llvm-mirror/include/llvm/Instructions.h
Misha Brukman d5e8033d4a Convert tabs to spaces
llvm-svn: 20634
2005-03-16 03:46:55 +00:00

1303 lines
48 KiB
C++

//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file exposes the class definitions of all of the subclasses of the
// Instruction class. This is meant to be an easy way to get access to all
// instruction subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_INSTRUCTIONS_H
#define LLVM_INSTRUCTIONS_H
#include "llvm/Instruction.h"
#include "llvm/InstrTypes.h"
namespace llvm {
class BasicBlock;
class ConstantInt;
class PointerType;
//===----------------------------------------------------------------------===//
// AllocationInst Class
//===----------------------------------------------------------------------===//
/// AllocationInst - This class is the common base class of MallocInst and
/// AllocaInst.
///
class AllocationInst : public UnaryInstruction {
protected:
AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
const std::string &Name = "", Instruction *InsertBefore = 0);
AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
const std::string &Name, BasicBlock *InsertAtEnd);
public:
/// isArrayAllocation - Return true if there is an allocation size parameter
/// to the allocation instruction that is not 1.
///
bool isArrayAllocation() const;
/// getArraySize - Get the number of element allocated, for a simple
/// allocation of a single element, this will return a constant 1 value.
///
inline const Value *getArraySize() const { return getOperand(0); }
inline Value *getArraySize() { return getOperand(0); }
/// getType - Overload to return most specific pointer type
///
inline const PointerType *getType() const {
return reinterpret_cast<const PointerType*>(Instruction::getType());
}
/// getAllocatedType - Return the type that is being allocated by the
/// instruction.
///
const Type *getAllocatedType() const;
virtual Instruction *clone() const = 0;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const AllocationInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Alloca ||
I->getOpcode() == Instruction::Malloc;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// MallocInst Class
//===----------------------------------------------------------------------===//
/// MallocInst - an instruction to allocated memory on the heap
///
class MallocInst : public AllocationInst {
MallocInst(const MallocInst &MI);
public:
explicit MallocInst(const Type *Ty, Value *ArraySize = 0,
const std::string &Name = "",
Instruction *InsertBefore = 0)
: AllocationInst(Ty, ArraySize, Malloc, Name, InsertBefore) {}
MallocInst(const Type *Ty, Value *ArraySize, const std::string &Name,
BasicBlock *InsertAtEnd)
: AllocationInst(Ty, ArraySize, Malloc, Name, InsertAtEnd) {}
virtual MallocInst *clone() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const MallocInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Malloc);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// AllocaInst Class
//===----------------------------------------------------------------------===//
/// AllocaInst - an instruction to allocate memory on the stack
///
class AllocaInst : public AllocationInst {
AllocaInst(const AllocaInst &);
public:
explicit AllocaInst(const Type *Ty, Value *ArraySize = 0,
const std::string &Name = "",
Instruction *InsertBefore = 0)
: AllocationInst(Ty, ArraySize, Alloca, Name, InsertBefore) {}
AllocaInst(const Type *Ty, Value *ArraySize, const std::string &Name,
BasicBlock *InsertAtEnd)
: AllocationInst(Ty, ArraySize, Alloca, Name, InsertAtEnd) {}
virtual AllocaInst *clone() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const AllocaInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Alloca);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FreeInst Class
//===----------------------------------------------------------------------===//
/// FreeInst - an instruction to deallocate memory
///
class FreeInst : public UnaryInstruction {
void AssertOK();
public:
explicit FreeInst(Value *Ptr, Instruction *InsertBefore = 0);
FreeInst(Value *Ptr, BasicBlock *InsertAfter);
virtual FreeInst *clone() const;
virtual bool mayWriteToMemory() const { return true; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const FreeInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Free);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// LoadInst Class
//===----------------------------------------------------------------------===//
/// LoadInst - an instruction for reading from memory. This uses the
/// SubclassData field in Value to store whether or not the load is volatile.
///
class LoadInst : public UnaryInstruction {
LoadInst(const LoadInst &LI)
: UnaryInstruction(LI.getType(), Load, LI.getOperand(0)) {
setVolatile(LI.isVolatile());
#ifndef NDEBUG
AssertOK();
#endif
}
void AssertOK();
public:
LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBefore);
LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAtEnd);
LoadInst(Value *Ptr, const std::string &Name = "", bool isVolatile = false,
Instruction *InsertBefore = 0);
LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a load from a volatile memory
/// location.
///
bool isVolatile() const { return SubclassData; }
/// setVolatile - Specify whether this is a volatile load or not.
///
void setVolatile(bool V) { SubclassData = V; }
virtual LoadInst *clone() const;
virtual bool mayWriteToMemory() const { return isVolatile(); }
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const LoadInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Load;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// StoreInst Class
//===----------------------------------------------------------------------===//
/// StoreInst - an instruction for storing to memory
///
class StoreInst : public Instruction {
Use Ops[2];
StoreInst(const StoreInst &SI) : Instruction(SI.getType(), Store, Ops, 2) {
Ops[0].init(SI.Ops[0], this);
Ops[1].init(SI.Ops[1], this);
setVolatile(SI.isVolatile());
#ifndef NDEBUG
AssertOK();
#endif
}
void AssertOK();
public:
StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
Instruction *InsertBefore = 0);
StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a load from a volatile memory
/// location.
///
bool isVolatile() const { return SubclassData; }
/// setVolatile - Specify whether this is a volatile load or not.
///
void setVolatile(bool V) { SubclassData = V; }
/// Transparently provide more efficient getOperand methods.
Value *getOperand(unsigned i) const {
assert(i < 2 && "getOperand() out of range!");
return Ops[i];
}
void setOperand(unsigned i, Value *Val) {
assert(i < 2 && "setOperand() out of range!");
Ops[i] = Val;
}
unsigned getNumOperands() const { return 2; }
virtual StoreInst *clone() const;
virtual bool mayWriteToMemory() const { return true; }
Value *getPointerOperand() { return getOperand(1); }
const Value *getPointerOperand() const { return getOperand(1); }
static unsigned getPointerOperandIndex() { return 1U; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const StoreInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Store;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// GetElementPtrInst Class
//===----------------------------------------------------------------------===//
/// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
/// access elements of arrays and structs
///
class GetElementPtrInst : public Instruction {
GetElementPtrInst(const GetElementPtrInst &GEPI)
: Instruction(reinterpret_cast<const Type*>(GEPI.getType()), GetElementPtr,
0, GEPI.getNumOperands()) {
Use *OL = OperandList = new Use[NumOperands];
Use *GEPIOL = GEPI.OperandList;
for (unsigned i = 0, E = NumOperands; i != E; ++i)
OL[i].init(GEPIOL[i], this);
}
void init(Value *Ptr, const std::vector<Value*> &Idx);
void init(Value *Ptr, Value *Idx0, Value *Idx1);
public:
/// Constructors - Create a getelementptr instruction with a base pointer an
/// list of indices. The first ctor can optionally insert before an existing
/// instruction, the second appends the new instruction to the specified
/// BasicBlock.
GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name = "", Instruction *InsertBefore =0);
GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name, BasicBlock *InsertAtEnd);
/// Constructors - These two constructors are convenience methods because two
/// index getelementptr instructions are so common.
GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
const std::string &Name = "", Instruction *InsertBefore =0);
GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
const std::string &Name, BasicBlock *InsertAtEnd);
~GetElementPtrInst();
virtual GetElementPtrInst *clone() const;
// getType - Overload to return most specific pointer type...
inline const PointerType *getType() const {
return reinterpret_cast<const PointerType*>(Instruction::getType());
}
/// getIndexedType - Returns the type of the element that would be loaded with
/// a load instruction with the specified parameters.
///
/// A null type is returned if the indices are invalid for the specified
/// pointer type.
///
static const Type *getIndexedType(const Type *Ptr,
const std::vector<Value*> &Indices,
bool AllowStructLeaf = false);
static const Type *getIndexedType(const Type *Ptr, Value *Idx0, Value *Idx1,
bool AllowStructLeaf = false);
inline op_iterator idx_begin() { return op_begin()+1; }
inline const_op_iterator idx_begin() const { return op_begin()+1; }
inline op_iterator idx_end() { return op_end(); }
inline const_op_iterator idx_end() const { return op_end(); }
Value *getPointerOperand() {
return getOperand(0);
}
const Value *getPointerOperand() const {
return getOperand(0);
}
static unsigned getPointerOperandIndex() {
return 0U; // get index for modifying correct operand
}
inline unsigned getNumIndices() const { // Note: always non-negative
return getNumOperands() - 1;
}
inline bool hasIndices() const {
return getNumOperands() > 1;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const GetElementPtrInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::GetElementPtr);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// SetCondInst Class
//===----------------------------------------------------------------------===//
/// SetCondInst class - Represent a setCC operator, where CC is eq, ne, lt, gt,
/// le, or ge.
///
class SetCondInst : public BinaryOperator {
public:
SetCondInst(BinaryOps Opcode, Value *LHS, Value *RHS,
const std::string &Name = "", Instruction *InsertBefore = 0);
SetCondInst(BinaryOps Opcode, Value *LHS, Value *RHS,
const std::string &Name, BasicBlock *InsertAtEnd);
/// getInverseCondition - Return the inverse of the current condition opcode.
/// For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
///
BinaryOps getInverseCondition() const {
return getInverseCondition(getOpcode());
}
/// getInverseCondition - Static version that you can use without an
/// instruction available.
///
static BinaryOps getInverseCondition(BinaryOps Opcode);
/// getSwappedCondition - Return the condition opcode that would be the result
/// of exchanging the two operands of the setcc instruction without changing
/// the result produced. Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
///
BinaryOps getSwappedCondition() const {
return getSwappedCondition(getOpcode());
}
/// getSwappedCondition - Static version that you can use without an
/// instruction available.
///
static BinaryOps getSwappedCondition(BinaryOps Opcode);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SetCondInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == SetEQ || I->getOpcode() == SetNE ||
I->getOpcode() == SetLE || I->getOpcode() == SetGE ||
I->getOpcode() == SetLT || I->getOpcode() == SetGT;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// CastInst Class
//===----------------------------------------------------------------------===//
/// CastInst - This class represents a cast from Operand[0] to the type of
/// the instruction (i->getType()).
///
class CastInst : public UnaryInstruction {
CastInst(const CastInst &CI)
: UnaryInstruction(CI.getType(), Cast, CI.getOperand(0)) {
}
public:
CastInst(Value *S, const Type *Ty, const std::string &Name = "",
Instruction *InsertBefore = 0)
: UnaryInstruction(Ty, Cast, S, Name, InsertBefore) {
}
CastInst(Value *S, const Type *Ty, const std::string &Name,
BasicBlock *InsertAtEnd)
: UnaryInstruction(Ty, Cast, S, Name, InsertAtEnd) {
}
virtual CastInst *clone() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CastInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Cast;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// CallInst Class
//===----------------------------------------------------------------------===//
/// CallInst - This class represents a function call, abstracting a target
/// machine's calling convention.
///
class CallInst : public Instruction {
CallInst(const CallInst &CI);
void init(Value *Func, const std::vector<Value*> &Params);
void init(Value *Func, Value *Actual1, Value *Actual2);
void init(Value *Func, Value *Actual);
void init(Value *Func);
public:
CallInst(Value *F, const std::vector<Value*> &Par,
const std::string &Name = "", Instruction *InsertBefore = 0);
CallInst(Value *F, const std::vector<Value*> &Par,
const std::string &Name, BasicBlock *InsertAtEnd);
// Alternate CallInst ctors w/ two actuals, w/ one actual and no
// actuals, respectively.
CallInst(Value *F, Value *Actual1, Value *Actual2,
const std::string& Name = "", Instruction *InsertBefore = 0);
CallInst(Value *F, Value *Actual1, Value *Actual2,
const std::string& Name, BasicBlock *InsertAtEnd);
CallInst(Value *F, Value *Actual, const std::string& Name = "",
Instruction *InsertBefore = 0);
CallInst(Value *F, Value *Actual, const std::string& Name,
BasicBlock *InsertAtEnd);
explicit CallInst(Value *F, const std::string &Name = "",
Instruction *InsertBefore = 0);
explicit CallInst(Value *F, const std::string &Name,
BasicBlock *InsertAtEnd);
~CallInst();
virtual CallInst *clone() const;
bool mayWriteToMemory() const { return true; }
/// getCalledFunction - Return the function being called by this instruction
/// if it is a direct call. If it is a call through a function pointer,
/// return null.
Function *getCalledFunction() const {
return (Function*)dyn_cast<Function>(getOperand(0));
}
// getCalledValue - Get a pointer to a method that is invoked by this inst.
inline const Value *getCalledValue() const { return getOperand(0); }
inline Value *getCalledValue() { return getOperand(0); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CallInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Call;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// ShiftInst Class
//===----------------------------------------------------------------------===//
/// ShiftInst - This class represents left and right shift instructions.
///
class ShiftInst : public Instruction {
Use Ops[2];
ShiftInst(const ShiftInst &SI)
: Instruction(SI.getType(), SI.getOpcode(), Ops, 2) {
Ops[0].init(SI.Ops[0], this);
Ops[1].init(SI.Ops[1], this);
}
void init(OtherOps Opcode, Value *S, Value *SA) {
assert((Opcode == Shl || Opcode == Shr) && "ShiftInst Opcode invalid!");
Ops[0].init(S, this);
Ops[1].init(SA, this);
}
public:
ShiftInst(OtherOps Opcode, Value *S, Value *SA, const std::string &Name = "",
Instruction *InsertBefore = 0)
: Instruction(S->getType(), Opcode, Ops, 2, Name, InsertBefore) {
init(Opcode, S, SA);
}
ShiftInst(OtherOps Opcode, Value *S, Value *SA, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(S->getType(), Opcode, Ops, 2, Name, InsertAtEnd) {
init(Opcode, S, SA);
}
OtherOps getOpcode() const {
return static_cast<OtherOps>(Instruction::getOpcode());
}
/// Transparently provide more efficient getOperand methods.
Value *getOperand(unsigned i) const {
assert(i < 2 && "getOperand() out of range!");
return Ops[i];
}
void setOperand(unsigned i, Value *Val) {
assert(i < 2 && "setOperand() out of range!");
Ops[i] = Val;
}
unsigned getNumOperands() const { return 2; }
virtual ShiftInst *clone() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ShiftInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Shr) |
(I->getOpcode() == Instruction::Shl);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// SelectInst Class
//===----------------------------------------------------------------------===//
/// SelectInst - This class represents the LLVM 'select' instruction.
///
class SelectInst : public Instruction {
Use Ops[3];
void init(Value *C, Value *S1, Value *S2) {
Ops[0].init(C, this);
Ops[1].init(S1, this);
Ops[2].init(S2, this);
}
SelectInst(const SelectInst &SI)
: Instruction(SI.getType(), SI.getOpcode(), Ops, 3) {
init(SI.Ops[0], SI.Ops[1], SI.Ops[2]);
}
public:
SelectInst(Value *C, Value *S1, Value *S2, const std::string &Name = "",
Instruction *InsertBefore = 0)
: Instruction(S1->getType(), Instruction::Select, Ops, 3,
Name, InsertBefore) {
init(C, S1, S2);
}
SelectInst(Value *C, Value *S1, Value *S2, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(S1->getType(), Instruction::Select, Ops, 3,
Name, InsertAtEnd) {
init(C, S1, S2);
}
Value *getCondition() const { return Ops[0]; }
Value *getTrueValue() const { return Ops[1]; }
Value *getFalseValue() const { return Ops[2]; }
/// Transparently provide more efficient getOperand methods.
Value *getOperand(unsigned i) const {
assert(i < 3 && "getOperand() out of range!");
return Ops[i];
}
void setOperand(unsigned i, Value *Val) {
assert(i < 3 && "setOperand() out of range!");
Ops[i] = Val;
}
unsigned getNumOperands() const { return 3; }
OtherOps getOpcode() const {
return static_cast<OtherOps>(Instruction::getOpcode());
}
virtual SelectInst *clone() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SelectInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Select;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// VANextInst Class
//===----------------------------------------------------------------------===//
/// VANextInst - This class represents the va_next llvm instruction, which
/// advances a vararg list passed an argument of the specified type, returning
/// the resultant list.
///
class VANextInst : public UnaryInstruction {
PATypeHolder ArgTy;
VANextInst(const VANextInst &VAN)
: UnaryInstruction(VAN.getType(), VANext, VAN.getOperand(0)),
ArgTy(VAN.getArgType()) {
}
public:
VANextInst(Value *List, const Type *Ty, const std::string &Name = "",
Instruction *InsertBefore = 0)
: UnaryInstruction(List->getType(), VANext, List, Name, InsertBefore),
ArgTy(Ty) {
}
VANextInst(Value *List, const Type *Ty, const std::string &Name,
BasicBlock *InsertAtEnd)
: UnaryInstruction(List->getType(), VANext, List, Name, InsertAtEnd),
ArgTy(Ty) {
}
const Type *getArgType() const { return ArgTy; }
virtual VANextInst *clone() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const VANextInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == VANext;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// VAArgInst Class
//===----------------------------------------------------------------------===//
/// VAArgInst - This class represents the va_arg llvm instruction, which returns
/// an argument of the specified type given a va_list.
///
class VAArgInst : public UnaryInstruction {
VAArgInst(const VAArgInst &VAA)
: UnaryInstruction(VAA.getType(), VAArg, VAA.getOperand(0)) {}
public:
VAArgInst(Value *List, const Type *Ty, const std::string &Name = "",
Instruction *InsertBefore = 0)
: UnaryInstruction(Ty, VAArg, List, Name, InsertBefore) {
}
VAArgInst(Value *List, const Type *Ty, const std::string &Name,
BasicBlock *InsertAtEnd)
: UnaryInstruction(Ty, VAArg, List, Name, InsertAtEnd) {
}
virtual VAArgInst *clone() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const VAArgInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == VAArg;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// PHINode Class
//===----------------------------------------------------------------------===//
// PHINode - The PHINode class is used to represent the magical mystical PHI
// node, that can not exist in nature, but can be synthesized in a computer
// scientist's overactive imagination.
//
class PHINode : public Instruction {
/// ReservedSpace - The number of operands actually allocated. NumOperands is
/// the number actually in use.
unsigned ReservedSpace;
PHINode(const PHINode &PN);
public:
PHINode(const Type *Ty, const std::string &Name = "",
Instruction *InsertBefore = 0)
: Instruction(Ty, Instruction::PHI, 0, 0, Name, InsertBefore),
ReservedSpace(0) {
}
PHINode(const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd)
: Instruction(Ty, Instruction::PHI, 0, 0, Name, InsertAtEnd),
ReservedSpace(0) {
}
~PHINode();
/// reserveOperandSpace - This method can be used to avoid repeated
/// reallocation of PHI operand lists by reserving space for the correct
/// number of operands before adding them. Unlike normal vector reserves,
/// this method can also be used to trim the operand space.
void reserveOperandSpace(unsigned NumValues) {
resizeOperands(NumValues*2);
}
virtual PHINode *clone() const;
/// getNumIncomingValues - Return the number of incoming edges
///
unsigned getNumIncomingValues() const { return getNumOperands()/2; }
/// getIncomingValue - Return incoming value #x
///
Value *getIncomingValue(unsigned i) const {
assert(i*2 < getNumOperands() && "Invalid value number!");
return getOperand(i*2);
}
void setIncomingValue(unsigned i, Value *V) {
assert(i*2 < getNumOperands() && "Invalid value number!");
setOperand(i*2, V);
}
unsigned getOperandNumForIncomingValue(unsigned i) {
return i*2;
}
/// getIncomingBlock - Return incoming basic block #x
///
BasicBlock *getIncomingBlock(unsigned i) const {
return reinterpret_cast<BasicBlock*>(getOperand(i*2+1));
}
void setIncomingBlock(unsigned i, BasicBlock *BB) {
setOperand(i*2+1, reinterpret_cast<Value*>(BB));
}
unsigned getOperandNumForIncomingBlock(unsigned i) {
return i*2+1;
}
/// addIncoming - Add an incoming value to the end of the PHI list
///
void addIncoming(Value *V, BasicBlock *BB) {
assert(getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!");
unsigned OpNo = NumOperands;
if (OpNo+2 > ReservedSpace)
resizeOperands(0); // Get more space!
// Initialize some new operands.
NumOperands = OpNo+2;
OperandList[OpNo].init(V, this);
OperandList[OpNo+1].init(reinterpret_cast<Value*>(BB), this);
}
/// removeIncomingValue - Remove an incoming value. This is useful if a
/// predecessor basic block is deleted. The value removed is returned.
///
/// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
/// is true), the PHI node is destroyed and any uses of it are replaced with
/// dummy values. The only time there should be zero incoming values to a PHI
/// node is when the block is dead, so this strategy is sound.
///
Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty =true){
int Idx = getBasicBlockIndex(BB);
assert(Idx >= 0 && "Invalid basic block argument to remove!");
return removeIncomingValue(Idx, DeletePHIIfEmpty);
}
/// getBasicBlockIndex - Return the first index of the specified basic
/// block in the value list for this PHI. Returns -1 if no instance.
///
int getBasicBlockIndex(const BasicBlock *BB) const {
Use *OL = OperandList;
for (unsigned i = 0, e = getNumOperands(); i != e; i += 2)
if (OL[i+1] == reinterpret_cast<const Value*>(BB)) return i/2;
return -1;
}
Value *getIncomingValueForBlock(const BasicBlock *BB) const {
return getIncomingValue(getBasicBlockIndex(BB));
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const PHINode *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::PHI;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
void resizeOperands(unsigned NumOperands);
};
//===----------------------------------------------------------------------===//
// ReturnInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// ReturnInst - Return a value (possibly void), from a function. Execution
/// does not continue in this function any longer.
///
class ReturnInst : public TerminatorInst {
Use RetVal; // Possibly null retval.
ReturnInst(const ReturnInst &RI) : TerminatorInst(Instruction::Ret, &RetVal,
RI.getNumOperands()) {
if (RI.getNumOperands())
RetVal.init(RI.RetVal, this);
}
void init(Value *RetVal);
public:
// ReturnInst constructors:
// ReturnInst() - 'ret void' instruction
// ReturnInst( null) - 'ret void' instruction
// ReturnInst(Value* X) - 'ret X' instruction
// ReturnInst( null, Inst *) - 'ret void' instruction, insert before I
// ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
// ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of BB
// ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of BB
//
// NOTE: If the Value* passed is of type void then the constructor behaves as
// if it was passed NULL.
ReturnInst(Value *retVal = 0, Instruction *InsertBefore = 0)
: TerminatorInst(Instruction::Ret, &RetVal, 0, InsertBefore) {
init(retVal);
}
ReturnInst(Value *retVal, BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Ret, &RetVal, 0, InsertAtEnd) {
init(retVal);
}
ReturnInst(BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Ret, &RetVal, 0, InsertAtEnd) {
}
virtual ReturnInst *clone() const;
// Transparently provide more efficient getOperand methods.
Value *getOperand(unsigned i) const {
assert(i < getNumOperands() && "getOperand() out of range!");
return RetVal;
}
void setOperand(unsigned i, Value *Val) {
assert(i < getNumOperands() && "setOperand() out of range!");
RetVal = Val;
}
Value *getReturnValue() const { return RetVal; }
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ReturnInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Ret);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
//===----------------------------------------------------------------------===//
// BranchInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// BranchInst - Conditional or Unconditional Branch instruction.
///
class BranchInst : public TerminatorInst {
/// Ops list - Branches are strange. The operands are ordered:
/// TrueDest, FalseDest, Cond. This makes some accessors faster because
/// they don't have to check for cond/uncond branchness.
Use Ops[3];
BranchInst(const BranchInst &BI);
void AssertOK();
public:
// BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
// BranchInst(BB *B) - 'br B'
// BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
// BranchInst(BB* B, Inst *I) - 'br B' insert before I
// BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
// BranchInst(BB* B, BB *I) - 'br B' insert at end
// BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0)
: TerminatorInst(Instruction::Br, Ops, 1, InsertBefore) {
assert(IfTrue != 0 && "Branch destination may not be null!");
Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
}
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
Instruction *InsertBefore = 0)
: TerminatorInst(Instruction::Br, Ops, 3, InsertBefore) {
Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
Ops[2].init(Cond, this);
#ifndef NDEBUG
AssertOK();
#endif
}
BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Br, Ops, 1, InsertAtEnd) {
assert(IfTrue != 0 && "Branch destination may not be null!");
Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
}
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Br, Ops, 3, InsertAtEnd) {
Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
Ops[2].init(Cond, this);
#ifndef NDEBUG
AssertOK();
#endif
}
/// Transparently provide more efficient getOperand methods.
Value *getOperand(unsigned i) const {
assert(i < getNumOperands() && "getOperand() out of range!");
return Ops[i];
}
void setOperand(unsigned i, Value *Val) {
assert(i < getNumOperands() && "setOperand() out of range!");
Ops[i] = Val;
}
virtual BranchInst *clone() const;
inline bool isUnconditional() const { return getNumOperands() == 1; }
inline bool isConditional() const { return getNumOperands() == 3; }
inline Value *getCondition() const {
assert(isConditional() && "Cannot get condition of an uncond branch!");
return getOperand(2);
}
void setCondition(Value *V) {
assert(isConditional() && "Cannot set condition of unconditional branch!");
setOperand(2, V);
}
// setUnconditionalDest - Change the current branch to an unconditional branch
// targeting the specified block.
// FIXME: Eliminate this ugly method.
void setUnconditionalDest(BasicBlock *Dest) {
if (isConditional()) { // Convert this to an uncond branch.
NumOperands = 1;
Ops[1].set(0);
Ops[2].set(0);
}
setOperand(0, reinterpret_cast<Value*>(Dest));
}
unsigned getNumSuccessors() const { return 1+isConditional(); }
BasicBlock *getSuccessor(unsigned i) const {
assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
return (i == 0) ? cast<BasicBlock>(getOperand(0)) :
cast<BasicBlock>(getOperand(1));
}
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
setOperand(idx, reinterpret_cast<Value*>(NewSucc));
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const BranchInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Br);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
//===----------------------------------------------------------------------===//
// SwitchInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// SwitchInst - Multiway switch
///
class SwitchInst : public TerminatorInst {
unsigned ReservedSpace;
// Operand[0] = Value to switch on
// Operand[1] = Default basic block destination
// Operand[2n ] = Value to match
// Operand[2n+1] = BasicBlock to go to on match
SwitchInst(const SwitchInst &RI);
void init(Value *Value, BasicBlock *Default, unsigned NumCases);
void resizeOperands(unsigned No);
public:
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
/// switch on and a default destination. The number of additional cases can
/// be specified here to make memory allocation more efficient. This
/// constructor can also autoinsert before another instruction.
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
Instruction *InsertBefore = 0)
: TerminatorInst(Instruction::Switch, 0, 0, InsertBefore) {
init(Value, Default, NumCases);
}
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
/// switch on and a default destination. The number of additional cases can
/// be specified here to make memory allocation more efficient. This
/// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Switch, 0, 0, InsertAtEnd) {
init(Value, Default, NumCases);
}
~SwitchInst();
// Accessor Methods for Switch stmt
inline Value *getCondition() const { return getOperand(0); }
void setCondition(Value *V) { setOperand(0, V); }
inline BasicBlock *getDefaultDest() const {
return cast<BasicBlock>(getOperand(1));
}
/// getNumCases - return the number of 'cases' in this switch instruction.
/// Note that case #0 is always the default case.
unsigned getNumCases() const {
return getNumOperands()/2;
}
/// getCaseValue - Return the specified case value. Note that case #0, the
/// default destination, does not have a case value.
ConstantInt *getCaseValue(unsigned i) {
assert(i && i < getNumCases() && "Illegal case value to get!");
return getSuccessorValue(i);
}
/// getCaseValue - Return the specified case value. Note that case #0, the
/// default destination, does not have a case value.
const ConstantInt *getCaseValue(unsigned i) const {
assert(i && i < getNumCases() && "Illegal case value to get!");
return getSuccessorValue(i);
}
/// findCaseValue - Search all of the case values for the specified constant.
/// If it is explicitly handled, return the case number of it, otherwise
/// return 0 to indicate that it is handled by the default handler.
unsigned findCaseValue(const ConstantInt *C) const {
for (unsigned i = 1, e = getNumCases(); i != e; ++i)
if (getCaseValue(i) == C)
return i;
return 0;
}
/// addCase - Add an entry to the switch instruction...
///
void addCase(ConstantInt *OnVal, BasicBlock *Dest);
/// removeCase - This method removes the specified successor from the switch
/// instruction. Note that this cannot be used to remove the default
/// destination (successor #0).
///
void removeCase(unsigned idx);
virtual SwitchInst *clone() const;
unsigned getNumSuccessors() const { return getNumOperands()/2; }
BasicBlock *getSuccessor(unsigned idx) const {
assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
return cast<BasicBlock>(getOperand(idx*2+1));
}
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
setOperand(idx*2+1, reinterpret_cast<Value*>(NewSucc));
}
// getSuccessorValue - Return the value associated with the specified
// successor.
inline ConstantInt *getSuccessorValue(unsigned idx) const {
assert(idx < getNumSuccessors() && "Successor # out of range!");
return (ConstantInt*)getOperand(idx*2);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SwitchInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Switch;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
//===----------------------------------------------------------------------===//
// InvokeInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// InvokeInst - Invoke instruction
///
class InvokeInst : public TerminatorInst {
InvokeInst(const InvokeInst &BI);
void init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
const std::vector<Value*> &Params);
public:
InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
const std::vector<Value*> &Params, const std::string &Name = "",
Instruction *InsertBefore = 0);
InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
const std::vector<Value*> &Params, const std::string &Name,
BasicBlock *InsertAtEnd);
~InvokeInst();
virtual InvokeInst *clone() const;
bool mayWriteToMemory() const { return true; }
/// getCalledFunction - Return the function called, or null if this is an
/// indirect function invocation.
///
Function *getCalledFunction() const {
return dyn_cast<Function>(getOperand(0));
}
// getCalledValue - Get a pointer to a function that is invoked by this inst.
inline Value *getCalledValue() const { return getOperand(0); }
// get*Dest - Return the destination basic blocks...
BasicBlock *getNormalDest() const {
return cast<BasicBlock>(getOperand(1));
}
BasicBlock *getUnwindDest() const {
return cast<BasicBlock>(getOperand(2));
}
void setNormalDest(BasicBlock *B) {
setOperand(1, reinterpret_cast<Value*>(B));
}
void setUnwindDest(BasicBlock *B) {
setOperand(2, reinterpret_cast<Value*>(B));
}
inline BasicBlock *getSuccessor(unsigned i) const {
assert(i < 2 && "Successor # out of range for invoke!");
return i == 0 ? getNormalDest() : getUnwindDest();
}
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(idx < 2 && "Successor # out of range for invoke!");
setOperand(idx+1, reinterpret_cast<Value*>(NewSucc));
}
unsigned getNumSuccessors() const { return 2; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const InvokeInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Invoke);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
//===----------------------------------------------------------------------===//
// UnwindInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// UnwindInst - Immediately exit the current function, unwinding the stack
/// until an invoke instruction is found.
///
class UnwindInst : public TerminatorInst {
public:
UnwindInst(Instruction *InsertBefore = 0)
: TerminatorInst(Instruction::Unwind, 0, 0, InsertBefore) {
}
UnwindInst(BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Unwind, 0, 0, InsertAtEnd) {
}
virtual UnwindInst *clone() const;
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const UnwindInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Unwind;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
//===----------------------------------------------------------------------===//
// UnreachableInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// UnreachableInst - This function has undefined behavior. In particular, the
/// presence of this instruction indicates some higher level knowledge that the
/// end of the block cannot be reached.
///
class UnreachableInst : public TerminatorInst {
public:
UnreachableInst(Instruction *InsertBefore = 0)
: TerminatorInst(Instruction::Unreachable, 0, 0, InsertBefore) {
}
UnreachableInst(BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Unreachable, 0, 0, InsertAtEnd) {
}
virtual UnreachableInst *clone() const;
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const UnreachableInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Unreachable;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
} // End llvm namespace
#endif