llvm-mirror/lib/Analysis/ProfileEstimatorPass.cpp
Owen Anderson 63f757463c Begin adding static dependence information to passes, which will allow us to
perform initialization without static constructors AND without explicit initialization
by the client.  For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve.  I hope to be able to relax
the latter requirement in the future.

llvm-svn: 116334
2010-10-12 19:48:12 +00:00

425 lines
16 KiB
C++

//===- ProfileEstimatorPass.cpp - LLVM Pass to estimate profile info ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a concrete implementation of profiling information that
// estimates the profiling information in a very crude and unimaginative way.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "profile-estimator"
#include "llvm/Pass.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Format.h"
using namespace llvm;
static cl::opt<double>
LoopWeight(
"profile-estimator-loop-weight", cl::init(10),
cl::value_desc("loop-weight"),
cl::desc("Number of loop executions used for profile-estimator")
);
namespace {
class ProfileEstimatorPass : public FunctionPass, public ProfileInfo {
double ExecCount;
LoopInfo *LI;
std::set<BasicBlock*> BBToVisit;
std::map<Loop*,double> LoopExitWeights;
std::map<Edge,double> MinimalWeight;
public:
static char ID; // Class identification, replacement for typeinfo
explicit ProfileEstimatorPass(const double execcount = 0)
: FunctionPass(ID), ExecCount(execcount) {
if (execcount == 0) ExecCount = LoopWeight;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<LoopInfo>();
}
virtual const char *getPassName() const {
return "Profiling information estimator";
}
/// run - Estimate the profile information from the specified file.
virtual bool runOnFunction(Function &F);
/// getAdjustedAnalysisPointer - This method is used when a pass implements
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
if (PI == &ProfileInfo::ID)
return (ProfileInfo*)this;
return this;
}
virtual void recurseBasicBlock(BasicBlock *BB);
void inline printEdgeWeight(Edge);
};
} // End of anonymous namespace
char ProfileEstimatorPass::ID = 0;
INITIALIZE_AG_PASS_BEGIN(ProfileEstimatorPass, ProfileInfo, "profile-estimator",
"Estimate profiling information", false, true, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_AG_PASS_END(ProfileEstimatorPass, ProfileInfo, "profile-estimator",
"Estimate profiling information", false, true, false)
namespace llvm {
char &ProfileEstimatorPassID = ProfileEstimatorPass::ID;
FunctionPass *createProfileEstimatorPass() {
return new ProfileEstimatorPass();
}
/// createProfileEstimatorPass - This function returns a Pass that estimates
/// profiling information using the given loop execution count.
Pass *createProfileEstimatorPass(const unsigned execcount) {
return new ProfileEstimatorPass(execcount);
}
}
static double ignoreMissing(double w) {
if (w == ProfileInfo::MissingValue) return 0;
return w;
}
static void inline printEdgeError(ProfileInfo::Edge e, const char *M) {
DEBUG(dbgs() << "-- Edge " << e << " is not calculated, " << M << "\n");
}
void inline ProfileEstimatorPass::printEdgeWeight(Edge E) {
DEBUG(dbgs() << "-- Weight of Edge " << E << ":"
<< format("%20.20g", getEdgeWeight(E)) << "\n");
}
// recurseBasicBlock() - This calculates the ProfileInfo estimation for a
// single block and then recurses into the successors.
// The algorithm preserves the flow condition, meaning that the sum of the
// weight of the incoming edges must be equal the block weight which must in
// turn be equal to the sume of the weights of the outgoing edges.
// Since the flow of an block is deterimined from the current state of the
// flow, once an edge has a flow assigned this flow is never changed again,
// otherwise it would be possible to violate the flow condition in another
// block.
void ProfileEstimatorPass::recurseBasicBlock(BasicBlock *BB) {
// Break the recursion if this BasicBlock was already visited.
if (BBToVisit.find(BB) == BBToVisit.end()) return;
// Read the LoopInfo for this block.
bool BBisHeader = LI->isLoopHeader(BB);
Loop* BBLoop = LI->getLoopFor(BB);
// To get the block weight, read all incoming edges.
double BBWeight = 0;
std::set<BasicBlock*> ProcessedPreds;
for ( pred_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
bbi != bbe; ++bbi ) {
// If this block was not considered already, add weight.
Edge edge = getEdge(*bbi,BB);
double w = getEdgeWeight(edge);
if (ProcessedPreds.insert(*bbi).second) {
BBWeight += ignoreMissing(w);
}
// If this block is a loop header and the predecessor is contained in this
// loop, thus the edge is a backedge, continue and do not check if the
// value is valid.
if (BBisHeader && BBLoop->contains(*bbi)) {
printEdgeError(edge, "but is backedge, continueing");
continue;
}
// If the edges value is missing (and this is no loop header, and this is
// no backedge) return, this block is currently non estimatable.
if (w == MissingValue) {
printEdgeError(edge, "returning");
return;
}
}
if (getExecutionCount(BB) != MissingValue) {
BBWeight = getExecutionCount(BB);
}
// Fetch all necessary information for current block.
SmallVector<Edge, 8> ExitEdges;
SmallVector<Edge, 8> Edges;
if (BBLoop) {
BBLoop->getExitEdges(ExitEdges);
}
// If this is a loop header, consider the following:
// Exactly the flow that is entering this block, must exit this block too. So
// do the following:
// *) get all the exit edges, read the flow that is already leaving this
// loop, remember the edges that do not have any flow on them right now.
// (The edges that have already flow on them are most likely exiting edges of
// other loops, do not touch those flows because the previously caclulated
// loopheaders would not be exact anymore.)
// *) In case there is not a single exiting edge left, create one at the loop
// latch to prevent the flow from building up in the loop.
// *) Take the flow that is not leaving the loop already and distribute it on
// the remaining exiting edges.
// (This ensures that all flow that enters the loop also leaves it.)
// *) Increase the flow into the loop by increasing the weight of this block.
// There is at least one incoming backedge that will bring us this flow later
// on. (So that the flow condition in this node is valid again.)
if (BBisHeader) {
double incoming = BBWeight;
// Subtract the flow leaving the loop.
std::set<Edge> ProcessedExits;
for (SmallVector<Edge, 8>::iterator ei = ExitEdges.begin(),
ee = ExitEdges.end(); ei != ee; ++ei) {
if (ProcessedExits.insert(*ei).second) {
double w = getEdgeWeight(*ei);
if (w == MissingValue) {
Edges.push_back(*ei);
// Check if there is a necessary minimal weight, if yes, subtract it
// from weight.
if (MinimalWeight.find(*ei) != MinimalWeight.end()) {
incoming -= MinimalWeight[*ei];
DEBUG(dbgs() << "Reserving " << format("%.20g",MinimalWeight[*ei]) << " at " << (*ei) << "\n");
}
} else {
incoming -= w;
}
}
}
// If no exit edges, create one:
if (Edges.size() == 0) {
BasicBlock *Latch = BBLoop->getLoopLatch();
if (Latch) {
Edge edge = getEdge(Latch,0);
EdgeInformation[BB->getParent()][edge] = BBWeight;
printEdgeWeight(edge);
edge = getEdge(Latch, BB);
EdgeInformation[BB->getParent()][edge] = BBWeight * ExecCount;
printEdgeWeight(edge);
}
}
// Distribute remaining weight to the exting edges. To prevent fractions
// from building up and provoking precision problems the weight which is to
// be distributed is split and the rounded, the last edge gets a somewhat
// bigger value, but we are close enough for an estimation.
double fraction = floor(incoming/Edges.size());
for (SmallVector<Edge, 8>::iterator ei = Edges.begin(), ee = Edges.end();
ei != ee; ++ei) {
double w = 0;
if (ei != (ee-1)) {
w = fraction;
incoming -= fraction;
} else {
w = incoming;
}
EdgeInformation[BB->getParent()][*ei] += w;
// Read necessary minimal weight.
if (MinimalWeight.find(*ei) != MinimalWeight.end()) {
EdgeInformation[BB->getParent()][*ei] += MinimalWeight[*ei];
DEBUG(dbgs() << "Additionally " << format("%.20g",MinimalWeight[*ei]) << " at " << (*ei) << "\n");
}
printEdgeWeight(*ei);
// Add minimal weight to paths to all exit edges, this is used to ensure
// that enough flow is reaching this edges.
Path p;
const BasicBlock *Dest = GetPath(BB, (*ei).first, p, GetPathToDest);
while (Dest != BB) {
const BasicBlock *Parent = p.find(Dest)->second;
Edge e = getEdge(Parent, Dest);
if (MinimalWeight.find(e) == MinimalWeight.end()) {
MinimalWeight[e] = 0;
}
MinimalWeight[e] += w;
DEBUG(dbgs() << "Minimal Weight for " << e << ": " << format("%.20g",MinimalWeight[e]) << "\n");
Dest = Parent;
}
}
// Increase flow into the loop.
BBWeight *= (ExecCount+1);
}
BlockInformation[BB->getParent()][BB] = BBWeight;
// Up until now we considered only the loop exiting edges, now we have a
// definite block weight and must distribute this onto the outgoing edges.
// Since there may be already flow attached to some of the edges, read this
// flow first and remember the edges that have still now flow attached.
Edges.clear();
std::set<BasicBlock*> ProcessedSuccs;
succ_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
// Also check for (BB,0) edges that may already contain some flow. (But only
// in case there are no successors.)
if (bbi == bbe) {
Edge edge = getEdge(BB,0);
EdgeInformation[BB->getParent()][edge] = BBWeight;
printEdgeWeight(edge);
}
for ( ; bbi != bbe; ++bbi ) {
if (ProcessedSuccs.insert(*bbi).second) {
Edge edge = getEdge(BB,*bbi);
double w = getEdgeWeight(edge);
if (w != MissingValue) {
BBWeight -= getEdgeWeight(edge);
} else {
Edges.push_back(edge);
// If minimal weight is necessary, reserve weight by subtracting weight
// from block weight, this is readded later on.
if (MinimalWeight.find(edge) != MinimalWeight.end()) {
BBWeight -= MinimalWeight[edge];
DEBUG(dbgs() << "Reserving " << format("%.20g",MinimalWeight[edge]) << " at " << edge << "\n");
}
}
}
}
double fraction = floor(BBWeight/Edges.size());
// Finally we know what flow is still not leaving the block, distribute this
// flow onto the empty edges.
for (SmallVector<Edge, 8>::iterator ei = Edges.begin(), ee = Edges.end();
ei != ee; ++ei) {
if (ei != (ee-1)) {
EdgeInformation[BB->getParent()][*ei] += fraction;
BBWeight -= fraction;
} else {
EdgeInformation[BB->getParent()][*ei] += BBWeight;
}
// Readd minial necessary weight.
if (MinimalWeight.find(*ei) != MinimalWeight.end()) {
EdgeInformation[BB->getParent()][*ei] += MinimalWeight[*ei];
DEBUG(dbgs() << "Additionally " << format("%.20g",MinimalWeight[*ei]) << " at " << (*ei) << "\n");
}
printEdgeWeight(*ei);
}
// This block is visited, mark this before the recursion.
BBToVisit.erase(BB);
// Recurse into successors.
for (succ_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
bbi != bbe; ++bbi) {
recurseBasicBlock(*bbi);
}
}
bool ProfileEstimatorPass::runOnFunction(Function &F) {
if (F.isDeclaration()) return false;
// Fetch LoopInfo and clear ProfileInfo for this function.
LI = &getAnalysis<LoopInfo>();
FunctionInformation.erase(&F);
BlockInformation[&F].clear();
EdgeInformation[&F].clear();
// Mark all blocks as to visit.
for (Function::iterator bi = F.begin(), be = F.end(); bi != be; ++bi)
BBToVisit.insert(bi);
// Clear Minimal Edges.
MinimalWeight.clear();
DEBUG(dbgs() << "Working on function " << F.getNameStr() << "\n");
// Since the entry block is the first one and has no predecessors, the edge
// (0,entry) is inserted with the starting weight of 1.
BasicBlock *entry = &F.getEntryBlock();
BlockInformation[&F][entry] = pow(2.0, 32.0);
Edge edge = getEdge(0,entry);
EdgeInformation[&F][edge] = BlockInformation[&F][entry];
printEdgeWeight(edge);
// Since recurseBasicBlock() maybe returns with a block which was not fully
// estimated, use recurseBasicBlock() until everything is calculated.
bool cleanup = false;
recurseBasicBlock(entry);
while (BBToVisit.size() > 0 && !cleanup) {
// Remember number of open blocks, this is later used to check if progress
// was made.
unsigned size = BBToVisit.size();
// Try to calculate all blocks in turn.
for (std::set<BasicBlock*>::iterator bi = BBToVisit.begin(),
be = BBToVisit.end(); bi != be; ++bi) {
recurseBasicBlock(*bi);
// If at least one block was finished, break because iterator may be
// invalid.
if (BBToVisit.size() < size) break;
}
// If there was not a single block resolved, make some assumptions.
if (BBToVisit.size() == size) {
bool found = false;
for (std::set<BasicBlock*>::iterator BBI = BBToVisit.begin(), BBE = BBToVisit.end();
(BBI != BBE) && (!found); ++BBI) {
BasicBlock *BB = *BBI;
// Try each predecessor if it can be assumend.
for (pred_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
(bbi != bbe) && (!found); ++bbi) {
Edge e = getEdge(*bbi,BB);
double w = getEdgeWeight(e);
// Check that edge from predecessor is still free.
if (w == MissingValue) {
// Check if there is a circle from this block to predecessor.
Path P;
const BasicBlock *Dest = GetPath(BB, *bbi, P, GetPathToDest);
if (Dest != *bbi) {
// If there is no circle, just set edge weight to 0
EdgeInformation[&F][e] = 0;
DEBUG(dbgs() << "Assuming edge weight: ");
printEdgeWeight(e);
found = true;
}
}
}
}
if (!found) {
cleanup = true;
DEBUG(dbgs() << "No assumption possible in Fuction "<<F.getName()<<", setting all to zero\n");
}
}
}
// In case there was no safe way to assume edges, set as a last measure,
// set _everything_ to zero.
if (cleanup) {
FunctionInformation[&F] = 0;
BlockInformation[&F].clear();
EdgeInformation[&F].clear();
for (Function::const_iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
const BasicBlock *BB = &(*FI);
BlockInformation[&F][BB] = 0;
const_pred_iterator predi = pred_begin(BB), prede = pred_end(BB);
if (predi == prede) {
Edge e = getEdge(0,BB);
setEdgeWeight(e,0);
}
for (;predi != prede; ++predi) {
Edge e = getEdge(*predi,BB);
setEdgeWeight(e,0);
}
succ_const_iterator succi = succ_begin(BB), succe = succ_end(BB);
if (succi == succe) {
Edge e = getEdge(BB,0);
setEdgeWeight(e,0);
}
for (;succi != succe; ++succi) {
Edge e = getEdge(*succi,BB);
setEdgeWeight(e,0);
}
}
}
return false;
}