llvm-mirror/tools/llvm-exegesis/lib/Assembler.cpp
Miloš Stojanović e54a43362b Recommit: "[llvm-exegesis] Improve error reporting in Assembler.cpp"
Summary: Commit 63bb9fee525f8f29fd9c2174fa7f15573c3d1fd7 was reverted in
7603bfb4b0a6a90137d47f0182a490fe54bf7ca3 because it broke builds that treat
warnings as errors.
This commit updates the calls to `assembleToStream()` in tests to check that
the return value is valid.

Original commit message:

Followup to D74084.
Replace the use of `report_fatal_error()` with returning the error to
`llvm-exegesis.cpp` and handling it there.

Differential Revision: https://reviews.llvm.org/D74325
2020-02-19 14:40:28 +01:00

322 lines
12 KiB
C++

//===-- Assembler.cpp -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Assembler.h"
#include "SnippetRepetitor.h"
#include "Target.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/MemoryBuffer.h"
namespace llvm {
namespace exegesis {
static constexpr const char ModuleID[] = "ExegesisInfoTest";
static constexpr const char FunctionID[] = "foo";
static const Align kFunctionAlignment(4096);
// Fills the given basic block with register setup code, and returns true if
// all registers could be setup correctly.
static bool generateSnippetSetupCode(
const ExegesisTarget &ET, const MCSubtargetInfo *const MSI,
ArrayRef<RegisterValue> RegisterInitialValues, BasicBlockFiller &BBF) {
bool IsSnippetSetupComplete = true;
for (const RegisterValue &RV : RegisterInitialValues) {
// Load a constant in the register.
const auto SetRegisterCode = ET.setRegTo(*MSI, RV.Register, RV.Value);
if (SetRegisterCode.empty())
IsSnippetSetupComplete = false;
BBF.addInstructions(SetRegisterCode);
}
return IsSnippetSetupComplete;
}
// Small utility function to add named passes.
static bool addPass(PassManagerBase &PM, StringRef PassName,
TargetPassConfig &TPC) {
const PassRegistry *PR = PassRegistry::getPassRegistry();
const PassInfo *PI = PR->getPassInfo(PassName);
if (!PI) {
errs() << " run-pass " << PassName << " is not registered.\n";
return true;
}
if (!PI->getNormalCtor()) {
errs() << " cannot create pass: " << PI->getPassName() << "\n";
return true;
}
Pass *P = PI->getNormalCtor()();
std::string Banner = std::string("After ") + std::string(P->getPassName());
PM.add(P);
TPC.printAndVerify(Banner);
return false;
}
MachineFunction &createVoidVoidPtrMachineFunction(StringRef FunctionName,
Module *Module,
MachineModuleInfo *MMI) {
Type *const ReturnType = Type::getInt32Ty(Module->getContext());
Type *const MemParamType = PointerType::get(
Type::getInt8Ty(Module->getContext()), 0 /*default address space*/);
FunctionType *FunctionType =
FunctionType::get(ReturnType, {MemParamType}, false);
Function *const F = Function::Create(
FunctionType, GlobalValue::InternalLinkage, FunctionName, Module);
// Making sure we can create a MachineFunction out of this Function even if it
// contains no IR.
F->setIsMaterializable(true);
return MMI->getOrCreateMachineFunction(*F);
}
BasicBlockFiller::BasicBlockFiller(MachineFunction &MF, MachineBasicBlock *MBB,
const MCInstrInfo *MCII)
: MF(MF), MBB(MBB), MCII(MCII) {}
void BasicBlockFiller::addInstruction(const MCInst &Inst, const DebugLoc &DL) {
const unsigned Opcode = Inst.getOpcode();
const MCInstrDesc &MCID = MCII->get(Opcode);
MachineInstrBuilder Builder = BuildMI(MBB, DL, MCID);
for (unsigned OpIndex = 0, E = Inst.getNumOperands(); OpIndex < E;
++OpIndex) {
const MCOperand &Op = Inst.getOperand(OpIndex);
if (Op.isReg()) {
const bool IsDef = OpIndex < MCID.getNumDefs();
unsigned Flags = 0;
const MCOperandInfo &OpInfo = MCID.operands().begin()[OpIndex];
if (IsDef && !OpInfo.isOptionalDef())
Flags |= RegState::Define;
Builder.addReg(Op.getReg(), Flags);
} else if (Op.isImm()) {
Builder.addImm(Op.getImm());
} else if (!Op.isValid()) {
llvm_unreachable("Operand is not set");
} else {
llvm_unreachable("Not yet implemented");
}
}
}
void BasicBlockFiller::addInstructions(ArrayRef<MCInst> Insts,
const DebugLoc &DL) {
for (const MCInst &Inst : Insts)
addInstruction(Inst, DL);
}
void BasicBlockFiller::addReturn(const DebugLoc &DL) {
// Insert the return code.
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
if (TII->getReturnOpcode() < TII->getNumOpcodes()) {
BuildMI(MBB, DL, TII->get(TII->getReturnOpcode()));
} else {
MachineIRBuilder MIB(MF);
MIB.setMBB(*MBB);
MF.getSubtarget().getCallLowering()->lowerReturn(MIB, nullptr, {});
}
}
FunctionFiller::FunctionFiller(MachineFunction &MF,
std::vector<unsigned> RegistersSetUp)
: MF(MF), MCII(MF.getTarget().getMCInstrInfo()), Entry(addBasicBlock()),
RegistersSetUp(std::move(RegistersSetUp)) {}
BasicBlockFiller FunctionFiller::addBasicBlock() {
MachineBasicBlock *MBB = MF.CreateMachineBasicBlock();
MF.push_back(MBB);
return BasicBlockFiller(MF, MBB, MCII);
}
ArrayRef<unsigned> FunctionFiller::getRegistersSetUp() const {
return RegistersSetUp;
}
static std::unique_ptr<Module>
createModule(const std::unique_ptr<LLVMContext> &Context, const DataLayout DL) {
auto Mod = std::make_unique<Module>(ModuleID, *Context);
Mod->setDataLayout(DL);
return Mod;
}
BitVector getFunctionReservedRegs(const TargetMachine &TM) {
std::unique_ptr<LLVMContext> Context = std::make_unique<LLVMContext>();
std::unique_ptr<Module> Module = createModule(Context, TM.createDataLayout());
// TODO: This only works for targets implementing LLVMTargetMachine.
const LLVMTargetMachine &LLVMTM = static_cast<const LLVMTargetMachine &>(TM);
std::unique_ptr<MachineModuleInfoWrapperPass> MMIWP =
std::make_unique<MachineModuleInfoWrapperPass>(&LLVMTM);
MachineFunction &MF = createVoidVoidPtrMachineFunction(
FunctionID, Module.get(), &MMIWP.get()->getMMI());
// Saving reserved registers for client.
return MF.getSubtarget().getRegisterInfo()->getReservedRegs(MF);
}
Error assembleToStream(const ExegesisTarget &ET,
std::unique_ptr<LLVMTargetMachine> TM,
ArrayRef<unsigned> LiveIns,
ArrayRef<RegisterValue> RegisterInitialValues,
const FillFunction &Fill, raw_pwrite_stream &AsmStream) {
auto Context = std::make_unique<LLVMContext>();
std::unique_ptr<Module> Module =
createModule(Context, TM->createDataLayout());
auto MMIWP = std::make_unique<MachineModuleInfoWrapperPass>(TM.get());
MachineFunction &MF = createVoidVoidPtrMachineFunction(
FunctionID, Module.get(), &MMIWP.get()->getMMI());
MF.ensureAlignment(kFunctionAlignment);
// We need to instruct the passes that we're done with SSA and virtual
// registers.
auto &Properties = MF.getProperties();
Properties.set(MachineFunctionProperties::Property::NoVRegs);
Properties.reset(MachineFunctionProperties::Property::IsSSA);
Properties.set(MachineFunctionProperties::Property::NoPHIs);
for (const unsigned Reg : LiveIns)
MF.getRegInfo().addLiveIn(Reg);
std::vector<unsigned> RegistersSetUp;
for (const auto &InitValue : RegisterInitialValues) {
RegistersSetUp.push_back(InitValue.Register);
}
FunctionFiller Sink(MF, std::move(RegistersSetUp));
auto Entry = Sink.getEntry();
for (const unsigned Reg : LiveIns)
Entry.MBB->addLiveIn(Reg);
const bool IsSnippetSetupComplete = generateSnippetSetupCode(
ET, TM->getMCSubtargetInfo(), RegisterInitialValues, Entry);
// If the snippet setup is not complete, we disable liveliness tracking. This
// means that we won't know what values are in the registers.
if (!IsSnippetSetupComplete)
Properties.reset(MachineFunctionProperties::Property::TracksLiveness);
Fill(Sink);
// prologue/epilogue pass needs the reserved registers to be frozen, this
// is usually done by the SelectionDAGISel pass.
MF.getRegInfo().freezeReservedRegs(MF);
// We create the pass manager, run the passes to populate AsmBuffer.
MCContext &MCContext = MMIWP->getMMI().getContext();
legacy::PassManager PM;
TargetLibraryInfoImpl TLII(Triple(Module->getTargetTriple()));
PM.add(new TargetLibraryInfoWrapperPass(TLII));
TargetPassConfig *TPC = TM->createPassConfig(PM);
PM.add(TPC);
PM.add(MMIWP.release());
TPC->printAndVerify("MachineFunctionGenerator::assemble");
// Add target-specific passes.
ET.addTargetSpecificPasses(PM);
TPC->printAndVerify("After ExegesisTarget::addTargetSpecificPasses");
// Adding the following passes:
// - postrapseudos: expands pseudo return instructions used on some targets.
// - machineverifier: checks that the MachineFunction is well formed.
// - prologepilog: saves and restore callee saved registers.
for (const char *PassName :
{"postrapseudos", "machineverifier", "prologepilog"})
if (addPass(PM, PassName, *TPC))
return make_error<Failure>("Unable to add a mandatory pass");
TPC->setInitialized();
// AsmPrinter is responsible for generating the assembly into AsmBuffer.
if (TM->addAsmPrinter(PM, AsmStream, nullptr, CGFT_ObjectFile, MCContext))
return make_error<Failure>("Cannot add AsmPrinter passes");
PM.run(*Module); // Run all the passes
return Error::success();
}
object::OwningBinary<object::ObjectFile>
getObjectFromBuffer(StringRef InputData) {
// Storing the generated assembly into a MemoryBuffer that owns the memory.
std::unique_ptr<MemoryBuffer> Buffer =
MemoryBuffer::getMemBufferCopy(InputData);
// Create the ObjectFile from the MemoryBuffer.
std::unique_ptr<object::ObjectFile> Obj =
cantFail(object::ObjectFile::createObjectFile(Buffer->getMemBufferRef()));
// Returning both the MemoryBuffer and the ObjectFile.
return object::OwningBinary<object::ObjectFile>(std::move(Obj),
std::move(Buffer));
}
object::OwningBinary<object::ObjectFile> getObjectFromFile(StringRef Filename) {
return cantFail(object::ObjectFile::createObjectFile(Filename));
}
namespace {
// Implementation of this class relies on the fact that a single object with a
// single function will be loaded into memory.
class TrackingSectionMemoryManager : public SectionMemoryManager {
public:
explicit TrackingSectionMemoryManager(uintptr_t *CodeSize)
: CodeSize(CodeSize) {}
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) override {
*CodeSize = Size;
return SectionMemoryManager::allocateCodeSection(Size, Alignment, SectionID,
SectionName);
}
private:
uintptr_t *const CodeSize = nullptr;
};
} // namespace
ExecutableFunction::ExecutableFunction(
std::unique_ptr<LLVMTargetMachine> TM,
object::OwningBinary<object::ObjectFile> &&ObjectFileHolder)
: Context(std::make_unique<LLVMContext>()) {
assert(ObjectFileHolder.getBinary() && "cannot create object file");
// Initializing the execution engine.
// We need to use the JIT EngineKind to be able to add an object file.
LLVMLinkInMCJIT();
uintptr_t CodeSize = 0;
std::string Error;
ExecEngine.reset(
EngineBuilder(createModule(Context, TM->createDataLayout()))
.setErrorStr(&Error)
.setMCPU(TM->getTargetCPU())
.setEngineKind(EngineKind::JIT)
.setMCJITMemoryManager(
std::make_unique<TrackingSectionMemoryManager>(&CodeSize))
.create(TM.release()));
if (!ExecEngine)
report_fatal_error(Error);
// Adding the generated object file containing the assembled function.
// The ExecutionEngine makes sure the object file is copied into an
// executable page.
ExecEngine->addObjectFile(std::move(ObjectFileHolder));
// Fetching function bytes.
const uint64_t FunctionAddress = ExecEngine->getFunctionAddress(FunctionID);
assert(isAligned(kFunctionAlignment, FunctionAddress) &&
"function is not properly aligned");
FunctionBytes =
StringRef(reinterpret_cast<const char *>(FunctionAddress), CodeSize);
}
} // namespace exegesis
} // namespace llvm