llvm-mirror/lib/DebugInfo/GSYM/GsymCreator.cpp

321 lines
11 KiB
C++

//===- GsymCreator.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/GSYM/GsymCreator.h"
#include "llvm/DebugInfo/GSYM/FileWriter.h"
#include "llvm/DebugInfo/GSYM/Header.h"
#include "llvm/DebugInfo/GSYM/LineTable.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <vector>
using namespace llvm;
using namespace gsym;
GsymCreator::GsymCreator() : StrTab(StringTableBuilder::ELF) {
insertFile(StringRef());
}
uint32_t GsymCreator::insertFile(StringRef Path,
llvm::sys::path::Style Style) {
llvm::StringRef directory = llvm::sys::path::parent_path(Path, Style);
llvm::StringRef filename = llvm::sys::path::filename(Path, Style);
// We must insert the strings first, then call the FileEntry constructor.
// If we inline the insertString() function call into the constructor, the
// call order is undefined due to parameter lists not having any ordering
// requirements.
const uint32_t Dir = insertString(directory);
const uint32_t Base = insertString(filename);
FileEntry FE(Dir, Base);
std::lock_guard<std::recursive_mutex> Guard(Mutex);
const auto NextIndex = Files.size();
// Find FE in hash map and insert if not present.
auto R = FileEntryToIndex.insert(std::make_pair(FE, NextIndex));
if (R.second)
Files.emplace_back(FE);
return R.first->second;
}
llvm::Error GsymCreator::save(StringRef Path,
llvm::support::endianness ByteOrder) const {
std::error_code EC;
raw_fd_ostream OutStrm(Path, EC);
if (EC)
return llvm::errorCodeToError(EC);
FileWriter O(OutStrm, ByteOrder);
return encode(O);
}
llvm::Error GsymCreator::encode(FileWriter &O) const {
std::lock_guard<std::recursive_mutex> Guard(Mutex);
if (Funcs.empty())
return createStringError(std::errc::invalid_argument,
"no functions to encode");
if (!Finalized)
return createStringError(std::errc::invalid_argument,
"GsymCreator wasn't finalized prior to encoding");
if (Funcs.size() > UINT32_MAX)
return createStringError(std::errc::invalid_argument,
"too many FunctionInfos");
const uint64_t MinAddr = BaseAddress ? *BaseAddress : Funcs.front().startAddress();
const uint64_t MaxAddr = Funcs.back().startAddress();
const uint64_t AddrDelta = MaxAddr - MinAddr;
Header Hdr;
Hdr.Magic = GSYM_MAGIC;
Hdr.Version = GSYM_VERSION;
Hdr.AddrOffSize = 0;
Hdr.UUIDSize = static_cast<uint8_t>(UUID.size());
Hdr.BaseAddress = MinAddr;
Hdr.NumAddresses = static_cast<uint32_t>(Funcs.size());
Hdr.StrtabOffset = 0; // We will fix this up later.
Hdr.StrtabSize = 0; // We will fix this up later.
memset(Hdr.UUID, 0, sizeof(Hdr.UUID));
if (UUID.size() > sizeof(Hdr.UUID))
return createStringError(std::errc::invalid_argument,
"invalid UUID size %u", (uint32_t)UUID.size());
// Set the address offset size correctly in the GSYM header.
if (AddrDelta <= UINT8_MAX)
Hdr.AddrOffSize = 1;
else if (AddrDelta <= UINT16_MAX)
Hdr.AddrOffSize = 2;
else if (AddrDelta <= UINT32_MAX)
Hdr.AddrOffSize = 4;
else
Hdr.AddrOffSize = 8;
// Copy the UUID value if we have one.
if (UUID.size() > 0)
memcpy(Hdr.UUID, UUID.data(), UUID.size());
// Write out the header.
llvm::Error Err = Hdr.encode(O);
if (Err)
return Err;
// Write out the address offsets.
O.alignTo(Hdr.AddrOffSize);
for (const auto &FuncInfo : Funcs) {
uint64_t AddrOffset = FuncInfo.startAddress() - Hdr.BaseAddress;
switch(Hdr.AddrOffSize) {
case 1: O.writeU8(static_cast<uint8_t>(AddrOffset)); break;
case 2: O.writeU16(static_cast<uint16_t>(AddrOffset)); break;
case 4: O.writeU32(static_cast<uint32_t>(AddrOffset)); break;
case 8: O.writeU64(AddrOffset); break;
}
}
// Write out all zeros for the AddrInfoOffsets.
O.alignTo(4);
const off_t AddrInfoOffsetsOffset = O.tell();
for (size_t i = 0, n = Funcs.size(); i < n; ++i)
O.writeU32(0);
// Write out the file table
O.alignTo(4);
assert(!Files.empty());
assert(Files[0].Dir == 0);
assert(Files[0].Base == 0);
size_t NumFiles = Files.size();
if (NumFiles > UINT32_MAX)
return createStringError(std::errc::invalid_argument,
"too many files");
O.writeU32(static_cast<uint32_t>(NumFiles));
for (auto File: Files) {
O.writeU32(File.Dir);
O.writeU32(File.Base);
}
// Write out the sting table.
const off_t StrtabOffset = O.tell();
StrTab.write(O.get_stream());
const off_t StrtabSize = O.tell() - StrtabOffset;
std::vector<uint32_t> AddrInfoOffsets;
// Write out the address infos for each function info.
for (const auto &FuncInfo : Funcs) {
if (Expected<uint64_t> OffsetOrErr = FuncInfo.encode(O))
AddrInfoOffsets.push_back(OffsetOrErr.get());
else
return OffsetOrErr.takeError();
}
// Fixup the string table offset and size in the header
O.fixup32((uint32_t)StrtabOffset, offsetof(Header, StrtabOffset));
O.fixup32((uint32_t)StrtabSize, offsetof(Header, StrtabSize));
// Fixup all address info offsets
uint64_t Offset = 0;
for (auto AddrInfoOffset: AddrInfoOffsets) {
O.fixup32(AddrInfoOffset, AddrInfoOffsetsOffset + Offset);
Offset += 4;
}
return ErrorSuccess();
}
llvm::Error GsymCreator::finalize(llvm::raw_ostream &OS) {
std::lock_guard<std::recursive_mutex> Guard(Mutex);
if (Finalized)
return createStringError(std::errc::invalid_argument,
"already finalized");
Finalized = true;
// Sort function infos so we can emit sorted functions.
llvm::sort(Funcs.begin(), Funcs.end());
// Don't let the string table indexes change by finalizing in order.
StrTab.finalizeInOrder();
// Remove duplicates function infos that have both entries from debug info
// (DWARF or Breakpad) and entries from the SymbolTable.
//
// Also handle overlapping function. Usually there shouldn't be any, but they
// can and do happen in some rare cases.
//
// (a) (b) (c)
// ^ ^ ^ ^
// |X |Y |X ^ |X
// | | | |Y | ^
// | | | v v |Y
// v v v v
//
// In (a) and (b), Y is ignored and X will be reported for the full range.
// In (c), both functions will be included in the result and lookups for an
// address in the intersection will return Y because of binary search.
//
// Note that in case of (b), we cannot include Y in the result because then
// we wouldn't find any function for range (end of Y, end of X)
// with binary search
auto NumBefore = Funcs.size();
auto Curr = Funcs.begin();
auto Prev = Funcs.end();
while (Curr != Funcs.end()) {
// Can't check for overlaps or same address ranges if we don't have a
// previous entry
if (Prev != Funcs.end()) {
if (Prev->Range.intersects(Curr->Range)) {
// Overlapping address ranges.
if (Prev->Range == Curr->Range) {
// Same address range. Check if one is from debug info and the other
// is from a symbol table. If so, then keep the one with debug info.
// Our sorting guarantees that entries with matching address ranges
// that have debug info are last in the sort.
if (*Prev == *Curr) {
// FunctionInfo entries match exactly (range, lines, inlines)
OS << "warning: duplicate function info entries for range: "
<< Curr->Range << '\n';
Curr = Funcs.erase(Prev);
} else {
if (!Prev->hasRichInfo() && Curr->hasRichInfo()) {
// Same address range, one with no debug info (symbol) and the
// next with debug info. Keep the latter.
Curr = Funcs.erase(Prev);
} else {
OS << "warning: same address range contains different debug "
<< "info. Removing:\n"
<< *Prev << "\nIn favor of this one:\n"
<< *Curr << "\n";
Curr = Funcs.erase(Prev);
}
}
} else {
// print warnings about overlaps
OS << "warning: function ranges overlap:\n"
<< *Prev << "\n"
<< *Curr << "\n";
}
} else if (Prev->Range.size() == 0 &&
Curr->Range.contains(Prev->Range.Start)) {
OS << "warning: removing symbol:\n"
<< *Prev << "\nKeeping:\n"
<< *Curr << "\n";
Curr = Funcs.erase(Prev);
}
}
if (Curr == Funcs.end())
break;
Prev = Curr++;
}
// If our last function info entry doesn't have a size and if we have valid
// text ranges, we should set the size of the last entry since any search for
// a high address might match our last entry. By fixing up this size, we can
// help ensure we don't cause lookups to always return the last symbol that
// has no size when doing lookups.
if (!Funcs.empty() && Funcs.back().Range.size() == 0 && ValidTextRanges) {
if (auto Range = ValidTextRanges->getRangeThatContains(
Funcs.back().Range.Start)) {
Funcs.back().Range.End = Range->End;
}
}
OS << "Pruned " << NumBefore - Funcs.size() << " functions, ended with "
<< Funcs.size() << " total\n";
return Error::success();
}
uint32_t GsymCreator::insertString(StringRef S, bool Copy) {
if (S.empty())
return 0;
std::lock_guard<std::recursive_mutex> Guard(Mutex);
if (Copy) {
// We need to provide backing storage for the string if requested
// since StringTableBuilder stores references to strings. Any string
// that comes from a section in an object file doesn't need to be
// copied, but any string created by code will need to be copied.
// This allows GsymCreator to be really fast when parsing DWARF and
// other object files as most strings don't need to be copied.
CachedHashStringRef CHStr(S);
if (!StrTab.contains(CHStr))
S = StringStorage.insert(S).first->getKey();
}
return StrTab.add(S);
}
void GsymCreator::addFunctionInfo(FunctionInfo &&FI) {
std::lock_guard<std::recursive_mutex> Guard(Mutex);
Ranges.insert(FI.Range);
Funcs.emplace_back(FI);
}
void GsymCreator::forEachFunctionInfo(
std::function<bool(FunctionInfo &)> const &Callback) {
std::lock_guard<std::recursive_mutex> Guard(Mutex);
for (auto &FI : Funcs) {
if (!Callback(FI))
break;
}
}
void GsymCreator::forEachFunctionInfo(
std::function<bool(const FunctionInfo &)> const &Callback) const {
std::lock_guard<std::recursive_mutex> Guard(Mutex);
for (const auto &FI : Funcs) {
if (!Callback(FI))
break;
}
}
size_t GsymCreator::getNumFunctionInfos() const{
std::lock_guard<std::recursive_mutex> Guard(Mutex);
return Funcs.size();
}
bool GsymCreator::IsValidTextAddress(uint64_t Addr) const {
if (ValidTextRanges)
return ValidTextRanges->contains(Addr);
return true; // No valid text ranges has been set, so accept all ranges.
}
bool GsymCreator::hasFunctionInfoForAddress(uint64_t Addr) const {
std::lock_guard<std::recursive_mutex> Guard(Mutex);
return Ranges.contains(Addr);
}