llvm-mirror/tools/sancov/sancov.cc
Mike Aizatsky 867dc3d705 [sancov] reformat & 1 clang-tidy warning.
llvm-svn: 263846
2016-03-18 22:40:52 +00:00

1180 lines
37 KiB
C++

//===-- sancov.cc --------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a command-line tool for reading and analyzing sanitizer
// coverage.
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SpecialCaseList.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/raw_ostream.h"
#include <set>
#include <stdio.h>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
// --------- COMMAND LINE FLAGS ---------
enum ActionType {
PrintAction,
PrintCovPointsAction,
CoveredFunctionsAction,
NotCoveredFunctionsAction,
HtmlReportAction
};
cl::opt<ActionType> Action(
cl::desc("Action (required)"), cl::Required,
cl::values(clEnumValN(PrintAction, "print", "Print coverage addresses"),
clEnumValN(PrintCovPointsAction, "print-coverage-pcs",
"Print coverage instrumentation points addresses."),
clEnumValN(CoveredFunctionsAction, "covered-functions",
"Print all covered funcions."),
clEnumValN(NotCoveredFunctionsAction, "not-covered-functions",
"Print all not covered funcions."),
clEnumValN(HtmlReportAction, "html-report",
"Print HTML coverage report."),
clEnumValEnd));
static cl::list<std::string>
ClInputFiles(cl::Positional, cl::OneOrMore,
cl::desc("(<binary file>|<.sancov file>)..."));
static cl::opt<bool> ClDemangle("demangle", cl::init(true),
cl::desc("Print demangled function name."));
static cl::opt<std::string> ClStripPathPrefix(
"strip_path_prefix", cl::init(""),
cl::desc("Strip this prefix from file paths in reports."));
static cl::opt<std::string>
ClBlacklist("blacklist", cl::init(""),
cl::desc("Blacklist file (sanitizer blacklist format)."));
static cl::opt<bool> ClUseDefaultBlacklist(
"use_default_blacklist", cl::init(true), cl::Hidden,
cl::desc("Controls if default blacklist should be used."));
static const char *const DefaultBlacklistStr = "fun:__sanitizer_.*\n"
"src:/usr/include/.*\n"
"src:.*/libc\\+\\+/.*\n";
// --------- FORMAT SPECIFICATION ---------
struct FileHeader {
uint32_t Bitness;
uint32_t Magic;
};
static const uint32_t BinCoverageMagic = 0xC0BFFFFF;
static const uint32_t Bitness32 = 0xFFFFFF32;
static const uint32_t Bitness64 = 0xFFFFFF64;
// --------- ERROR HANDLING ---------
static void Fail(const llvm::Twine &E) {
errs() << "Error: " << E << "\n";
exit(1);
}
static void FailIfError(std::error_code Error) {
if (!Error)
return;
errs() << "Error: " << Error.message() << "(" << Error.value() << ")\n";
exit(1);
}
template <typename T> static void FailIfError(const ErrorOr<T> &E) {
FailIfError(E.getError());
}
static void FailIfNotEmpty(const llvm::Twine &E) {
if (E.str().empty())
return;
Fail(E);
}
template <typename T>
static void FailIfEmpty(const std::unique_ptr<T> &Ptr,
const std::string &Message) {
if (Ptr.get())
return;
Fail(Message);
}
// ---------
// Produces std::map<K, std::vector<E>> grouping input
// elements by FuncTy result.
template <class RangeTy, class FuncTy>
static inline auto group_by(const RangeTy &R, FuncTy F)
-> std::map<typename std::decay<decltype(F(*R.begin()))>::type,
std::vector<typename std::decay<decltype(*R.begin())>::type>> {
std::map<typename std::decay<decltype(F(*R.begin()))>::type,
std::vector<typename std::decay<decltype(*R.begin())>::type>>
Result;
for (const auto &E : R) {
Result[F(E)].push_back(E);
}
return Result;
}
template <typename T>
static void readInts(const char *Start, const char *End,
std::set<uint64_t> *Ints) {
const T *S = reinterpret_cast<const T *>(Start);
const T *E = reinterpret_cast<const T *>(End);
std::copy(S, E, std::inserter(*Ints, Ints->end()));
}
struct FileLoc {
bool operator<(const FileLoc &RHS) const {
return std::tie(FileName, Line) < std::tie(RHS.FileName, RHS.Line);
}
std::string FileName;
uint32_t Line;
};
struct FileFn {
bool operator<(const FileFn &RHS) const {
return std::tie(FileName, FunctionName) <
std::tie(RHS.FileName, RHS.FunctionName);
}
std::string FileName;
std::string FunctionName;
};
struct FnLoc {
bool operator<(const FnLoc &RHS) const {
return std::tie(Loc, FunctionName) < std::tie(RHS.Loc, RHS.FunctionName);
}
FileLoc Loc;
std::string FunctionName;
};
std::string stripPathPrefix(std::string Path) {
if (ClStripPathPrefix.empty())
return Path;
size_t Pos = Path.find(ClStripPathPrefix);
if (Pos == std::string::npos)
return Path;
return Path.substr(Pos + ClStripPathPrefix.size());
}
static std::unique_ptr<symbolize::LLVMSymbolizer> createSymbolizer() {
symbolize::LLVMSymbolizer::Options SymbolizerOptions;
SymbolizerOptions.Demangle = ClDemangle;
SymbolizerOptions.UseSymbolTable = true;
return std::unique_ptr<symbolize::LLVMSymbolizer>(
new symbolize::LLVMSymbolizer(SymbolizerOptions));
}
// A DILineInfo with address.
struct AddrInfo : public DILineInfo {
uint64_t Addr;
AddrInfo(const DILineInfo &DI, uint64_t Addr) : DILineInfo(DI), Addr(Addr) {
FileName = normalizeFilename(FileName);
}
private:
static std::string normalizeFilename(std::string FileName) {
SmallString<256> S(FileName);
sys::path::remove_dots(S, /* remove_dot_dot */ true);
return S.str().str();
}
};
class Blacklists {
public:
Blacklists()
: DefaultBlacklist(createDefaultBlacklist()),
UserBlacklist(createUserBlacklist()) {}
bool isBlacklisted(const DILineInfo &DI) {
if (DefaultBlacklist && DefaultBlacklist->inSection("fun", DI.FunctionName))
return true;
if (DefaultBlacklist && DefaultBlacklist->inSection("src", DI.FileName))
return true;
if (UserBlacklist && UserBlacklist->inSection("fun", DI.FunctionName))
return true;
if (UserBlacklist && UserBlacklist->inSection("src", DI.FileName))
return true;
return false;
}
private:
static std::unique_ptr<SpecialCaseList> createDefaultBlacklist() {
if (!ClUseDefaultBlacklist)
return std::unique_ptr<SpecialCaseList>();
std::unique_ptr<MemoryBuffer> MB =
MemoryBuffer::getMemBuffer(DefaultBlacklistStr);
std::string Error;
auto Blacklist = SpecialCaseList::create(MB.get(), Error);
FailIfNotEmpty(Error);
return Blacklist;
}
static std::unique_ptr<SpecialCaseList> createUserBlacklist() {
if (ClBlacklist.empty())
return std::unique_ptr<SpecialCaseList>();
return SpecialCaseList::createOrDie({{ClBlacklist}});
}
std::unique_ptr<SpecialCaseList> DefaultBlacklist;
std::unique_ptr<SpecialCaseList> UserBlacklist;
};
// Collect all debug info for given addresses.
static std::vector<AddrInfo> getAddrInfo(std::string ObjectFile,
const std::set<uint64_t> &Addrs,
bool InlinedCode) {
std::vector<AddrInfo> Result;
auto Symbolizer(createSymbolizer());
Blacklists B;
for (auto Addr : Addrs) {
auto LineInfo = Symbolizer->symbolizeCode(ObjectFile, Addr);
FailIfError(LineInfo);
if (B.isBlacklisted(*LineInfo))
continue;
Result.push_back(AddrInfo(*LineInfo, Addr));
if (InlinedCode) {
auto InliningInfo = Symbolizer->symbolizeInlinedCode(ObjectFile, Addr);
FailIfError(InliningInfo);
for (uint32_t I = 0; I < InliningInfo->getNumberOfFrames(); ++I) {
auto FrameInfo = InliningInfo->getFrame(I);
if (B.isBlacklisted(FrameInfo))
continue;
Result.push_back(AddrInfo(FrameInfo, Addr));
}
}
}
return Result;
}
// Locate __sanitizer_cov* function addresses that are used for coverage
// reporting.
static std::set<uint64_t>
findSanitizerCovFunctions(const object::ObjectFile &O) {
std::set<uint64_t> Result;
for (const object::SymbolRef &Symbol : O.symbols()) {
ErrorOr<uint64_t> AddressOrErr = Symbol.getAddress();
FailIfError(AddressOrErr);
ErrorOr<StringRef> NameOrErr = Symbol.getName();
FailIfError(NameOrErr);
StringRef Name = NameOrErr.get();
if (Name == "__sanitizer_cov" || Name == "__sanitizer_cov_with_check" ||
Name == "__sanitizer_cov_trace_func_enter") {
if (!(Symbol.getFlags() & object::BasicSymbolRef::SF_Undefined))
Result.insert(AddressOrErr.get());
}
}
return Result;
}
// Locate addresses of all coverage points in a file. Coverage point
// is defined as the 'address of instruction following __sanitizer_cov
// call - 1'.
static void getObjectCoveragePoints(const object::ObjectFile &O,
std::set<uint64_t> *Addrs) {
Triple TheTriple("unknown-unknown-unknown");
TheTriple.setArch(Triple::ArchType(O.getArch()));
auto TripleName = TheTriple.getTriple();
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
FailIfNotEmpty(Error);
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, "", ""));
FailIfEmpty(STI, "no subtarget info for target " + TripleName);
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
FailIfEmpty(MRI, "no register info for target " + TripleName);
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName));
FailIfEmpty(AsmInfo, "no asm info for target " + TripleName);
std::unique_ptr<const MCObjectFileInfo> MOFI(new MCObjectFileInfo);
MCContext Ctx(AsmInfo.get(), MRI.get(), MOFI.get());
std::unique_ptr<MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, Ctx));
FailIfEmpty(DisAsm, "no disassembler info for target " + TripleName);
std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
FailIfEmpty(MII, "no instruction info for target " + TripleName);
std::unique_ptr<const MCInstrAnalysis> MIA(
TheTarget->createMCInstrAnalysis(MII.get()));
FailIfEmpty(MIA, "no instruction analysis info for target " + TripleName);
auto SanCovAddrs = findSanitizerCovFunctions(O);
if (SanCovAddrs.empty())
Fail("__sanitizer_cov* functions not found");
for (object::SectionRef Section : O.sections()) {
if (Section.isVirtual() || !Section.isText()) // llvm-objdump does the same.
continue;
uint64_t SectionAddr = Section.getAddress();
uint64_t SectSize = Section.getSize();
if (!SectSize)
continue;
StringRef BytesStr;
FailIfError(Section.getContents(BytesStr));
ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
BytesStr.size());
for (uint64_t Index = 0, Size = 0; Index < Section.getSize();
Index += Size) {
MCInst Inst;
if (!DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
SectionAddr + Index, nulls(), nulls())) {
if (Size == 0)
Size = 1;
continue;
}
uint64_t Addr = Index + SectionAddr;
// Sanitizer coverage uses the address of the next instruction - 1.
uint64_t CovPoint = Addr + Size - 1;
uint64_t Target;
if (MIA->isCall(Inst) &&
MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target) &&
SanCovAddrs.find(Target) != SanCovAddrs.end())
Addrs->insert(CovPoint);
}
}
}
static void
visitObjectFiles(const object::Archive &A,
std::function<void(const object::ObjectFile &)> Fn) {
for (auto &ErrorOrChild : A.children()) {
FailIfError(ErrorOrChild);
const object::Archive::Child &C = *ErrorOrChild;
ErrorOr<std::unique_ptr<object::Binary>> ChildOrErr = C.getAsBinary();
FailIfError(ChildOrErr);
if (auto *O = dyn_cast<object::ObjectFile>(&*ChildOrErr.get()))
Fn(*O);
else
FailIfError(object::object_error::invalid_file_type);
}
}
static void
visitObjectFiles(std::string FileName,
std::function<void(const object::ObjectFile &)> Fn) {
ErrorOr<object::OwningBinary<object::Binary>> BinaryOrErr =
object::createBinary(FileName);
FailIfError(BinaryOrErr);
object::Binary &Binary = *BinaryOrErr.get().getBinary();
if (object::Archive *A = dyn_cast<object::Archive>(&Binary))
visitObjectFiles(*A, Fn);
else if (object::ObjectFile *O = dyn_cast<object::ObjectFile>(&Binary))
Fn(*O);
else
FailIfError(object::object_error::invalid_file_type);
}
std::set<uint64_t> findSanitizerCovFunctions(std::string FileName) {
std::set<uint64_t> Result;
visitObjectFiles(FileName, [&](const object::ObjectFile &O) {
auto Addrs = findSanitizerCovFunctions(O);
Result.insert(Addrs.begin(), Addrs.end());
});
return Result;
}
// Locate addresses of all coverage points in a file. Coverage point
// is defined as the 'address of instruction following __sanitizer_cov
// call - 1'.
std::set<uint64_t> getCoveragePoints(std::string FileName) {
std::set<uint64_t> Result;
visitObjectFiles(FileName, [&](const object::ObjectFile &O) {
getObjectCoveragePoints(O, &Result);
});
return Result;
}
static void printCovPoints(std::string ObjFile, raw_ostream &OS) {
for (uint64_t Addr : getCoveragePoints(ObjFile)) {
OS << "0x";
OS.write_hex(Addr);
OS << "\n";
}
}
static std::string escapeHtml(const std::string &S) {
std::string Result;
Result.reserve(S.size());
for (char Ch : S) {
switch (Ch) {
case '&':
Result.append("&amp;");
break;
case '\'':
Result.append("&apos;");
break;
case '"':
Result.append("&quot;");
break;
case '<':
Result.append("&lt;");
break;
case '>':
Result.append("&gt;");
break;
default:
Result.push_back(Ch);
break;
}
}
return Result;
}
static std::string anchorName(std::string Anchor) {
llvm::MD5 Hasher;
llvm::MD5::MD5Result Hash;
Hasher.update(Anchor);
Hasher.final(Hash);
SmallString<32> HexString;
llvm::MD5::stringifyResult(Hash, HexString);
return HexString.str().str();
}
static ErrorOr<bool> isCoverageFile(std::string FileName) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
MemoryBuffer::getFile(FileName);
if (!BufOrErr) {
errs() << "Warning: " << BufOrErr.getError().message() << "("
<< BufOrErr.getError().value()
<< "), filename: " << llvm::sys::path::filename(FileName) << "\n";
return BufOrErr.getError();
}
std::unique_ptr<MemoryBuffer> Buf = std::move(BufOrErr.get());
if (Buf->getBufferSize() < 8) {
return false;
}
const FileHeader *Header =
reinterpret_cast<const FileHeader *>(Buf->getBufferStart());
return Header->Magic == BinCoverageMagic;
}
class CoverageData {
public:
// Read single file coverage data.
static ErrorOr<std::unique_ptr<CoverageData>> read(std::string FileName) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
MemoryBuffer::getFile(FileName);
if (!BufOrErr)
return BufOrErr.getError();
std::unique_ptr<MemoryBuffer> Buf = std::move(BufOrErr.get());
if (Buf->getBufferSize() < 8) {
errs() << "File too small (<8): " << Buf->getBufferSize();
return make_error_code(errc::illegal_byte_sequence);
}
const FileHeader *Header =
reinterpret_cast<const FileHeader *>(Buf->getBufferStart());
if (Header->Magic != BinCoverageMagic) {
errs() << "Wrong magic: " << Header->Magic;
return make_error_code(errc::illegal_byte_sequence);
}
auto Addrs = llvm::make_unique<std::set<uint64_t>>();
switch (Header->Bitness) {
case Bitness64:
readInts<uint64_t>(Buf->getBufferStart() + 8, Buf->getBufferEnd(),
Addrs.get());
break;
case Bitness32:
readInts<uint32_t>(Buf->getBufferStart() + 8, Buf->getBufferEnd(),
Addrs.get());
break;
default:
errs() << "Unsupported bitness: " << Header->Bitness;
return make_error_code(errc::illegal_byte_sequence);
}
return std::unique_ptr<CoverageData>(new CoverageData(std::move(Addrs)));
}
// Merge multiple coverage data together.
static std::unique_ptr<CoverageData>
merge(const std::vector<std::unique_ptr<CoverageData>> &Covs) {
auto Addrs = llvm::make_unique<std::set<uint64_t>>();
for (const auto &Cov : Covs)
Addrs->insert(Cov->Addrs->begin(), Cov->Addrs->end());
return std::unique_ptr<CoverageData>(new CoverageData(std::move(Addrs)));
}
// Read list of files and merges their coverage info.
static ErrorOr<std::unique_ptr<CoverageData>>
readAndMerge(const std::vector<std::string> &FileNames) {
std::vector<std::unique_ptr<CoverageData>> Covs;
for (const auto &FileName : FileNames) {
auto Cov = read(FileName);
if (!Cov)
return Cov.getError();
Covs.push_back(std::move(Cov.get()));
}
return merge(Covs);
}
// Print coverage addresses.
void printAddrs(raw_ostream &OS) {
for (auto Addr : *Addrs) {
OS << "0x";
OS.write_hex(Addr);
OS << "\n";
}
}
protected:
explicit CoverageData(std::unique_ptr<std::set<uint64_t>> Addrs)
: Addrs(std::move(Addrs)) {}
friend class CoverageDataWithObjectFile;
std::unique_ptr<std::set<uint64_t>> Addrs;
};
// Coverage data translated into source code line-level information.
// Fetches debug info in constructor and calculates various information per
// request.
class SourceCoverageData {
public:
enum LineStatus {
// coverage information for the line is not available.
// default value in maps.
UNKNOWN = 0,
// the line is fully covered.
COVERED = 1,
// the line is fully uncovered.
NOT_COVERED = 2,
// some points in the line a covered, some are not.
MIXED = 3
};
SourceCoverageData(std::string ObjectFile, const std::set<uint64_t> &Addrs) {
std::set<uint64_t> AllCovPoints = getCoveragePoints(ObjectFile);
if (!std::includes(AllCovPoints.begin(), AllCovPoints.end(), Addrs.begin(),
Addrs.end())) {
Fail("Coverage points in binary and .sancov file do not match.");
}
AllAddrInfo = getAddrInfo(ObjectFile, AllCovPoints, true);
CovAddrInfo = getAddrInfo(ObjectFile, Addrs, true);
}
// Compute number of coverage points hit/total in a file.
// file_name -> <coverage, all_coverage>
std::map<std::string, std::pair<size_t, size_t>> computeFileCoverage() {
std::map<std::string, std::pair<size_t, size_t>> FileCoverage;
auto AllCovPointsByFile =
group_by(AllAddrInfo, [](const AddrInfo &AI) { return AI.FileName; });
auto CovPointsByFile =
group_by(CovAddrInfo, [](const AddrInfo &AI) { return AI.FileName; });
for (const auto &P : AllCovPointsByFile) {
const std::string &FileName = P.first;
FileCoverage[FileName] =
std::make_pair(CovPointsByFile[FileName].size(),
AllCovPointsByFile[FileName].size());
}
return FileCoverage;
}
// line_number -> line_status.
typedef std::map<int, LineStatus> LineStatusMap;
// file_name -> LineStatusMap
typedef std::map<std::string, LineStatusMap> FileLineStatusMap;
// fills in the {file_name -> {line_no -> status}} map.
FileLineStatusMap computeLineStatusMap() {
FileLineStatusMap StatusMap;
auto AllLocs = group_by(AllAddrInfo, [](const AddrInfo &AI) {
return FileLoc{AI.FileName, AI.Line};
});
auto CovLocs = group_by(CovAddrInfo, [](const AddrInfo &AI) {
return FileLoc{AI.FileName, AI.Line};
});
for (const auto &P : AllLocs) {
const FileLoc &Loc = P.first;
auto I = CovLocs.find(Loc);
if (I == CovLocs.end()) {
StatusMap[Loc.FileName][Loc.Line] = NOT_COVERED;
} else {
StatusMap[Loc.FileName][Loc.Line] =
(I->second.size() == P.second.size()) ? COVERED : MIXED;
}
}
return StatusMap;
}
std::set<FileFn> computeAllFunctions() const {
std::set<FileFn> Fns;
for (const auto &AI : AllAddrInfo) {
Fns.insert(FileFn{AI.FileName, AI.FunctionName});
}
return Fns;
}
std::set<FileFn> computeCoveredFunctions() const {
std::set<FileFn> Fns;
auto CovFns = group_by(CovAddrInfo, [](const AddrInfo &AI) {
return FileFn{AI.FileName, AI.FunctionName};
});
for (const auto &P : CovFns) {
Fns.insert(P.first);
}
return Fns;
}
std::set<FileFn> computeNotCoveredFunctions() const {
std::set<FileFn> Fns;
auto AllFns = group_by(AllAddrInfo, [](const AddrInfo &AI) {
return FileFn{AI.FileName, AI.FunctionName};
});
auto CovFns = group_by(CovAddrInfo, [](const AddrInfo &AI) {
return FileFn{AI.FileName, AI.FunctionName};
});
for (const auto &P : AllFns) {
if (CovFns.find(P.first) == CovFns.end()) {
Fns.insert(P.first);
}
}
return Fns;
}
// Compute % coverage for each function.
std::map<FileFn, int> computeFunctionsCoverage() const {
std::map<FileFn, int> FnCoverage;
auto AllFns = group_by(AllAddrInfo, [](const AddrInfo &AI) {
return FileFn{AI.FileName, AI.FunctionName};
});
auto CovFns = group_by(CovAddrInfo, [](const AddrInfo &AI) {
return FileFn{AI.FileName, AI.FunctionName};
});
for (const auto &P : AllFns) {
FileFn F = P.first;
FnCoverage[F] = CovFns[F].size() * 100 / P.second.size();
}
return FnCoverage;
}
typedef std::map<FileLoc, std::set<std::string>> FunctionLocs;
// finds first line number in a file for each function.
FunctionLocs resolveFunctions(const std::set<FileFn> &Fns) const {
std::vector<AddrInfo> FnAddrs;
for (const auto &AI : AllAddrInfo) {
if (Fns.find(FileFn{AI.FileName, AI.FunctionName}) != Fns.end())
FnAddrs.push_back(AI);
}
auto GroupedAddrs = group_by(FnAddrs, [](const AddrInfo &AI) {
return FnLoc{FileLoc{AI.FileName, AI.Line}, AI.FunctionName};
});
FunctionLocs Result;
std::string LastFileName;
std::set<std::string> ProcessedFunctions;
for (const auto &P : GroupedAddrs) {
const FnLoc &Loc = P.first;
std::string FileName = Loc.Loc.FileName;
std::string FunctionName = Loc.FunctionName;
if (LastFileName != FileName)
ProcessedFunctions.clear();
LastFileName = FileName;
if (!ProcessedFunctions.insert(FunctionName).second)
continue;
auto FLoc = FileLoc{FileName, Loc.Loc.Line};
Result[FLoc].insert(FunctionName);
}
return Result;
}
std::set<std::string> files() const {
std::set<std::string> Files;
for (const auto &AI : AllAddrInfo) {
Files.insert(AI.FileName);
}
return Files;
}
private:
std::vector<AddrInfo> AllAddrInfo;
std::vector<AddrInfo> CovAddrInfo;
};
static void printFunctionLocs(const SourceCoverageData::FunctionLocs &FnLocs,
raw_ostream &OS) {
for (const auto &Fns : FnLocs) {
for (const auto &Fn : Fns.second) {
OS << stripPathPrefix(Fns.first.FileName) << ":" << Fns.first.Line << " "
<< Fn << "\n";
}
}
}
// Holder for coverage data + filename of corresponding object file.
class CoverageDataWithObjectFile : public CoverageData {
public:
static ErrorOr<std::unique_ptr<CoverageDataWithObjectFile>>
readAndMerge(std::string ObjectFile,
const std::vector<std::string> &FileNames) {
auto MergedDataOrError = CoverageData::readAndMerge(FileNames);
if (!MergedDataOrError)
return MergedDataOrError.getError();
return std::unique_ptr<CoverageDataWithObjectFile>(
new CoverageDataWithObjectFile(ObjectFile,
std::move(MergedDataOrError.get())));
}
std::string object_file() const { return ObjectFile; }
// Print list of covered functions.
// Line format: <file_name>:<line> <function_name>
void printCoveredFunctions(raw_ostream &OS) const {
SourceCoverageData SCovData(ObjectFile, *Addrs);
auto CoveredFns = SCovData.computeCoveredFunctions();
printFunctionLocs(SCovData.resolveFunctions(CoveredFns), OS);
}
// Print list of not covered functions.
// Line format: <file_name>:<line> <function_name>
void printNotCoveredFunctions(raw_ostream &OS) const {
SourceCoverageData SCovData(ObjectFile, *Addrs);
auto NotCoveredFns = SCovData.computeNotCoveredFunctions();
printFunctionLocs(SCovData.resolveFunctions(NotCoveredFns), OS);
}
void printReport(raw_ostream &OS) const {
SourceCoverageData SCovData(ObjectFile, *Addrs);
auto LineStatusMap = SCovData.computeLineStatusMap();
std::set<FileFn> AllFns = SCovData.computeAllFunctions();
// file_loc -> set[function_name]
auto AllFnsByLoc = SCovData.resolveFunctions(AllFns);
auto FileCoverage = SCovData.computeFileCoverage();
auto FnCoverage = SCovData.computeFunctionsCoverage();
auto FnCoverageByFile =
group_by(FnCoverage, [](const std::pair<FileFn, int> &FileFn) {
return FileFn.first.FileName;
});
// TOC
size_t NotCoveredFilesCount = 0;
std::set<std::string> Files = SCovData.files();
// Covered Files.
OS << "<details open><summary>Touched Files</summary>\n";
OS << "<table>\n";
OS << "<tr><th>File</th><th>Coverage %</th>";
OS << "<th>Hit (Total) Fns</th></tr>\n";
for (auto FileName : Files) {
std::pair<size_t, size_t> FC = FileCoverage[FileName];
if (FC.first == 0) {
NotCoveredFilesCount++;
continue;
}
size_t CovPct = FC.second == 0 ? 100 : 100 * FC.first / FC.second;
OS << "<tr><td><a href=\"#" << anchorName(FileName) << "\">"
<< stripPathPrefix(FileName) << "</a></td>"
<< "<td>" << CovPct << "%</td>"
<< "<td>" << FC.first << " (" << FC.second << ")"
<< "</tr>\n";
}
OS << "</table>\n";
OS << "</details>\n";
// Not covered files.
if (NotCoveredFilesCount) {
OS << "<details><summary>Not Touched Files</summary>\n";
OS << "<table>\n";
for (auto FileName : Files) {
std::pair<size_t, size_t> FC = FileCoverage[FileName];
if (FC.first == 0)
OS << "<tr><td>" << stripPathPrefix(FileName) << "</td>\n";
}
OS << "</table>\n";
OS << "</details>\n";
} else {
OS << "<p>Congratulations! All source files are touched.</p>\n";
}
// Source
for (auto FileName : Files) {
std::pair<size_t, size_t> FC = FileCoverage[FileName];
if (FC.first == 0)
continue;
OS << "<a name=\"" << anchorName(FileName) << "\"></a>\n";
OS << "<h2>" << stripPathPrefix(FileName) << "</h2>\n";
OS << "<details open><summary>Function Coverage</summary>";
OS << "<div class='fnlist'>\n";
auto &FileFnCoverage = FnCoverageByFile[FileName];
for (const auto &P : FileFnCoverage) {
std::string FunctionName = P.first.FunctionName;
OS << "<div class='fn' style='order: " << P.second << "'>";
OS << "<span class='pct'>" << P.second << "%</span>&nbsp;";
OS << "<span class='name'><a href=\"#"
<< anchorName(FileName + "::" + FunctionName) << "\">";
OS << escapeHtml(FunctionName) << "</a></span>";
OS << "</div>\n";
}
OS << "</div></details>\n";
ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
MemoryBuffer::getFile(FileName);
if (!BufOrErr) {
OS << "Error reading file: " << FileName << " : "
<< BufOrErr.getError().message() << "("
<< BufOrErr.getError().value() << ")\n";
continue;
}
OS << "<pre>\n";
const auto &LineStatuses = LineStatusMap[FileName];
for (line_iterator I = line_iterator(*BufOrErr.get(), false);
!I.is_at_eof(); ++I) {
uint32_t Line = I.line_number();
{ // generate anchors (if any);
FileLoc Loc = FileLoc{FileName, Line};
auto It = AllFnsByLoc.find(Loc);
if (It != AllFnsByLoc.end()) {
for (std::string Fn : It->second) {
OS << "<a name=\"" << anchorName(FileName + "::" + Fn)
<< "\"></a>";
};
}
}
OS << "<span ";
auto LIT = LineStatuses.find(I.line_number());
auto Status = (LIT != LineStatuses.end()) ? LIT->second
: SourceCoverageData::UNKNOWN;
switch (Status) {
case SourceCoverageData::UNKNOWN:
OS << "class=unknown";
break;
case SourceCoverageData::COVERED:
OS << "class=covered";
break;
case SourceCoverageData::NOT_COVERED:
OS << "class=notcovered";
break;
case SourceCoverageData::MIXED:
OS << "class=mixed";
break;
}
OS << ">";
OS << escapeHtml(*I) << "</span>\n";
}
OS << "</pre>\n";
}
}
private:
CoverageDataWithObjectFile(std::string ObjectFile,
std::unique_ptr<CoverageData> Coverage)
: CoverageData(std::move(Coverage->Addrs)),
ObjectFile(std::move(ObjectFile)) {}
const std::string ObjectFile;
};
// Multiple coverage files data organized by object file.
class CoverageDataSet {
public:
static ErrorOr<std::unique_ptr<CoverageDataSet>>
readCmdArguments(std::vector<std::string> FileNames) {
// Short name => file name.
std::map<std::string, std::string> ObjFiles;
std::string FirstObjFile;
std::set<std::string> CovFiles;
// Partition input values into coverage/object files.
for (const auto &FileName : FileNames) {
auto ErrorOrIsCoverage = isCoverageFile(FileName);
if (!ErrorOrIsCoverage)
continue;
if (ErrorOrIsCoverage.get()) {
CovFiles.insert(FileName);
} else {
auto ShortFileName = llvm::sys::path::filename(FileName);
if (ObjFiles.find(ShortFileName) != ObjFiles.end()) {
Fail("Duplicate binary file with a short name: " + ShortFileName);
}
ObjFiles[ShortFileName] = FileName;
if (FirstObjFile.empty())
FirstObjFile = FileName;
}
}
Regex SancovRegex("(.*)\\.[0-9]+\\.sancov");
SmallVector<StringRef, 2> Components;
// Object file => list of corresponding coverage file names.
auto CoverageByObjFile = group_by(CovFiles, [&](std::string FileName) {
auto ShortFileName = llvm::sys::path::filename(FileName);
auto Ok = SancovRegex.match(ShortFileName, &Components);
if (!Ok) {
Fail("Can't match coverage file name against "
"<module_name>.<pid>.sancov pattern: " +
FileName);
}
auto Iter = ObjFiles.find(Components[1]);
if (Iter == ObjFiles.end()) {
Fail("Object file for coverage not found: " + FileName);
}
return Iter->second;
});
// Read coverage.
std::vector<std::unique_ptr<CoverageDataWithObjectFile>> MergedCoverage;
for (const auto &Pair : CoverageByObjFile) {
if (findSanitizerCovFunctions(Pair.first).empty()) {
for (auto FileName : Pair.second) {
CovFiles.erase(FileName);
}
errs()
<< "Ignoring " << Pair.first
<< " and its coverage because __sanitizer_cov* functions were not "
"found.\n";
continue;
}
auto DataOrError =
CoverageDataWithObjectFile::readAndMerge(Pair.first, Pair.second);
FailIfError(DataOrError);
MergedCoverage.push_back(std::move(DataOrError.get()));
}
return std::unique_ptr<CoverageDataSet>(
new CoverageDataSet(FirstObjFile, &MergedCoverage, CovFiles));
}
void printCoveredFunctions(raw_ostream &OS) const {
for (const auto &Cov : Coverage) {
Cov->printCoveredFunctions(OS);
}
}
void printNotCoveredFunctions(raw_ostream &OS) const {
for (const auto &Cov : Coverage) {
Cov->printNotCoveredFunctions(OS);
}
}
void printReport(raw_ostream &OS) const {
auto Title = std::string(llvm::sys::path::filename(MainObjFile) +
" Coverage Report");
OS << "<html>\n";
OS << "<head>\n";
// Stylesheet
OS << "<style>\n";
OS << ".covered { background: #7F7; }\n";
OS << ".notcovered { background: #F77; }\n";
OS << ".mixed { background: #FF7; }\n";
OS << "summary { font-weight: bold; }\n";
OS << "details > summary + * { margin-left: 1em; }\n";
OS << ".fnlist { display: flex; flex-flow: column nowrap; }\n";
OS << ".fn { display: flex; flex-flow: row nowrap; }\n";
OS << ".pct { width: 3em; text-align: right; margin-right: 1em; }\n";
OS << ".name { flex: 2; }\n";
OS << "</style>\n";
OS << "<title>" << Title << "</title>\n";
OS << "</head>\n";
OS << "<body>\n";
// Title
OS << "<h1>" << Title << "</h1>\n";
// Modules TOC.
if (Coverage.size() > 1) {
for (const auto &CovData : Coverage) {
OS << "<li><a href=\"#module_" << anchorName(CovData->object_file())
<< "\">" << llvm::sys::path::filename(CovData->object_file())
<< "</a></li>\n";
}
}
for (const auto &CovData : Coverage) {
if (Coverage.size() > 1) {
OS << "<h2>" << llvm::sys::path::filename(CovData->object_file())
<< "</h2>\n";
}
OS << "<a name=\"module_" << anchorName(CovData->object_file())
<< "\"></a>\n";
CovData->printReport(OS);
}
// About
OS << "<details><summary>About</summary>\n";
OS << "Coverage files:<ul>";
for (auto InputFile : CoverageFiles) {
llvm::sys::fs::file_status Status;
llvm::sys::fs::status(InputFile, Status);
OS << "<li>" << stripPathPrefix(InputFile) << " ("
<< Status.getLastModificationTime().str() << ")</li>\n";
}
OS << "</ul></details>\n";
OS << "</body>\n";
OS << "</html>\n";
}
bool empty() const { return Coverage.empty(); }
private:
explicit CoverageDataSet(
const std::string &MainObjFile,
std::vector<std::unique_ptr<CoverageDataWithObjectFile>> *Data,
const std::set<std::string> &CoverageFiles)
: MainObjFile(MainObjFile), CoverageFiles(CoverageFiles) {
Data->swap(this->Coverage);
}
const std::string MainObjFile;
std::vector<std::unique_ptr<CoverageDataWithObjectFile>> Coverage;
const std::set<std::string> CoverageFiles;
};
} // namespace
int main(int argc, char **argv) {
// Print stack trace if we signal out.
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllDisassemblers();
cl::ParseCommandLineOptions(argc, argv, "Sanitizer Coverage Processing Tool");
// -print doesn't need object files.
if (Action == PrintAction) {
auto CovData = CoverageData::readAndMerge(ClInputFiles);
FailIfError(CovData);
CovData.get()->printAddrs(outs());
return 0;
} else if (Action == PrintCovPointsAction) {
// -print-coverage-points doesn't need coverage files.
for (std::string ObjFile : ClInputFiles) {
printCovPoints(ObjFile, outs());
}
return 0;
}
auto CovDataSet = CoverageDataSet::readCmdArguments(ClInputFiles);
FailIfError(CovDataSet);
if (CovDataSet.get()->empty()) {
Fail("No coverage files specified.");
}
switch (Action) {
case CoveredFunctionsAction: {
CovDataSet.get()->printCoveredFunctions(outs());
return 0;
}
case NotCoveredFunctionsAction: {
CovDataSet.get()->printNotCoveredFunctions(outs());
return 0;
}
case HtmlReportAction: {
CovDataSet.get()->printReport(outs());
return 0;
}
case PrintAction:
case PrintCovPointsAction:
llvm_unreachable("unsupported action");
}
}