llvm-mirror/lib/CodeGen/PostRASchedulerList.cpp
Dan Gohman 77e3f07d4b Factor out the code for verifying the work of the scheduler,
extend it a bit, and make use of it in all schedulers, to
ensure consistent checking.

llvm-svn: 59689
2008-11-20 01:26:25 +00:00

243 lines
7.7 KiB
C++

//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a top-down list scheduler, using standard algorithms.
// The basic approach uses a priority queue of available nodes to schedule.
// One at a time, nodes are taken from the priority queue (thus in priority
// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "post-RA-sched"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumStalls, "Number of pipeline stalls");
namespace {
class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
public:
static char ID;
PostRAScheduler() : MachineFunctionPass(&ID) {}
private:
MachineFunction *MF;
const TargetMachine *TM;
public:
const char *getPassName() const {
return "Post RA top-down list latency scheduler (STUB)";
}
bool runOnMachineFunction(MachineFunction &Fn);
};
char PostRAScheduler::ID = 0;
class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
public:
SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm)
: ScheduleDAGInstrs(mbb, tm) {}
private:
MachineFunction *MF;
const TargetMachine *TM;
/// AvailableQueue - The priority queue to use for the available SUnits.
///
LatencyPriorityQueue AvailableQueue;
/// PendingQueue - This contains all of the instructions whose operands have
/// been issued, but their results are not ready yet (due to the latency of
/// the operation). Once the operands becomes available, the instruction is
/// added to the AvailableQueue.
std::vector<SUnit*> PendingQueue;
public:
const char *getPassName() const {
return "Post RA top-down list latency scheduler (STUB)";
}
bool runOnMachineFunction(MachineFunction &Fn);
void Schedule();
private:
void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
void ListScheduleTopDown();
};
}
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
DOUT << "PostRAScheduler\n";
MF = &Fn;
TM = &MF->getTarget();
// Loop over all of the basic blocks
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
SchedulePostRATDList Scheduler(MBB, *TM);
Scheduler.Run();
Scheduler.EmitSchedule();
}
return true;
}
/// Schedule - Schedule the DAG using list scheduling.
void SchedulePostRATDList::Schedule() {
DOUT << "********** List Scheduling **********\n";
// Build scheduling units.
BuildSchedUnits();
AvailableQueue.initNodes(SUnits);
ListScheduleTopDown();
AvailableQueue.releaseState();
}
//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
--SuccSU->NumPredsLeft;
#ifndef NDEBUG
if (SuccSU->NumPredsLeft < 0) {
cerr << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
cerr << " has been released too many times!\n";
assert(0);
}
#endif
// Compute how many cycles it will be before this actually becomes
// available. This is the max of the start time of all predecessors plus
// their latencies.
// If this is a token edge, we don't need to wait for the latency of the
// preceeding instruction (e.g. a long-latency load) unless there is also
// some other data dependence.
unsigned PredDoneCycle = SU->Cycle;
if (!isChain)
PredDoneCycle += SU->Latency;
else if (SU->Latency)
PredDoneCycle += 1;
SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle);
if (SuccSU->NumPredsLeft == 0) {
PendingQueue.push_back(SuccSU);
}
}
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
DOUT << "*** Scheduling [" << CurCycle << "]: ";
DEBUG(SU->dump(this));
Sequence.push_back(SU);
SU->Cycle = CurCycle;
// Top down: release successors.
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I)
ReleaseSucc(SU, I->Dep, I->isCtrl);
SU->isScheduled = true;
AvailableQueue.ScheduledNode(SU);
}
/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void SchedulePostRATDList::ListScheduleTopDown() {
unsigned CurCycle = 0;
// All leaves to Available queue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors.
if (SUnits[i].Preds.empty()) {
AvailableQueue.push(&SUnits[i]);
SUnits[i].isAvailable = true;
}
}
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
Sequence.reserve(SUnits.size());
while (!AvailableQueue.empty() || !PendingQueue.empty()) {
// Check to see if any of the pending instructions are ready to issue. If
// so, add them to the available queue.
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
if (PendingQueue[i]->CycleBound == CurCycle) {
AvailableQueue.push(PendingQueue[i]);
PendingQueue[i]->isAvailable = true;
PendingQueue[i] = PendingQueue.back();
PendingQueue.pop_back();
--i; --e;
} else {
assert(PendingQueue[i]->CycleBound > CurCycle && "Negative latency?");
}
}
// If there are no instructions available, don't try to issue anything, and
// don't advance the hazard recognizer.
if (AvailableQueue.empty()) {
++CurCycle;
continue;
}
SUnit *FoundSUnit = AvailableQueue.pop();
// If we found a node to schedule, do it now.
if (FoundSUnit) {
ScheduleNodeTopDown(FoundSUnit, CurCycle);
// If this is a pseudo-op node, we don't want to increment the current
// cycle.
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
++CurCycle;
} else {
// Otherwise, we have a pipeline stall, but no other problem, just advance
// the current cycle and try again.
DOUT << "*** Advancing cycle, no work to do\n";
++NumStalls;
++CurCycle;
}
}
#ifndef NDEBUG
VerifySchedule(/*isBottomUp=*/false);
#endif
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createPostRAScheduler() {
return new PostRAScheduler();
}