llvm-mirror/include/llvm/DebugInfo/CodeView/RecordSerialization.h
David Majnemer f5f0beba17 An empty record cannot be null-terminated
llvm-svn: 271104
2016-05-28 05:59:22 +00:00

279 lines
8.9 KiB
C++

//===- RecordSerialization.h ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_CODEVIEW_RECORDSERIALIZATION_H
#define LLVM_DEBUGINFO_CODEVIEW_RECORDSERIALIZATION_H
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Endian.h"
#include "llvm/DebugInfo/CodeView/CodeView.h"
#include <cinttypes>
#include <tuple>
namespace llvm {
namespace codeview {
using llvm::support::little32_t;
using llvm::support::ulittle16_t;
using llvm::support::ulittle32_t;
struct RecordPrefix {
ulittle16_t RecordLen; // Record length, starting from &Leaf.
ulittle16_t RecordKind; // Record kind enum (SymRecordKind or TypeRecordKind)
};
/// Reinterpret a byte array as an array of characters. Does not interpret as
/// a C string, as StringRef has several helpers (split) that make that easy.
StringRef getBytesAsCharacters(ArrayRef<uint8_t> LeafData);
StringRef getBytesAsCString(ArrayRef<uint8_t> LeafData);
/// Consumes sizeof(T) bytes from the given byte sequence. Returns an error if
/// there are not enough bytes remaining. Reinterprets the consumed bytes as a
/// T object and points 'Res' at them.
template <typename T, typename U>
inline std::error_code consumeObject(U &Data, const T *&Res) {
if (Data.size() < sizeof(*Res))
return std::make_error_code(std::errc::illegal_byte_sequence);
Res = reinterpret_cast<const T *>(Data.data());
Data = Data.drop_front(sizeof(*Res));
return std::error_code();
}
inline std::error_code consume(ArrayRef<uint8_t> &Data) {
return std::error_code();
}
/// Decodes a numeric "leaf" value. These are integer literals encountered in
/// the type stream. If the value is positive and less than LF_NUMERIC (1 <<
/// 15), it is emitted directly in Data. Otherwise, it has a tag like LF_CHAR
/// that indicates the bitwidth and sign of the numeric data.
std::error_code consume(ArrayRef<uint8_t> &Data, APSInt &Num);
std::error_code consume(StringRef &Data, APSInt &Num);
/// Decodes a numeric leaf value that is known to be a particular type.
std::error_code consume_numeric(ArrayRef<uint8_t> &Data, uint64_t &Value);
/// Decodes signed and unsigned fixed-length integers.
std::error_code consume(ArrayRef<uint8_t> &Data, uint32_t &Item);
std::error_code consume(StringRef &Data, uint32_t &Item);
std::error_code consume(ArrayRef<uint8_t> &Data, int32_t &Item);
/// Decodes a null terminated string.
std::error_code consume(ArrayRef<uint8_t> &Data, StringRef &Item);
/// Decodes an arbitrary object whose layout matches that of the underlying
/// byte sequence, and returns a pointer to the object.
template <typename T>
std::error_code consume(ArrayRef<uint8_t> &Data, T *&Item) {
return consumeObject(Data, Item);
}
template <typename T, typename U> struct serialize_conditional_impl {
serialize_conditional_impl(T &Item, U Func) : Item(Item), Func(Func) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
if (!Func())
return std::error_code();
return consume(Data, Item);
}
T &Item;
U Func;
};
template <typename T, typename U>
serialize_conditional_impl<T, U> serialize_conditional(T &Item, U Func) {
return serialize_conditional_impl<T, U>(Item, Func);
}
template <typename T, typename U> struct serialize_array_impl {
serialize_array_impl(ArrayRef<T> &Item, U Func) : Item(Item), Func(Func) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
uint32_t N = Func();
if (N == 0)
return std::error_code();
uint32_t Size = sizeof(T) * N;
if (Size / sizeof(T) != N)
return std::make_error_code(std::errc::illegal_byte_sequence);
if (Data.size() < Size)
return std::make_error_code(std::errc::illegal_byte_sequence);
Item = ArrayRef<T>(reinterpret_cast<const T *>(Data.data()), N);
Data = Data.drop_front(Size);
return std::error_code();
}
ArrayRef<T> &Item;
U Func;
};
template <typename T> struct serialize_vector_tail_impl {
serialize_vector_tail_impl(std::vector<T> &Item) : Item(Item) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
T Field;
// Stop when we run out of bytes or we hit record padding bytes.
while (!Data.empty() && Data.front() < LF_PAD0) {
if (auto EC = consume(Data, Field))
return EC;
Item.push_back(Field);
}
return std::error_code();
}
std::vector<T> &Item;
};
struct serialize_null_term_string_array_impl {
serialize_null_term_string_array_impl(std::vector<StringRef> &Item)
: Item(Item) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
if (Data.empty())
return std::make_error_code(std::errc::illegal_byte_sequence);
StringRef Field;
// Stop when we run out of bytes or we hit record padding bytes.
while (Data.front() != 0) {
if (auto EC = consume(Data, Field))
return EC;
Item.push_back(Field);
if (Data.empty())
return std::make_error_code(std::errc::illegal_byte_sequence);
}
Data = Data.drop_front(1);
return std::error_code();
}
std::vector<StringRef> &Item;
};
template <typename T> struct serialize_arrayref_tail_impl {
serialize_arrayref_tail_impl(ArrayRef<T> &Item) : Item(Item) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
uint32_t Count = Data.size() / sizeof(T);
Item = ArrayRef<T>(reinterpret_cast<const T *>(Data.begin()), Count);
return std::error_code();
}
ArrayRef<T> &Item;
};
template <typename T> struct serialize_numeric_impl {
serialize_numeric_impl(T &Item) : Item(Item) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
return consume_numeric(Data, Item);
}
T &Item;
};
template <typename T, typename U>
serialize_array_impl<T, U> serialize_array(ArrayRef<T> &Item, U Func) {
return serialize_array_impl<T, U>(Item, Func);
}
inline serialize_null_term_string_array_impl
serialize_null_term_string_array(std::vector<StringRef> &Item) {
return serialize_null_term_string_array_impl(Item);
}
template <typename T>
serialize_vector_tail_impl<T> serialize_array_tail(std::vector<T> &Item) {
return serialize_vector_tail_impl<T>(Item);
}
template <typename T>
serialize_arrayref_tail_impl<T> serialize_array_tail(ArrayRef<T> &Item) {
return serialize_arrayref_tail_impl<T>(Item);
}
template <typename T> serialize_numeric_impl<T> serialize_numeric(T &Item) {
return serialize_numeric_impl<T>(Item);
}
// This field is only present in the byte record if the condition is true. The
// condition is evaluated lazily, so it can depend on items that were
// deserialized
// earlier.
#define CV_CONDITIONAL_FIELD(I, C) \
serialize_conditional(I, [&]() { return !!(C); })
// This is an array of N items, where N is evaluated lazily, so it can refer
// to a field deserialized earlier.
#define CV_ARRAY_FIELD_N(I, N) serialize_array(I, [&]() { return N; })
// This is an array that exhausts the remainder of the input buffer.
#define CV_ARRAY_FIELD_TAIL(I) serialize_array_tail(I)
// This is an array that consumes null terminated strings until a double null
// is encountered.
#define CV_STRING_ARRAY_NULL_TERM(I) serialize_null_term_string_array(I)
#define CV_NUMERIC_FIELD(I) serialize_numeric(I)
template <typename T, typename U>
std::error_code consume(ArrayRef<uint8_t> &Data,
const serialize_conditional_impl<T, U> &Item) {
return Item.deserialize(Data);
}
template <typename T, typename U>
std::error_code consume(ArrayRef<uint8_t> &Data,
const serialize_array_impl<T, U> &Item) {
return Item.deserialize(Data);
}
inline std::error_code
consume(ArrayRef<uint8_t> &Data,
const serialize_null_term_string_array_impl &Item) {
return Item.deserialize(Data);
}
template <typename T>
std::error_code consume(ArrayRef<uint8_t> &Data,
const serialize_vector_tail_impl<T> &Item) {
return Item.deserialize(Data);
}
template <typename T>
std::error_code consume(ArrayRef<uint8_t> &Data,
const serialize_arrayref_tail_impl<T> &Item) {
return Item.deserialize(Data);
}
template <typename T>
std::error_code consume(ArrayRef<uint8_t> &Data,
const serialize_numeric_impl<T> &Item) {
return Item.deserialize(Data);
}
template <typename T, typename U, typename... Args>
std::error_code consume(ArrayRef<uint8_t> &Data, T &&X, U &&Y,
Args &&... Rest) {
if (auto EC = consume(Data, X))
return EC;
return consume(Data, Y, std::forward<Args>(Rest)...);
}
#define CV_DESERIALIZE(...) \
if (auto EC = consume(__VA_ARGS__)) \
return EC;
}
}
#endif