D && "Inst occurs in data structures");
|
|
}
|
|
|
|
for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
|
|
E = ReverseLocalDeps.end(); I != E; ++I)
|
|
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
|
|
EE = I->second.end(); II != EE; ++II)
|
|
assert(*II != D && "Inst occurs in data structures");
|
|
|
|
for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
|
|
E = ReverseNonLocalDeps.end();
|
|
I != E; ++I)
|
|
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
|
|
EE = I->second.end(); II != EE; ++II)
|
|
assert(*II != D && "Inst occurs in data structures");
|
|
}
|
|
|
|
/// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
|
|
///
|
|
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequiredTransitive<AliasAnalysis>();
|
|
AU.addRequiredTransitive<TargetData>();
|
|
}
|
|
|
|
/// getCallSiteDependency - Private helper for finding the local dependencies
|
|
/// of a call site.
|
|
MemDepResult MemoryDependenceAnalysis::
|
|
getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
|
|
BasicBlock *BB) {
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
TargetData &TD = getAnalysis<TargetData>();
|
|
|
|
// Walk backwards through the block, looking for dependencies
|
|
while (ScanIt != BB->begin()) {
|
|
Instruction *Inst = --ScanIt;
|
|
|
|
// If this inst is a memory op, get the pointer it accessed
|
|
Value *Pointer = 0;
|
|
uint64_t PointerSize = 0;
|
|
if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
|
|
Pointer = S->getPointerOperand();
|
|
PointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
|
|
} else if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
|
|
Pointer = AI;
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
|
|
PointerSize = C->getZExtValue() *
|
|
TD.getTypeStoreSize(AI->getAllocatedType());
|
|
else
|
|
PointerSize = ~0UL;
|
|
} else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
|
|
Pointer = V->getOperand(0);
|
|
PointerSize = TD.getTypeStoreSize(V->getType());
|
|
} else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
|
|
Pointer = F->getPointerOperand();
|
|
|
|
// FreeInsts erase the entire structure
|
|
PointerSize = ~0UL;
|
|
} else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
|
|
if (AA.getModRefBehavior(CallSite::get(Inst)) ==
|
|
AliasAnalysis::DoesNotAccessMemory)
|
|
continue;
|
|
return MemDepResult::get(Inst);
|
|
} else
|
|
continue;
|
|
|
|
if (AA.getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
|
|
return MemDepResult::get(Inst);
|
|
}
|
|
|
|
// No dependence found.
|
|
return MemDepResult::getNonLocal();
|
|
}
|
|
|
|
/// nonLocalHelper - Private helper used to calculate non-local dependencies
|
|
/// by doing DFS on the predecessors of a block to find its dependencies.
|
|
void MemoryDependenceAnalysis::nonLocalHelper(Instruction* query,
|
|
BasicBlock* block,
|
|
DenseMap<BasicBlock*, DepResultTy> &resp) {
|
|
// Set of blocks that we've already visited in our DFS
|
|
SmallPtrSet<BasicBlock*, 4> visited;
|
|
// If we're updating a dirtied cache entry, we don't need to reprocess
|
|
// already computed entries.
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = resp.begin(),
|
|
E = resp.end(); I != E; ++I)
|
|
if (I->second.getInt() != Dirty)
|
|
visited.insert(I->first);
|
|
|
|
// Current stack of the DFS
|
|
SmallVector<BasicBlock*, 4> stack;
|
|
for (pred_iterator PI = pred_begin(block), PE = pred_end(block);
|
|
PI != PE; ++PI)
|
|
stack.push_back(*PI);
|
|
|
|
// Do a basic DFS
|
|
while (!stack.empty()) {
|
|
BasicBlock* BB = stack.back();
|
|
|
|
// If we've already visited this block, no need to revist
|
|
if (visited.count(BB)) {
|
|
stack.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// If we find a new block with a local dependency for query,
|
|
// then we insert the new dependency and backtrack.
|
|
if (BB != block) {
|
|
visited.insert(BB);
|
|
|
|
MemDepResult localDep = getDependencyFrom(query, BB->end(), BB);
|
|
if (!localDep.isNonLocal()) {
|
|
resp.insert(std::make_pair(BB, ConvFromResult(localDep)));
|
|
stack.pop_back();
|
|
continue;
|
|
}
|
|
// If we re-encounter the starting block, we still need to search it
|
|
// because there might be a dependency in the starting block AFTER
|
|
// the position of the query. This is necessary to get loops right.
|
|
} else if (BB == block) {
|
|
visited.insert(BB);
|
|
|
|
MemDepResult localDep = getDependencyFrom(query, BB->end(), BB);
|
|
if (localDep.getInst() != query)
|
|
resp.insert(std::make_pair(BB, ConvFromResult(localDep)));
|
|
|
|
stack.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// If we didn't find anything, recurse on the precessors of this block
|
|
// Only do this for blocks with a small number of predecessors.
|
|
bool predOnStack = false;
|
|
bool inserted = false;
|
|
if (std::distance(pred_begin(BB), pred_end(BB)) <= PredLimit) {
|
|
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
PI != PE; ++PI)
|
|
if (!visited.count(*PI)) {
|
|
stack.push_back(*PI);
|
|
inserted = true;
|
|
} else
|
|
predOnStack = true;
|
|
}
|
|
|
|
// If we inserted a new predecessor, then we'll come back to this block
|
|
if (inserted)
|
|
continue;
|
|
// If we didn't insert because we have no predecessors, then this
|
|
// query has no dependency at all.
|
|
else if (!inserted && !predOnStack) {
|
|
resp.insert(std::make_pair(BB, DepResultTy(0, None)));
|
|
// If we didn't insert because our predecessors are already on the stack,
|
|
// then we might still have a dependency, but it will be discovered during
|
|
// backtracking.
|
|
} else if (!inserted && predOnStack){
|
|
resp.insert(std::make_pair(BB, DepResultTy(0, NonLocal)));
|
|
}
|
|
|
|
stack.pop_back();
|
|
}
|
|
}
|
|
|
|
/// getNonLocalDependency - Fills the passed-in map with the non-local
|
|
/// dependencies of the queries. The map will contain NonLocal for
|
|
/// blocks between the query and its dependencies.
|
|
void MemoryDependenceAnalysis::getNonLocalDependency(Instruction* query,
|
|
DenseMap<BasicBlock*, MemDepResult> &resp) {
|
|
if (NonLocalDeps.count(query)) {
|
|
DenseMap<BasicBlock*, DepResultTy> &cached = NonLocalDeps[query];
|
|
NumCacheNonlocal++;
|
|
|
|
SmallVector<BasicBlock*, 4> dirtied;
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = cached.begin(),
|
|
E = cached.end(); I != E; ++I)
|
|
if (I->second.getInt() == Dirty)
|
|
dirtied.push_back(I->first);
|
|
|
|
for (SmallVector<BasicBlock*, 4>::iterator I = dirtied.begin(),
|
|
E = dirtied.end(); I != E; ++I) {
|
|
MemDepResult localDep = getDependencyFrom(query, (*I)->end(), *I);
|
|
if (!localDep.isNonLocal())
|
|
cached[*I] = ConvFromResult(localDep);
|
|
else {
|
|
cached.erase(*I);
|
|
nonLocalHelper(query, *I, cached);
|
|
}
|
|
}
|
|
|
|
// Update the reverse non-local dependency cache.
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = cached.begin(),
|
|
E = cached.end(); I != E; ++I) {
|
|
if (Instruction *Inst = I->second.getPointer())
|
|
ReverseNonLocalDeps[Inst].insert(query);
|
|
resp[I->first] = ConvToResult(I->second);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
NumUncacheNonlocal++;
|
|
|
|
// If not, go ahead and search for non-local deps.
|
|
DenseMap<BasicBlock*, DepResultTy> &cached = NonLocalDeps[query];
|
|
nonLocalHelper(query, query->getParent(), cached);
|
|
|
|
// Update the non-local dependency cache
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = cached.begin(),
|
|
E = cached.end(); I != E; ++I) {
|
|
// FIXME: Merge with the code above!
|
|
if (Instruction *Inst = I->second.getPointer())
|
|
ReverseNonLocalDeps[Inst].insert(query);
|
|
resp[I->first] = ConvToResult(I->second);
|
|
}
|
|
}
|
|
|
|
/// getDependency - Return the instruction on which a memory operation
|
|
/// depends. The local parameter indicates if the query should only
|
|
/// evaluate dependencies within the same basic block.
|
|
MemDepResult MemoryDependenceAnalysis::
|
|
getDependencyFrom(Instruction *QueryInst, BasicBlock::iterator ScanIt,
|
|
BasicBlock *BB) {
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
TargetData &TD = getAnalysis<TargetData>();
|
|
|
|
// Get the pointer value for which dependence will be determined
|
|
Value *MemPtr = 0;
|
|
uint64_t MemSize = 0;
|
|
bool MemVolatile = false;
|
|
|
|
if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
|
|
MemPtr = S->getPointerOperand();
|
|
MemSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
|
|
MemVolatile = S->isVolatile();
|
|
} else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
|
|
MemPtr = L->getPointerOperand();
|
|
MemSize = TD.getTypeStoreSize(L->getType());
|
|
MemVolatile = L->isVolatile();
|
|
} else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
|
|
MemPtr = V->getOperand(0);
|
|
MemSize = TD.getTypeStoreSize(V->getType());
|
|
} else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
|
|
MemPtr = F->getPointerOperand();
|
|
// FreeInsts erase the entire structure, not just a field.
|
|
MemSize = ~0UL;
|
|
} else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
|
|
return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
|
|
else // Non-memory instructions depend on nothing.
|
|
return MemDepResult::getNone();
|
|
|
|
// Walk backwards through the basic block, looking for dependencies
|
|
while (ScanIt != BB->begin()) {
|
|
Instruction *Inst = --ScanIt;
|
|
|
|
// If the access is volatile and this is a volatile load/store, return a
|
|
// dependence.
|
|
if (MemVolatile &&
|
|
((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
|
|
(isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
|
|
return MemDepResult::get(Inst);
|
|
|
|
// MemDep is broken w.r.t. loads: it says that two loads of the same pointer
|
|
// depend on each other. :(
|
|
// FIXME: ELIMINATE THIS!
|
|
if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
|
|
Value *Pointer = L->getPointerOperand();
|
|
uint64_t PointerSize = TD.getTypeStoreSize(L->getType());
|
|
|
|
// If we found a pointer, check if it could be the same as our pointer
|
|
AliasAnalysis::AliasResult R =
|
|
AA.alias(Pointer, PointerSize, MemPtr, MemSize);
|
|
|
|
if (R == AliasAnalysis::NoAlias)
|
|
continue;
|
|
|
|
// May-alias loads don't depend on each other without a dependence.
|
|
if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
|
|
continue;
|
|
return MemDepResult::get(Inst);
|
|
}
|
|
|
|
// FIXME: This claims that an access depends on the allocation. This may
|
|
// make sense, but is dubious at best. It would be better to fix GVN to
|
|
// handle a 'None' Query.
|
|
if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
|
|
Value *Pointer = AI;
|
|
uint64_t PointerSize;
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
|
|
PointerSize = C->getZExtValue() *
|
|
TD.getTypeStoreSize(AI->getAllocatedType());
|
|
else
|
|
PointerSize = ~0UL;
|
|
|
|
AliasAnalysis::AliasResult R =
|
|
AA.alias(Pointer, PointerSize, MemPtr, MemSize);
|
|
|
|
if (R == AliasAnalysis::NoAlias)
|
|
continue;
|
|
return MemDepResult::get(Inst);
|
|
}
|
|
|
|
|
|
// See if this instruction mod/ref's the pointer.
|
|
AliasAnalysis::ModRefResult MRR = AA.getModRefInfo(Inst, MemPtr, MemSize);
|
|
|
|
if (MRR == AliasAnalysis::NoModRef)
|
|
continue;
|
|
|
|
// Loads don't depend on read-only instructions.
|
|
if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
|
|
continue;
|
|
|
|
// Otherwise, there is a dependence.
|
|
return MemDepResult::get(Inst);
|
|
}
|
|
|
|
// If we found nothing, return the non-local flag.
|
|
return MemDepResult::getNonLocal();
|
|
}
|
|
|
|
/// getDependency - Return the instruction on which a memory operation
|
|
/// depends.
|
|
MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
|
|
Instruction *ScanPos = QueryInst;
|
|
|
|
// Check for a cached result
|
|
DepResultTy &LocalCache = LocalDeps[QueryInst];
|
|
|
|
// If the cached entry is non-dirty, just return it.
|
|
if (LocalCache.getInt() != Dirty)
|
|
return ConvToResult(LocalCache);
|
|
|
|
// Otherwise, if we have a dirty entry, we know we can start the scan at that
|
|
// instruction, which may save us some work.
|
|
if (Instruction *Inst = LocalCache.getPointer())
|
|
ScanPos = Inst;
|
|
|
|
// Do the scan.
|
|
MemDepResult Res =
|
|
getDependencyFrom(QueryInst, ScanPos, QueryInst->getParent());
|
|
|
|
// Remember the result!
|
|
// FIXME: Don't convert back and forth! Make a shared helper function.
|
|
LocalCache = ConvFromResult(Res);
|
|
if (Instruction *I = Res.getInst())
|
|
ReverseLocalDeps[I].insert(QueryInst);
|
|
|
|
return Res;
|
|
}
|
|
|
|
|
|
/// dropInstruction - Remove an instruction from the analysis, making
|
|
/// absolutely conservative assumptions when updating the cache. This is
|
|
/// useful, for example when an instruction is changed rather than removed.
|
|
void MemoryDependenceAnalysis::dropInstruction(Instruction* drop) {
|
|
LocalDepMapType::iterator depGraphEntry = LocalDeps.find(drop);
|
|
if (depGraphEntry != LocalDeps.end())
|
|
if (Instruction *Inst = depGraphEntry->second.getPointer())
|
|
ReverseLocalDeps[Inst].erase(drop);
|
|
|
|
// Drop dependency information for things that depended on this instr
|
|
SmallPtrSet<Instruction*, 4>& set = ReverseLocalDeps[drop];
|
|
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
|
|
I != E; ++I)
|
|
LocalDeps.erase(*I);
|
|
|
|
LocalDeps.erase(drop);
|
|
ReverseLocalDeps.erase(drop);
|
|
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
|
|
NonLocalDeps[drop].begin(), DE = NonLocalDeps[drop].end();
|
|
DI != DE; ++DI)
|
|
if (Instruction *Inst = DI->second.getPointer())
|
|
ReverseNonLocalDeps[Inst].erase(drop);
|
|
|
|
if (ReverseNonLocalDeps.count(drop)) {
|
|
SmallPtrSet<Instruction*, 4>& set =
|
|
ReverseNonLocalDeps[drop];
|
|
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
|
|
I != E; ++I)
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
|
|
NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
|
|
DI != DE; ++DI)
|
|
if (DI->second == DepResultTy(drop, Normal))
|
|
// FIXME: Why not remember the old insertion point??
|
|
DI->second = DepResultTy(0, Dirty);
|
|
}
|
|
|
|
ReverseNonLocalDeps.erase(drop);
|
|
NonLocalDeps.erase(drop);
|
|
}
|
|
|
|
/// removeInstruction - Remove an instruction from the dependence analysis,
|
|
/// updating the dependence of instructions that previously depended on it.
|
|
/// This method attempts to keep the cache coherent using the reverse map.
|
|
void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
|
|
// Walk through the Non-local dependencies, removing this one as the value
|
|
// for any cached queries.
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
|
|
NonLocalDeps[RemInst].begin(), DE = NonLocalDeps[RemInst].end();
|
|
DI != DE; ++DI)
|
|
if (Instruction *Inst = DI->second.getPointer())
|
|
ReverseNonLocalDeps[Inst].erase(RemInst);
|
|
|
|
// Shortly after this, we will look for things that depend on RemInst. In
|
|
// order to update these, we'll need a new dependency to base them on. We
|
|
// could completely delete any entries that depend on this, but it is better
|
|
// to make a more accurate approximation where possible. Compute that better
|
|
// approximation if we can.
|
|
DepResultTy NewDependency;
|
|
|
|
// If we have a cached local dependence query for this instruction, remove it.
|
|
//
|
|
LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
|
|
if (LocalDepEntry != LocalDeps.end()) {
|
|
DepResultTy LocalDep = LocalDepEntry->second;
|
|
|
|
// Remove this local dependency info.
|
|
LocalDeps.erase(LocalDepEntry);
|
|
|
|
// Remove us from DepInst's reverse set now that the local dep info is gone.
|
|
if (Instruction *Inst = LocalDep.getPointer())
|
|
ReverseLocalDeps[Inst].erase(RemInst);
|
|
|
|
// If we have unconfirmed info, don't trust it.
|
|
if (LocalDep.getInt() != Dirty) {
|
|
// If we have a confirmed non-local flag, use it.
|
|
if (LocalDep.getInt() == NonLocal || LocalDep.getInt() == None) {
|
|
// The only time this dependency is confirmed is if it is non-local.
|
|
NewDependency = LocalDep;
|
|
} else {
|
|
// If we have dep info for RemInst, set them to it.
|
|
Instruction *NDI = next(BasicBlock::iterator(LocalDep.getPointer()));
|
|
if (NDI != RemInst) // Don't use RemInst for the new dependency!
|
|
NewDependency = DepResultTy(NDI, Dirty);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we don't already have a local dependency answer for this instruction,
|
|
// use the immediate successor of RemInst. We use the successor because
|
|
// getDependence starts by checking the immediate predecessor of what is in
|
|
// the cache.
|
|
if (NewDependency == DepResultTy(0, Dirty))
|
|
NewDependency = DepResultTy(next(BasicBlock::iterator(RemInst)), Dirty);
|
|
|
|
// Loop over all of the things that depend on the instruction we're removing.
|
|
//
|
|
ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
|
|
if (ReverseDepIt != ReverseLocalDeps.end()) {
|
|
SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
|
|
for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
|
|
E = ReverseDeps.end(); I != E; ++I) {
|
|
Instruction *InstDependingOnRemInst = *I;
|
|
|
|
// If we thought the instruction depended on itself (possible for
|
|
// unconfirmed dependencies) ignore the update.
|
|
if (InstDependingOnRemInst == RemInst) continue;
|
|
|
|
// Insert the new dependencies.
|
|
LocalDeps[InstDependingOnRemInst] = NewDependency;
|
|
|
|
// If our NewDependency is an instruction, make sure to remember that new
|
|
// things depend on it.
|
|
if (Instruction *Inst = NewDependency.getPointer())
|
|
ReverseLocalDeps[Inst].insert(InstDependingOnRemInst);
|
|
}
|
|
ReverseLocalDeps.erase(RemInst);
|
|
}
|
|
|
|
ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
|
|
if (ReverseDepIt != ReverseNonLocalDeps.end()) {
|
|
SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
|
|
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
|
|
I != E; ++I)
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator
|
|
DI = NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
|
|
DI != DE; ++DI)
|
|
if (DI->second == DepResultTy(RemInst, Normal))
|
|
// FIXME: Why not remember the old insertion point??
|
|
DI->second = DepResultTy(0, Dirty);
|
|
ReverseNonLocalDeps.erase(ReverseDepIt);
|
|
}
|
|
|
|
NonLocalDeps.erase(RemInst);
|
|
|
|
getAnalysis<AliasAnalysis>().deleteValue(RemInst);
|
|
|
|
DEBUG(verifyRemoved(RemInst));
|
|
}
|