llvm-mirror/include/llvm/ADT/FunctionExtras.h
Chandler Carruth 720fe141ae [ADT] Switch to indirect even the trivial case through an object pointer
that has required alignment. This avoids issues that keep coming up with
function pointers being less aligned.

I'm pretty annoyed that we can't take advantage of function alignment
even on platforms where they *are* aligned, but build modes and other
things make taking advantage of it somewhere between hard and
impossible. The best case scenario would still embed various build modes
into the ABI causing really hard to debug issues if you compiled one
object file differently from another. =/

This should at least bring the bots back that were having trouble with
this.

llvm-svn: 336337
2018-07-05 11:56:34 +00:00

294 lines
11 KiB
C++

//===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides a collection of function (or more generally, callable)
/// type erasure utilities supplementing those provided by the standard library
/// in `<function>`.
///
/// It provides `unique_function`, which works like `std::function` but supports
/// move-only callable objects.
///
/// Future plans:
/// - Add a `function` that provides const, volatile, and ref-qualified support,
/// which doesn't work with `std::function`.
/// - Provide support for specifying multiple signatures to type erase callable
/// objects with an overload set, such as those produced by generic lambdas.
/// - Expand to include a copyable utility that directly replaces std::function
/// but brings the above improvements.
///
/// Note that LLVM's utilities are greatly simplified by not supporting
/// allocators.
///
/// If the standard library ever begins to provide comparable facilities we can
/// consider switching to those.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_FUNCTION_EXTRAS_H
#define LLVM_ADT_FUNCTION_EXTRAS_H
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/Support/type_traits.h"
#include <memory>
namespace llvm {
template <typename FunctionT> class unique_function;
template <typename ReturnT, typename... ParamTs>
class unique_function<ReturnT(ParamTs...)> {
static constexpr int InlineStorageSize = sizeof(void *) * 3;
// MSVC has a bug and ICEs if we give it a particular dependent value
// expression as part of the `std::conditional` below. To work around this,
// we build that into a template struct's constexpr bool.
template <typename T> struct IsSizeLessThanThresholdT {
static constexpr bool value = sizeof(T) <= (2 * sizeof(void *));
};
// Provide a type function to map parameters that won't observe extra copies
// or moves and which are small enough to likely pass in register to values
// and all other types to l-value reference types. We use this to compute the
// types used in our erased call utility to minimize copies and moves unless
// doing so would force things unnecessarily into memory.
//
// The heuristic used is related to common ABI register passing conventions.
// It doesn't have to be exact though, and in one way it is more strict
// because we want to still be able to observe either moves *or* copies.
template <typename T>
using AdjustedParamT = typename std::conditional<
!std::is_reference<T>::value &&
llvm::is_trivially_copy_constructible<T>::value &&
llvm::is_trivially_move_constructible<T>::value &&
IsSizeLessThanThresholdT<T>::value,
T, T &>::type;
// The type of the erased function pointer we use as a callback to dispatch to
// the stored callable when it is trivial to move and destroy.
using CallPtrT = ReturnT (*)(void *CallableAddr,
AdjustedParamT<ParamTs>... Params);
using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
using DestroyPtrT = void (*)(void *CallableAddr);
/// A struct to hold a single trivial callback with sufficient alignment for
/// our bitpacking.
struct alignas(8) TrivialCallback {
CallPtrT CallPtr;
};
/// A struct we use to aggregate three callbacks when we need full set of
/// operations.
struct alignas(8) NonTrivialCallbacks {
CallPtrT CallPtr;
MovePtrT MovePtr;
DestroyPtrT DestroyPtr;
};
// Create a pointer union between either a pointer to a static trivial call
// pointer in a struct or a pointer to a static struct of the call, move, and
// destroy pointers.
using CallbackPointerUnionT =
PointerUnion<TrivialCallback *, NonTrivialCallbacks *>;
// The main storage buffer. This will either have a pointer to out-of-line
// storage or an inline buffer storing the callable.
union StorageUnionT {
// For out-of-line storage we keep a pointer to the underlying storage and
// the size. This is enough to deallocate the memory.
struct OutOfLineStorageT {
void *StoragePtr;
size_t Size;
size_t Alignment;
} OutOfLineStorage;
static_assert(
sizeof(OutOfLineStorageT) <= InlineStorageSize,
"Should always use all of the out-of-line storage for inline storage!");
// For in-line storage, we just provide an aligned character buffer. We
// provide three pointers worth of storage here.
typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type
InlineStorage;
} StorageUnion;
// A compressed pointer to either our dispatching callback or our table of
// dispatching callbacks and the flag for whether the callable itself is
// stored inline or not.
PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
bool isTrivialCallback() const {
return CallbackAndInlineFlag.getPointer().template is<TrivialCallback *>();
}
CallPtrT getTrivialCallback() const {
return CallbackAndInlineFlag.getPointer().template get<TrivialCallback *>()->CallPtr;
}
NonTrivialCallbacks *getNonTrivialCallbacks() const {
return CallbackAndInlineFlag.getPointer()
.template get<NonTrivialCallbacks *>();
}
void *getInlineStorage() { return &StorageUnion.InlineStorage; }
void *getOutOfLineStorage() {
return StorageUnion.OutOfLineStorage.StoragePtr;
}
size_t getOutOfLineStorageSize() const {
return StorageUnion.OutOfLineStorage.Size;
}
size_t getOutOfLineStorageAlignment() const {
return StorageUnion.OutOfLineStorage.Alignment;
}
void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
}
template <typename CallableT>
static ReturnT CallImpl(void *CallableAddr, AdjustedParamT<ParamTs>... Params) {
return (*reinterpret_cast<CallableT *>(CallableAddr))(
std::forward<ParamTs>(Params)...);
}
template <typename CallableT>
static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
new (LHSCallableAddr)
CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
}
template <typename CallableT>
static void DestroyImpl(void *CallableAddr) noexcept {
reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
}
public:
unique_function() = default;
unique_function(std::nullptr_t /*null_callable*/) {}
~unique_function() {
if (!CallbackAndInlineFlag.getPointer())
return;
// Cache this value so we don't re-check it after type-erased operations.
bool IsInlineStorage = isInlineStorage();
if (!isTrivialCallback())
getNonTrivialCallbacks()->DestroyPtr(
IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
if (!IsInlineStorage)
deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
getOutOfLineStorageAlignment());
}
unique_function(unique_function &&RHS) noexcept {
// Copy the callback and inline flag.
CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
// If the RHS is empty, just copying the above is sufficient.
if (!RHS)
return;
if (!isInlineStorage()) {
// The out-of-line case is easiest to move.
StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
} else if (isTrivialCallback()) {
// Move is trivial, just memcpy the bytes across.
memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
} else {
// Non-trivial move, so dispatch to a type-erased implementation.
getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
RHS.getInlineStorage());
}
// Clear the old callback and inline flag to get back to as-if-null.
RHS.CallbackAndInlineFlag = {};
#ifndef NDEBUG
// In debug builds, we also scribble across the rest of the storage.
memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
#endif
}
unique_function &operator=(unique_function &&RHS) noexcept {
if (this == &RHS)
return *this;
// Because we don't try to provide any exception safety guarantees we can
// implement move assignment very simply by first destroying the current
// object and then move-constructing over top of it.
this->~unique_function();
new (this) unique_function(std::move(RHS));
return *this;
}
template <typename CallableT> unique_function(CallableT Callable) {
bool IsInlineStorage = true;
void *CallableAddr = getInlineStorage();
if (sizeof(CallableT) > InlineStorageSize ||
alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
IsInlineStorage = false;
// Allocate out-of-line storage. FIXME: Use an explicit alignment
// parameter in C++17 mode.
auto Size = sizeof(CallableT);
auto Alignment = alignof(CallableT);
CallableAddr = allocate_buffer(Size, Alignment);
setOutOfLineStorage(CallableAddr, Size, Alignment);
}
// Now move into the storage.
new (CallableAddr) CallableT(std::move(Callable));
// See if we can create a trivial callback. We need the callable to be
// trivially moved and trivially destroyed so that we don't have to store
// type erased callbacks for those operations.
//
// FIXME: We should use constexpr if here and below to avoid instantiating
// the non-trivial static objects when unnecessary. While the linker should
// remove them, it is still wasteful.
if (llvm::is_trivially_move_constructible<CallableT>::value &&
std::is_trivially_destructible<CallableT>::value) {
// We need to create a nicely aligned object. We use a static variable
// for this because it is a trivial struct.
static TrivialCallback Callback = { &CallImpl<CallableT> };
CallbackAndInlineFlag = {&Callback, IsInlineStorage};
return;
}
// Otherwise, we need to point at an object that contains all the different
// type erased behaviors needed. Create a static instance of the struct type
// here and then use a pointer to that.
static NonTrivialCallbacks Callbacks = {
&CallImpl<CallableT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
CallbackAndInlineFlag = {&Callbacks, IsInlineStorage};
}
ReturnT operator()(ParamTs... Params) {
void *CallableAddr =
isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
return (isTrivialCallback()
? getTrivialCallback()
: getNonTrivialCallbacks()->CallPtr)(CallableAddr, Params...);
}
explicit operator bool() const {
return (bool)CallbackAndInlineFlag.getPointer();
}
};
} // end namespace llvm
#endif // LLVM_ADT_FUNCTION_H