llvm-mirror/lib/Fuzzer/FuzzerFnAdapter.h
Dan Liew c35cbd3461 [LibFuzzer] Add missing #include<string>
This partially fixes the compilation of the LibFuzzer unit test
on OSX using AppleClang.

llvm-svn: 270926
2016-05-26 21:54:25 +00:00

188 lines
5.5 KiB
C++

//===- FuzzerAdapter.h - Arbitrary function Fuzzer adapter -------*- C++ -*===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// W A R N I N G : E X P E R I M E N T A L.
//
// Defines an adapter to fuzz functions with (almost) arbitrary signatures.
//===----------------------------------------------------------------------===//
#ifndef LLVM_FUZZER_ADAPTER_H
#define LLVM_FUZZER_ADAPTER_H
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <string>
#include <tuple>
#include <vector>
namespace fuzzer {
/// Unpacks bytes from \p Data according to \p F argument types
/// and calls the function.
/// Use to automatically adapt LLVMFuzzerTestOneInput interface to
/// a specific function.
/// Supported argument types: primitive types, std::vector<uint8_t>.
template <typename Fn> bool Adapt(Fn F, const uint8_t *Data, size_t Size);
// The implementation performs several steps:
// - function argument types are obtained (Args...)
// - data is unpacked into std::tuple<Args...> one by one
// - function is called with std::tuple<Args...> containing arguments.
namespace impl {
// Single argument unpacking.
template <typename T>
size_t UnpackPrimitive(const uint8_t *Data, size_t Size, T *Value) {
if (Size < sizeof(T))
return Size;
*Value = *reinterpret_cast<const T *>(Data);
return Size - sizeof(T);
}
/// Unpacks into a given Value and returns the Size - num_consumed_bytes.
/// Return value equal to Size signals inability to unpack the data (typically
/// because there are not enough bytes).
template <typename T>
size_t UnpackSingle(const uint8_t *Data, size_t Size, T *Value);
#define UNPACK_SINGLE_PRIMITIVE(Type) \
template <> \
size_t UnpackSingle<Type>(const uint8_t *Data, size_t Size, Type *Value) { \
return UnpackPrimitive(Data, Size, Value); \
}
UNPACK_SINGLE_PRIMITIVE(char)
UNPACK_SINGLE_PRIMITIVE(signed char)
UNPACK_SINGLE_PRIMITIVE(unsigned char)
UNPACK_SINGLE_PRIMITIVE(short int)
UNPACK_SINGLE_PRIMITIVE(unsigned short int)
UNPACK_SINGLE_PRIMITIVE(int)
UNPACK_SINGLE_PRIMITIVE(unsigned int)
UNPACK_SINGLE_PRIMITIVE(long int)
UNPACK_SINGLE_PRIMITIVE(unsigned long int)
UNPACK_SINGLE_PRIMITIVE(bool)
UNPACK_SINGLE_PRIMITIVE(wchar_t)
UNPACK_SINGLE_PRIMITIVE(float)
UNPACK_SINGLE_PRIMITIVE(double)
UNPACK_SINGLE_PRIMITIVE(long double)
#undef UNPACK_SINGLE_PRIMITIVE
template <>
size_t UnpackSingle<std::vector<uint8_t>>(const uint8_t *Data, size_t Size,
std::vector<uint8_t> *Value) {
if (Size < 1)
return Size;
size_t Len = std::min(static_cast<size_t>(*Data), Size - 1);
std::vector<uint8_t> V(Data + 1, Data + 1 + Len);
Value->swap(V);
return Size - Len - 1;
}
template <>
size_t UnpackSingle<std::string>(const uint8_t *Data, size_t Size,
std::string *Value) {
if (Size < 1)
return Size;
size_t Len = std::min(static_cast<size_t>(*Data), Size - 1);
std::string S(Data + 1, Data + 1 + Len);
Value->swap(S);
return Size - Len - 1;
}
// Unpacking into arbitrary tuple.
// Recursion guard.
template <int N, typename TupleT>
typename std::enable_if<N == std::tuple_size<TupleT>::value, bool>::type
UnpackImpl(const uint8_t *Data, size_t Size, TupleT *Tuple) {
return true;
}
// Unpack tuple elements starting from Nth.
template <int N, typename TupleT>
typename std::enable_if<N < std::tuple_size<TupleT>::value, bool>::type
UnpackImpl(const uint8_t *Data, size_t Size, TupleT *Tuple) {
size_t NewSize = UnpackSingle(Data, Size, &std::get<N>(*Tuple));
if (NewSize == Size) {
return false;
}
return UnpackImpl<N + 1, TupleT>(Data + (Size - NewSize), NewSize, Tuple);
}
// Unpacks into arbitrary tuple and returns true if successful.
template <typename... Args>
bool Unpack(const uint8_t *Data, size_t Size, std::tuple<Args...> *Tuple) {
return UnpackImpl<0, std::tuple<Args...>>(Data, Size, Tuple);
}
// Helper integer sequence templates.
template <int...> struct Seq {};
template <int N, int... S> struct GenSeq : GenSeq<N - 1, N - 1, S...> {};
// GenSeq<N>::type is Seq<0, 1, ..., N-1>
template <int... S> struct GenSeq<0, S...> { typedef Seq<S...> type; };
// Function signature introspection.
template <typename T> struct FnTraits {};
template <typename ReturnType, typename... Args>
struct FnTraits<ReturnType (*)(Args...)> {
enum { Arity = sizeof...(Args) };
typedef std::tuple<Args...> ArgsTupleT;
};
// Calling a function with arguments in a tuple.
template <typename Fn, int... S>
void ApplyImpl(Fn F, const typename FnTraits<Fn>::ArgsTupleT &Params,
Seq<S...>) {
F(std::get<S>(Params)...);
}
template <typename Fn>
void Apply(Fn F, const typename FnTraits<Fn>::ArgsTupleT &Params) {
// S is Seq<0, ..., Arity-1>
auto S = typename GenSeq<FnTraits<Fn>::Arity>::type();
ApplyImpl(F, Params, S);
}
// Unpacking data into arguments tuple of correct type and calling the function.
template <typename Fn>
bool UnpackAndApply(Fn F, const uint8_t *Data, size_t Size) {
typename FnTraits<Fn>::ArgsTupleT Tuple;
if (!Unpack(Data, Size, &Tuple))
return false;
Apply(F, Tuple);
return true;
}
} // namespace impl
template <typename Fn> bool Adapt(Fn F, const uint8_t *Data, size_t Size) {
return impl::UnpackAndApply(F, Data, Size);
}
} // namespace fuzzer
#endif