llvm-mirror/include/llvm/Function.h
2002-10-09 23:11:33 +00:00

192 lines
7.9 KiB
C++

//===-- llvm/Function.h - Class to represent a single function --*- C++ -*-===//
//
// This file contains the declaration of the Function class, which represents a
// single function/procedure in LLVM.
//
// A function basically consists of a list of basic blocks, a list of arguments,
// and a symbol table.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_FUNCTION_H
#define LLVM_FUNCTION_H
#include "llvm/GlobalValue.h"
#include "llvm/BasicBlock.h"
#include "llvm/Argument.h"
class FunctionType;
// Traits for intrusive list of instructions...
template<> struct ilist_traits<BasicBlock>
: public SymbolTableListTraits<BasicBlock, Function, Function> {
// createNode is used to create a node that marks the end of the list...
static BasicBlock *createNode();
static iplist<BasicBlock> &getList(Function *F);
};
template<> struct ilist_traits<Argument>
: public SymbolTableListTraits<Argument, Function, Function> {
// createNode is used to create a node that marks the end of the list...
static Argument *createNode();
static iplist<Argument> &getList(Function *F);
};
class Function : public GlobalValue {
public:
typedef iplist<Argument> ArgumentListType;
typedef iplist<BasicBlock> BasicBlockListType;
// BasicBlock iterators...
typedef BasicBlockListType::iterator iterator;
typedef BasicBlockListType::const_iterator const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef ArgumentListType::iterator aiterator;
typedef ArgumentListType::const_iterator const_aiterator;
typedef std::reverse_iterator<const_aiterator> const_reverse_aiterator;
typedef std::reverse_iterator<aiterator> reverse_aiterator;
private:
// Important things that make up a function!
BasicBlockListType BasicBlocks; // The basic blocks
ArgumentListType ArgumentList; // The formal arguments
SymbolTable *SymTab, *ParentSymTab;
friend class SymbolTableListTraits<Function, Module, Module>;
void setParent(Module *parent);
Function *Prev, *Next;
void setNext(Function *N) { Next = N; }
void setPrev(Function *N) { Prev = N; }
public:
/// Function ctor - If the (optional) Module argument is specified, the
/// function is automatically inserted into the end of the function list for
/// the module.
///
Function(const FunctionType *Ty, bool isInternal, const std::string &N = "",
Module *M = 0);
~Function();
// Specialize setName to handle symbol table majik...
virtual void setName(const std::string &name, SymbolTable *ST = 0);
const Type *getReturnType() const; // Return the type of the ret val
const FunctionType *getFunctionType() const; // Return the FunctionType for me
/// isExternal - Is the body of this function unknown? (the basic block list
/// is empty if so) this is true for external functions, defined as forward
/// "declare"ations
///
virtual bool isExternal() const { return BasicBlocks.empty(); }
// getNext/Prev - Return the next or previous function in the list. These
// methods should never be used directly, and are only used to implement the
// function list as part of the module.
//
Function *getNext() { return Next; }
const Function *getNext() const { return Next; }
Function *getPrev() { return Prev; }
const Function *getPrev() const { return Prev; }
/// Get the underlying elements of the Function... both the argument list and
/// basic block list are empty for external functions.
///
const ArgumentListType &getArgumentList() const { return ArgumentList; }
ArgumentListType &getArgumentList() { return ArgumentList; }
const BasicBlockListType &getBasicBlockList() const { return BasicBlocks; }
BasicBlockListType &getBasicBlockList() { return BasicBlocks; }
const BasicBlock &getEntryNode() const { return front(); }
BasicBlock &getEntryNode() { return front(); }
//===--------------------------------------------------------------------===//
// Symbol Table Accessing functions...
/// hasSymbolTable() - Returns true if there is a symbol table allocated to
/// this object AND if there is at least one name in it!
///
bool hasSymbolTable() const;
/// getSymbolTable() - CAUTION: The current symbol table may be null if there
/// are no names (ie, the symbol table is empty)
///
inline SymbolTable *getSymbolTable() { return SymTab; }
inline const SymbolTable *getSymbolTable() const { return SymTab; }
/// getSymbolTableSure is guaranteed to not return a null pointer, because if
/// the function does not already have a symtab, one is created. Use this if
/// you intend to put something into the symbol table for the function.
///
SymbolTable *getSymbolTableSure(); // Implemented in Value.cpp
//===--------------------------------------------------------------------===//
// BasicBlock iterator forwarding functions
//
iterator begin() { return BasicBlocks.begin(); }
const_iterator begin() const { return BasicBlocks.begin(); }
iterator end () { return BasicBlocks.end(); }
const_iterator end () const { return BasicBlocks.end(); }
reverse_iterator rbegin() { return BasicBlocks.rbegin(); }
const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); }
reverse_iterator rend () { return BasicBlocks.rend(); }
const_reverse_iterator rend () const { return BasicBlocks.rend(); }
unsigned size() const { return BasicBlocks.size(); }
bool empty() const { return BasicBlocks.empty(); }
const BasicBlock &front() const { return BasicBlocks.front(); }
BasicBlock &front() { return BasicBlocks.front(); }
const BasicBlock &back() const { return BasicBlocks.back(); }
BasicBlock &back() { return BasicBlocks.back(); }
//===--------------------------------------------------------------------===//
// Argument iterator forwarding functions
//
aiterator abegin() { return ArgumentList.begin(); }
const_aiterator abegin() const { return ArgumentList.begin(); }
aiterator aend () { return ArgumentList.end(); }
const_aiterator aend () const { return ArgumentList.end(); }
reverse_aiterator arbegin() { return ArgumentList.rbegin(); }
const_reverse_aiterator arbegin() const { return ArgumentList.rbegin(); }
reverse_aiterator arend () { return ArgumentList.rend(); }
const_reverse_aiterator arend () const { return ArgumentList.rend(); }
unsigned asize() const { return ArgumentList.size(); }
bool aempty() const { return ArgumentList.empty(); }
const Argument &afront() const { return ArgumentList.front(); }
Argument &afront() { return ArgumentList.front(); }
const Argument &aback() const { return ArgumentList.back(); }
Argument &aback() { return ArgumentList.back(); }
virtual void print(std::ostream &OS) const;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Function *) { return true; }
static inline bool classof(const Value *V) {
return V->getValueType() == Value::FunctionVal;
}
/// dropAllReferences() - This function causes all the subinstructions to "let
/// go" of all references that they are maintaining. This allows one to
/// 'delete' a whole class at a time, even though there may be circular
/// references... first all references are dropped, and all use counts go to
/// zero. Then everything is delete'd for real. Note that no operations are
/// valid on an object that has "dropped all references", except operator
/// delete.
///
void dropAllReferences();
};
#endif