llvm-mirror/include/llvm/CodeGen/LiveIntervalAnalysis.h
Lang Hames 15c7539a46 Add API "handleMoveIntoBundl" for updating liveness when moving instructions into
bundles. This method takes a bundle start and an MI being bundled, and makes
the intervals for the MI's operands appear to start/end on the bundle start.

Also fixes some minor cosmetic issues (whitespace, naming convention) in the
HMEditor code.

llvm-svn: 151099
2012-02-21 22:29:38 +00:00

408 lines
16 KiB
C++

//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass. Given some numbering of
// each the machine instructions (in this implemention depth-first order) an
// interval [i, j) is said to be a live interval for register v if there is no
// instruction with number j' > j such that v is live at j' and there is no
// instruction with number i' < i such that v is live at i'. In this
// implementation intervals can have holes, i.e. an interval might look like
// [1,20), [50,65), [1000,1001).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
#define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include <cmath>
#include <iterator>
namespace llvm {
class AliasAnalysis;
class LiveVariables;
class MachineLoopInfo;
class TargetRegisterInfo;
class MachineRegisterInfo;
class TargetInstrInfo;
class TargetRegisterClass;
class VirtRegMap;
class LiveIntervals : public MachineFunctionPass {
MachineFunction* mf_;
MachineRegisterInfo* mri_;
const TargetMachine* tm_;
const TargetRegisterInfo* tri_;
const TargetInstrInfo* tii_;
AliasAnalysis *aa_;
LiveVariables* lv_;
SlotIndexes* indexes_;
/// Special pool allocator for VNInfo's (LiveInterval val#).
///
VNInfo::Allocator VNInfoAllocator;
typedef DenseMap<unsigned, LiveInterval*> Reg2IntervalMap;
Reg2IntervalMap r2iMap_;
/// allocatableRegs_ - A bit vector of allocatable registers.
BitVector allocatableRegs_;
/// reservedRegs_ - A bit vector of reserved registers.
BitVector reservedRegs_;
/// RegMaskSlots - Sorted list of instructions with register mask operands.
/// Always use the 'r' slot, RegMasks are normal clobbers, not early
/// clobbers.
SmallVector<SlotIndex, 8> RegMaskSlots;
/// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
/// pointer to the corresponding register mask. This pointer can be
/// recomputed as:
///
/// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
/// unsigned OpNum = findRegMaskOperand(MI);
/// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
///
/// This is kept in a separate vector partly because some standard
/// libraries don't support lower_bound() with mixed objects, partly to
/// improve locality when searching in RegMaskSlots.
/// Also see the comment in LiveInterval::find().
SmallVector<const uint32_t*, 8> RegMaskBits;
/// For each basic block number, keep (begin, size) pairs indexing into the
/// RegMaskSlots and RegMaskBits arrays.
/// Note that basic block numbers may not be layout contiguous, that's why
/// we can't just keep track of the first register mask in each basic
/// block.
SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
public:
static char ID; // Pass identification, replacement for typeid
LiveIntervals() : MachineFunctionPass(ID) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
}
// Calculate the spill weight to assign to a single instruction.
static float getSpillWeight(bool isDef, bool isUse, unsigned loopDepth);
typedef Reg2IntervalMap::iterator iterator;
typedef Reg2IntervalMap::const_iterator const_iterator;
const_iterator begin() const { return r2iMap_.begin(); }
const_iterator end() const { return r2iMap_.end(); }
iterator begin() { return r2iMap_.begin(); }
iterator end() { return r2iMap_.end(); }
unsigned getNumIntervals() const { return (unsigned)r2iMap_.size(); }
LiveInterval &getInterval(unsigned reg) {
Reg2IntervalMap::iterator I = r2iMap_.find(reg);
assert(I != r2iMap_.end() && "Interval does not exist for register");
return *I->second;
}
const LiveInterval &getInterval(unsigned reg) const {
Reg2IntervalMap::const_iterator I = r2iMap_.find(reg);
assert(I != r2iMap_.end() && "Interval does not exist for register");
return *I->second;
}
bool hasInterval(unsigned reg) const {
return r2iMap_.count(reg);
}
/// isAllocatable - is the physical register reg allocatable in the current
/// function?
bool isAllocatable(unsigned reg) const {
return allocatableRegs_.test(reg);
}
/// isReserved - is the physical register reg reserved in the current
/// function
bool isReserved(unsigned reg) const {
return reservedRegs_.test(reg);
}
/// getScaledIntervalSize - get the size of an interval in "units,"
/// where every function is composed of one thousand units. This
/// measure scales properly with empty index slots in the function.
double getScaledIntervalSize(LiveInterval& I) {
return (1000.0 * I.getSize()) / indexes_->getIndexesLength();
}
/// getFuncInstructionCount - Return the number of instructions in the
/// current function.
unsigned getFuncInstructionCount() {
return indexes_->getFunctionSize();
}
/// getApproximateInstructionCount - computes an estimate of the number
/// of instructions in a given LiveInterval.
unsigned getApproximateInstructionCount(LiveInterval& I) {
double IntervalPercentage = getScaledIntervalSize(I) / 1000.0;
return (unsigned)(IntervalPercentage * indexes_->getFunctionSize());
}
// Interval creation
LiveInterval &getOrCreateInterval(unsigned reg) {
Reg2IntervalMap::iterator I = r2iMap_.find(reg);
if (I == r2iMap_.end())
I = r2iMap_.insert(std::make_pair(reg, createInterval(reg))).first;
return *I->second;
}
/// dupInterval - Duplicate a live interval. The caller is responsible for
/// managing the allocated memory.
LiveInterval *dupInterval(LiveInterval *li);
/// addLiveRangeToEndOfBlock - Given a register and an instruction,
/// adds a live range from that instruction to the end of its MBB.
LiveRange addLiveRangeToEndOfBlock(unsigned reg,
MachineInstr* startInst);
/// shrinkToUses - After removing some uses of a register, shrink its live
/// range to just the remaining uses. This method does not compute reaching
/// defs for new uses, and it doesn't remove dead defs.
/// Dead PHIDef values are marked as unused.
/// New dead machine instructions are added to the dead vector.
/// Return true if the interval may have been separated into multiple
/// connected components.
bool shrinkToUses(LiveInterval *li,
SmallVectorImpl<MachineInstr*> *dead = 0);
// Interval removal
void removeInterval(unsigned Reg) {
DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.find(Reg);
delete I->second;
r2iMap_.erase(I);
}
SlotIndexes *getSlotIndexes() const {
return indexes_;
}
/// isNotInMIMap - returns true if the specified machine instr has been
/// removed or was never entered in the map.
bool isNotInMIMap(const MachineInstr* Instr) const {
return !indexes_->hasIndex(Instr);
}
/// Returns the base index of the given instruction.
SlotIndex getInstructionIndex(const MachineInstr *instr) const {
return indexes_->getInstructionIndex(instr);
}
/// Returns the instruction associated with the given index.
MachineInstr* getInstructionFromIndex(SlotIndex index) const {
return indexes_->getInstructionFromIndex(index);
}
/// Return the first index in the given basic block.
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
return indexes_->getMBBStartIdx(mbb);
}
/// Return the last index in the given basic block.
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
return indexes_->getMBBEndIdx(mbb);
}
bool isLiveInToMBB(const LiveInterval &li,
const MachineBasicBlock *mbb) const {
return li.liveAt(getMBBStartIdx(mbb));
}
bool isLiveOutOfMBB(const LiveInterval &li,
const MachineBasicBlock *mbb) const {
return li.liveAt(getMBBEndIdx(mbb).getPrevSlot());
}
MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
return indexes_->getMBBFromIndex(index);
}
SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
return indexes_->insertMachineInstrInMaps(MI);
}
void RemoveMachineInstrFromMaps(MachineInstr *MI) {
indexes_->removeMachineInstrFromMaps(MI);
}
void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
indexes_->replaceMachineInstrInMaps(MI, NewMI);
}
bool findLiveInMBBs(SlotIndex Start, SlotIndex End,
SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
return indexes_->findLiveInMBBs(Start, End, MBBs);
}
VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
/// runOnMachineFunction - pass entry point
virtual bool runOnMachineFunction(MachineFunction&);
/// print - Implement the dump method.
virtual void print(raw_ostream &O, const Module* = 0) const;
/// isReMaterializable - Returns true if every definition of MI of every
/// val# of the specified interval is re-materializable. Also returns true
/// by reference if all of the defs are load instructions.
bool isReMaterializable(const LiveInterval &li,
const SmallVectorImpl<LiveInterval*> *SpillIs,
bool &isLoad);
/// intervalIsInOneMBB - If LI is confined to a single basic block, return
/// a pointer to that block. If LI is live in to or out of any block,
/// return NULL.
MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
/// addKillFlags - Add kill flags to any instruction that kills a virtual
/// register.
void addKillFlags();
/// handleMove - call this method to notify LiveIntervals that
/// instruction 'mi' has been moved within a basic block. This will update
/// the live intervals for all operands of mi. Moves between basic blocks
/// are not supported.
void handleMove(MachineInstr* MI);
/// moveIntoBundle - Update intervals for operands of MI so that they
/// begin/end on the SlotIndex for BundleStart.
///
/// Requires MI and BundleStart to have SlotIndexes, and assumes
/// existing liveness is accurate. BundleStart should be the first
/// instruction in the Bundle.
void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart);
// Register mask functions.
//
// Machine instructions may use a register mask operand to indicate that a
// large number of registers are clobbered by the instruction. This is
// typically used for calls.
//
// For compile time performance reasons, these clobbers are not recorded in
// the live intervals for individual physical registers. Instead,
// LiveIntervalAnalysis maintains a sorted list of instructions with
// register mask operands.
/// getRegMaskSlots - Returns a sorted array of slot indices of all
/// instructions with register mask operands.
ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
/// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
/// instructions with register mask operands in the basic block numbered
/// MBBNum.
ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
return getRegMaskSlots().slice(P.first, P.second);
}
/// getRegMaskBits() - Returns an array of register mask pointers
/// corresponding to getRegMaskSlots().
ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
/// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
/// to getRegMaskSlotsInBlock(MBBNum).
ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
return getRegMaskBits().slice(P.first, P.second);
}
/// checkRegMaskInterference - Test if LI is live across any register mask
/// instructions, and compute a bit mask of physical registers that are not
/// clobbered by any of them.
///
/// Returns false if LI doesn't cross any register mask instructions. In
/// that case, the bit vector is not filled in.
bool checkRegMaskInterference(LiveInterval &LI,
BitVector &UsableRegs);
private:
/// computeIntervals - Compute live intervals.
void computeIntervals();
/// handleRegisterDef - update intervals for a register def
/// (calls handlePhysicalRegisterDef and
/// handleVirtualRegisterDef)
void handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
SlotIndex MIIdx,
MachineOperand& MO, unsigned MOIdx);
/// isPartialRedef - Return true if the specified def at the specific index
/// is partially re-defining the specified live interval. A common case of
/// this is a definition of the sub-register.
bool isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
LiveInterval &interval);
/// handleVirtualRegisterDef - update intervals for a virtual
/// register def
void handleVirtualRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
SlotIndex MIIdx, MachineOperand& MO,
unsigned MOIdx,
LiveInterval& interval);
/// handlePhysicalRegisterDef - update intervals for a physical register
/// def.
void handlePhysicalRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
SlotIndex MIIdx, MachineOperand& MO,
LiveInterval &interval);
/// handleLiveInRegister - Create interval for a livein register.
void handleLiveInRegister(MachineBasicBlock* mbb,
SlotIndex MIIdx,
LiveInterval &interval);
/// getReMatImplicitUse - If the remat definition MI has one (for now, we
/// only allow one) virtual register operand, then its uses are implicitly
/// using the register. Returns the virtual register.
unsigned getReMatImplicitUse(const LiveInterval &li,
MachineInstr *MI) const;
/// isValNoAvailableAt - Return true if the val# of the specified interval
/// which reaches the given instruction also reaches the specified use
/// index.
bool isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
SlotIndex UseIdx) const;
/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable. Also returns true
/// by reference if the def is a load.
bool isReMaterializable(const LiveInterval &li, const VNInfo *ValNo,
MachineInstr *MI,
const SmallVectorImpl<LiveInterval*> *SpillIs,
bool &isLoad);
static LiveInterval* createInterval(unsigned Reg);
void printInstrs(raw_ostream &O) const;
void dumpInstrs() const;
class HMEditor;
};
} // End llvm namespace
#endif