llvm-mirror/lib/CodeGen/MachineFunction.cpp
Manuel Jacob 90bf7d59dc Introduce ConstantFoldCastOperand function and migrate some callers of ConstantFoldInstOperands to use it. NFC.
Summary:
Although this is a slight cleanup on its own, the main motivation is to
refactor the constant folding API to ease migration to opaque pointers.
This will be follow-up work.

Reviewers: eddyb

Subscribers: zzheng, dblaikie, llvm-commits

Differential Revision: http://reviews.llvm.org/D16380

llvm-svn: 258390
2016-01-21 06:31:08 +00:00

971 lines
35 KiB
C++

//===-- MachineFunction.cpp -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect native machine code information for a function. This allows
// target-specific information about the generated code to be stored with each
// function.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionInitializer.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "codegen"
static cl::opt<unsigned>
AlignAllFunctions("align-all-functions",
cl::desc("Force the alignment of all functions."),
cl::init(0), cl::Hidden);
void MachineFunctionInitializer::anchor() {}
//===----------------------------------------------------------------------===//
// MachineFunction implementation
//===----------------------------------------------------------------------===//
// Out-of-line virtual method.
MachineFunctionInfo::~MachineFunctionInfo() {}
void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
MBB->getParent()->DeleteMachineBasicBlock(MBB);
}
MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
unsigned FunctionNum, MachineModuleInfo &mmi)
: Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()),
MMI(mmi) {
if (STI->getRegisterInfo())
RegInfo = new (Allocator) MachineRegisterInfo(this);
else
RegInfo = nullptr;
MFInfo = nullptr;
FrameInfo = new (Allocator)
MachineFrameInfo(STI->getFrameLowering()->getStackAlignment(),
STI->getFrameLowering()->isStackRealignable(),
!F->hasFnAttribute("no-realign-stack"));
if (Fn->hasFnAttribute(Attribute::StackAlignment))
FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment());
ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
// FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
// FIXME: Use Function::optForSize().
if (!Fn->hasFnAttribute(Attribute::OptimizeForSize))
Alignment = std::max(Alignment,
STI->getTargetLowering()->getPrefFunctionAlignment());
if (AlignAllFunctions)
Alignment = AlignAllFunctions;
FunctionNumber = FunctionNum;
JumpTableInfo = nullptr;
if (isFuncletEHPersonality(classifyEHPersonality(
F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) {
WinEHInfo = new (Allocator) WinEHFuncInfo();
}
assert(TM.isCompatibleDataLayout(getDataLayout()) &&
"Can't create a MachineFunction using a Module with a "
"Target-incompatible DataLayout attached\n");
PSVManager = llvm::make_unique<PseudoSourceValueManager>();
}
MachineFunction::~MachineFunction() {
// Don't call destructors on MachineInstr and MachineOperand. All of their
// memory comes from the BumpPtrAllocator which is about to be purged.
//
// Do call MachineBasicBlock destructors, it contains std::vectors.
for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
I->Insts.clearAndLeakNodesUnsafely();
InstructionRecycler.clear(Allocator);
OperandRecycler.clear(Allocator);
BasicBlockRecycler.clear(Allocator);
if (RegInfo) {
RegInfo->~MachineRegisterInfo();
Allocator.Deallocate(RegInfo);
}
if (MFInfo) {
MFInfo->~MachineFunctionInfo();
Allocator.Deallocate(MFInfo);
}
FrameInfo->~MachineFrameInfo();
Allocator.Deallocate(FrameInfo);
ConstantPool->~MachineConstantPool();
Allocator.Deallocate(ConstantPool);
if (JumpTableInfo) {
JumpTableInfo->~MachineJumpTableInfo();
Allocator.Deallocate(JumpTableInfo);
}
if (WinEHInfo) {
WinEHInfo->~WinEHFuncInfo();
Allocator.Deallocate(WinEHInfo);
}
}
const DataLayout &MachineFunction::getDataLayout() const {
return Fn->getParent()->getDataLayout();
}
/// Get the JumpTableInfo for this function.
/// If it does not already exist, allocate one.
MachineJumpTableInfo *MachineFunction::
getOrCreateJumpTableInfo(unsigned EntryKind) {
if (JumpTableInfo) return JumpTableInfo;
JumpTableInfo = new (Allocator)
MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
return JumpTableInfo;
}
/// Should we be emitting segmented stack stuff for the function
bool MachineFunction::shouldSplitStack() const {
return getFunction()->hasFnAttribute("split-stack");
}
/// This discards all of the MachineBasicBlock numbers and recomputes them.
/// This guarantees that the MBB numbers are sequential, dense, and match the
/// ordering of the blocks within the function. If a specific MachineBasicBlock
/// is specified, only that block and those after it are renumbered.
void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
if (empty()) { MBBNumbering.clear(); return; }
MachineFunction::iterator MBBI, E = end();
if (MBB == nullptr)
MBBI = begin();
else
MBBI = MBB->getIterator();
// Figure out the block number this should have.
unsigned BlockNo = 0;
if (MBBI != begin())
BlockNo = std::prev(MBBI)->getNumber() + 1;
for (; MBBI != E; ++MBBI, ++BlockNo) {
if (MBBI->getNumber() != (int)BlockNo) {
// Remove use of the old number.
if (MBBI->getNumber() != -1) {
assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
"MBB number mismatch!");
MBBNumbering[MBBI->getNumber()] = nullptr;
}
// If BlockNo is already taken, set that block's number to -1.
if (MBBNumbering[BlockNo])
MBBNumbering[BlockNo]->setNumber(-1);
MBBNumbering[BlockNo] = &*MBBI;
MBBI->setNumber(BlockNo);
}
}
// Okay, all the blocks are renumbered. If we have compactified the block
// numbering, shrink MBBNumbering now.
assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
MBBNumbering.resize(BlockNo);
}
/// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
MachineInstr *
MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
DebugLoc DL, bool NoImp) {
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
MachineInstr(*this, MCID, DL, NoImp);
}
/// Create a new MachineInstr which is a copy of the 'Orig' instruction,
/// identical in all ways except the instruction has no parent, prev, or next.
MachineInstr *
MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
MachineInstr(*this, *Orig);
}
/// Delete the given MachineInstr.
///
/// This function also serves as the MachineInstr destructor - the real
/// ~MachineInstr() destructor must be empty.
void
MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
// Strip it for parts. The operand array and the MI object itself are
// independently recyclable.
if (MI->Operands)
deallocateOperandArray(MI->CapOperands, MI->Operands);
// Don't call ~MachineInstr() which must be trivial anyway because
// ~MachineFunction drops whole lists of MachineInstrs wihout calling their
// destructors.
InstructionRecycler.Deallocate(Allocator, MI);
}
/// Allocate a new MachineBasicBlock. Use this instead of
/// `new MachineBasicBlock'.
MachineBasicBlock *
MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
MachineBasicBlock(*this, bb);
}
/// Delete the given MachineBasicBlock.
void
MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
assert(MBB->getParent() == this && "MBB parent mismatch!");
MBB->~MachineBasicBlock();
BasicBlockRecycler.Deallocate(Allocator, MBB);
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f,
uint64_t s, unsigned base_alignment,
const AAMDNodes &AAInfo,
const MDNode *Ranges) {
return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment,
AAInfo, Ranges);
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
int64_t Offset, uint64_t Size) {
if (MMO->getValue())
return new (Allocator)
MachineMemOperand(MachinePointerInfo(MMO->getValue(),
MMO->getOffset()+Offset),
MMO->getFlags(), Size,
MMO->getBaseAlignment());
return new (Allocator)
MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
MMO->getOffset()+Offset),
MMO->getFlags(), Size,
MMO->getBaseAlignment());
}
MachineInstr::mmo_iterator
MachineFunction::allocateMemRefsArray(unsigned long Num) {
return Allocator.Allocate<MachineMemOperand *>(Num);
}
std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
MachineInstr::mmo_iterator End) {
// Count the number of load mem refs.
unsigned Num = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
if ((*I)->isLoad())
++Num;
// Allocate a new array and populate it with the load information.
MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
unsigned Index = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
if ((*I)->isLoad()) {
if (!(*I)->isStore())
// Reuse the MMO.
Result[Index] = *I;
else {
// Clone the MMO and unset the store flag.
MachineMemOperand *JustLoad =
getMachineMemOperand((*I)->getPointerInfo(),
(*I)->getFlags() & ~MachineMemOperand::MOStore,
(*I)->getSize(), (*I)->getBaseAlignment(),
(*I)->getAAInfo());
Result[Index] = JustLoad;
}
++Index;
}
}
return std::make_pair(Result, Result + Num);
}
std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
MachineInstr::mmo_iterator End) {
// Count the number of load mem refs.
unsigned Num = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
if ((*I)->isStore())
++Num;
// Allocate a new array and populate it with the store information.
MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
unsigned Index = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
if ((*I)->isStore()) {
if (!(*I)->isLoad())
// Reuse the MMO.
Result[Index] = *I;
else {
// Clone the MMO and unset the load flag.
MachineMemOperand *JustStore =
getMachineMemOperand((*I)->getPointerInfo(),
(*I)->getFlags() & ~MachineMemOperand::MOLoad,
(*I)->getSize(), (*I)->getBaseAlignment(),
(*I)->getAAInfo());
Result[Index] = JustStore;
}
++Index;
}
}
return std::make_pair(Result, Result + Num);
}
const char *MachineFunction::createExternalSymbolName(StringRef Name) {
char *Dest = Allocator.Allocate<char>(Name.size() + 1);
std::copy(Name.begin(), Name.end(), Dest);
Dest[Name.size()] = 0;
return Dest;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MachineFunction::dump() const {
print(dbgs());
}
#endif
StringRef MachineFunction::getName() const {
assert(getFunction() && "No function!");
return getFunction()->getName();
}
void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const {
OS << "# Machine code for function " << getName() << ": ";
if (RegInfo) {
OS << (RegInfo->isSSA() ? "SSA" : "Post SSA");
if (!RegInfo->tracksLiveness())
OS << ", not tracking liveness";
}
OS << '\n';
// Print Frame Information
FrameInfo->print(*this, OS);
// Print JumpTable Information
if (JumpTableInfo)
JumpTableInfo->print(OS);
// Print Constant Pool
ConstantPool->print(OS);
const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
if (RegInfo && !RegInfo->livein_empty()) {
OS << "Function Live Ins: ";
for (MachineRegisterInfo::livein_iterator
I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
OS << PrintReg(I->first, TRI);
if (I->second)
OS << " in " << PrintReg(I->second, TRI);
if (std::next(I) != E)
OS << ", ";
}
OS << '\n';
}
ModuleSlotTracker MST(getFunction()->getParent());
MST.incorporateFunction(*getFunction());
for (const auto &BB : *this) {
OS << '\n';
BB.print(OS, MST, Indexes);
}
OS << "\n# End machine code for function " << getName() << ".\n\n";
}
namespace llvm {
template<>
struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
static std::string getGraphName(const MachineFunction *F) {
return ("CFG for '" + F->getName() + "' function").str();
}
std::string getNodeLabel(const MachineBasicBlock *Node,
const MachineFunction *Graph) {
std::string OutStr;
{
raw_string_ostream OSS(OutStr);
if (isSimple()) {
OSS << "BB#" << Node->getNumber();
if (const BasicBlock *BB = Node->getBasicBlock())
OSS << ": " << BB->getName();
} else
Node->print(OSS);
}
if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
// Process string output to make it nicer...
for (unsigned i = 0; i != OutStr.length(); ++i)
if (OutStr[i] == '\n') { // Left justify
OutStr[i] = '\\';
OutStr.insert(OutStr.begin()+i+1, 'l');
}
return OutStr;
}
};
}
void MachineFunction::viewCFG() const
{
#ifndef NDEBUG
ViewGraph(this, "mf" + getName());
#else
errs() << "MachineFunction::viewCFG is only available in debug builds on "
<< "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
void MachineFunction::viewCFGOnly() const
{
#ifndef NDEBUG
ViewGraph(this, "mf" + getName(), true);
#else
errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
<< "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
/// Add the specified physical register as a live-in value and
/// create a corresponding virtual register for it.
unsigned MachineFunction::addLiveIn(unsigned PReg,
const TargetRegisterClass *RC) {
MachineRegisterInfo &MRI = getRegInfo();
unsigned VReg = MRI.getLiveInVirtReg(PReg);
if (VReg) {
const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
(void)VRegRC;
// A physical register can be added several times.
// Between two calls, the register class of the related virtual register
// may have been constrained to match some operation constraints.
// In that case, check that the current register class includes the
// physical register and is a sub class of the specified RC.
assert((VRegRC == RC || (VRegRC->contains(PReg) &&
RC->hasSubClassEq(VRegRC))) &&
"Register class mismatch!");
return VReg;
}
VReg = MRI.createVirtualRegister(RC);
MRI.addLiveIn(PReg, VReg);
return VReg;
}
/// Return the MCSymbol for the specified non-empty jump table.
/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
/// normal 'L' label is returned.
MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
bool isLinkerPrivate) const {
const DataLayout &DL = getDataLayout();
assert(JumpTableInfo && "No jump tables");
assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
: DL.getPrivateGlobalPrefix();
SmallString<60> Name;
raw_svector_ostream(Name)
<< Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
return Ctx.getOrCreateSymbol(Name);
}
/// Return a function-local symbol to represent the PIC base.
MCSymbol *MachineFunction::getPICBaseSymbol() const {
const DataLayout &DL = getDataLayout();
return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
Twine(getFunctionNumber()) + "$pb");
}
//===----------------------------------------------------------------------===//
// MachineFrameInfo implementation
//===----------------------------------------------------------------------===//
/// Make sure the function is at least Align bytes aligned.
void MachineFrameInfo::ensureMaxAlignment(unsigned Align) {
if (!StackRealignable || !RealignOption)
assert(Align <= StackAlignment &&
"For targets without stack realignment, Align is out of limit!");
if (MaxAlignment < Align) MaxAlignment = Align;
}
/// Clamp the alignment if requested and emit a warning.
static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align,
unsigned StackAlign) {
if (!ShouldClamp || Align <= StackAlign)
return Align;
DEBUG(dbgs() << "Warning: requested alignment " << Align
<< " exceeds the stack alignment " << StackAlign
<< " when stack realignment is off" << '\n');
return StackAlign;
}
/// Create a new statically sized stack object, returning a nonnegative
/// identifier to represent it.
int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment,
bool isSS, const AllocaInst *Alloca) {
assert(Size != 0 && "Cannot allocate zero size stack objects!");
Alignment = clampStackAlignment(!StackRealignable || !RealignOption,
Alignment, StackAlignment);
Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca,
!isSS));
int Index = (int)Objects.size() - NumFixedObjects - 1;
assert(Index >= 0 && "Bad frame index!");
ensureMaxAlignment(Alignment);
return Index;
}
/// Create a new statically sized stack object that represents a spill slot,
/// returning a nonnegative identifier to represent it.
int MachineFrameInfo::CreateSpillStackObject(uint64_t Size,
unsigned Alignment) {
Alignment = clampStackAlignment(!StackRealignable || !RealignOption,
Alignment, StackAlignment);
CreateStackObject(Size, Alignment, true);
int Index = (int)Objects.size() - NumFixedObjects - 1;
ensureMaxAlignment(Alignment);
return Index;
}
/// Notify the MachineFrameInfo object that a variable sized object has been
/// created. This must be created whenever a variable sized object is created,
/// whether or not the index returned is actually used.
int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment,
const AllocaInst *Alloca) {
HasVarSizedObjects = true;
Alignment = clampStackAlignment(!StackRealignable || !RealignOption,
Alignment, StackAlignment);
Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true));
ensureMaxAlignment(Alignment);
return (int)Objects.size()-NumFixedObjects-1;
}
/// Create a new object at a fixed location on the stack.
/// All fixed objects should be created before other objects are created for
/// efficiency. By default, fixed objects are immutable. This returns an
/// index with a negative value.
int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
bool Immutable, bool isAliased) {
assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
// The alignment of the frame index can be determined from its offset from
// the incoming frame position. If the frame object is at offset 32 and
// the stack is guaranteed to be 16-byte aligned, then we know that the
// object is 16-byte aligned.
unsigned Align = MinAlign(SPOffset, StackAlignment);
Align = clampStackAlignment(!StackRealignable || !RealignOption, Align,
StackAlignment);
Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
/*isSS*/ false,
/*Alloca*/ nullptr, isAliased));
return -++NumFixedObjects;
}
/// Create a spill slot at a fixed location on the stack.
/// Returns an index with a negative value.
int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size,
int64_t SPOffset) {
unsigned Align = MinAlign(SPOffset, StackAlignment);
Align = clampStackAlignment(!StackRealignable || !RealignOption, Align,
StackAlignment);
Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset,
/*Immutable*/ true,
/*isSS*/ true,
/*Alloca*/ nullptr,
/*isAliased*/ false));
return -++NumFixedObjects;
}
BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const {
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
BitVector BV(TRI->getNumRegs());
// Before CSI is calculated, no registers are considered pristine. They can be
// freely used and PEI will make sure they are saved.
if (!isCalleeSavedInfoValid())
return BV;
for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
BV.set(*CSR);
// Saved CSRs are not pristine.
for (auto &I : getCalleeSavedInfo())
for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S)
BV.reset(*S);
return BV;
}
unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
unsigned MaxAlign = getMaxAlignment();
int Offset = 0;
// This code is very, very similar to PEI::calculateFrameObjectOffsets().
// It really should be refactored to share code. Until then, changes
// should keep in mind that there's tight coupling between the two.
for (int i = getObjectIndexBegin(); i != 0; ++i) {
int FixedOff = -getObjectOffset(i);
if (FixedOff > Offset) Offset = FixedOff;
}
for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) {
if (isDeadObjectIndex(i))
continue;
Offset += getObjectSize(i);
unsigned Align = getObjectAlignment(i);
// Adjust to alignment boundary
Offset = (Offset+Align-1)/Align*Align;
MaxAlign = std::max(Align, MaxAlign);
}
if (adjustsStack() && TFI->hasReservedCallFrame(MF))
Offset += getMaxCallFrameSize();
// Round up the size to a multiple of the alignment. If the function has
// any calls or alloca's, align to the target's StackAlignment value to
// ensure that the callee's frame or the alloca data is suitably aligned;
// otherwise, for leaf functions, align to the TransientStackAlignment
// value.
unsigned StackAlign;
if (adjustsStack() || hasVarSizedObjects() ||
(RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0))
StackAlign = TFI->getStackAlignment();
else
StackAlign = TFI->getTransientStackAlignment();
// If the frame pointer is eliminated, all frame offsets will be relative to
// SP not FP. Align to MaxAlign so this works.
StackAlign = std::max(StackAlign, MaxAlign);
unsigned AlignMask = StackAlign - 1;
Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
return (unsigned)Offset;
}
void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
if (Objects.empty()) return;
const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering();
int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
OS << "Frame Objects:\n";
for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
const StackObject &SO = Objects[i];
OS << " fi#" << (int)(i-NumFixedObjects) << ": ";
if (SO.Size == ~0ULL) {
OS << "dead\n";
continue;
}
if (SO.Size == 0)
OS << "variable sized";
else
OS << "size=" << SO.Size;
OS << ", align=" << SO.Alignment;
if (i < NumFixedObjects)
OS << ", fixed";
if (i < NumFixedObjects || SO.SPOffset != -1) {
int64_t Off = SO.SPOffset - ValOffset;
OS << ", at location [SP";
if (Off > 0)
OS << "+" << Off;
else if (Off < 0)
OS << Off;
OS << "]";
}
OS << "\n";
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MachineFrameInfo::dump(const MachineFunction &MF) const {
print(MF, dbgs());
}
#endif
//===----------------------------------------------------------------------===//
// MachineJumpTableInfo implementation
//===----------------------------------------------------------------------===//
/// Return the size of each entry in the jump table.
unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
// The size of a jump table entry is 4 bytes unless the entry is just the
// address of a block, in which case it is the pointer size.
switch (getEntryKind()) {
case MachineJumpTableInfo::EK_BlockAddress:
return TD.getPointerSize();
case MachineJumpTableInfo::EK_GPRel64BlockAddress:
return 8;
case MachineJumpTableInfo::EK_GPRel32BlockAddress:
case MachineJumpTableInfo::EK_LabelDifference32:
case MachineJumpTableInfo::EK_Custom32:
return 4;
case MachineJumpTableInfo::EK_Inline:
return 0;
}
llvm_unreachable("Unknown jump table encoding!");
}
/// Return the alignment of each entry in the jump table.
unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
// The alignment of a jump table entry is the alignment of int32 unless the
// entry is just the address of a block, in which case it is the pointer
// alignment.
switch (getEntryKind()) {
case MachineJumpTableInfo::EK_BlockAddress:
return TD.getPointerABIAlignment();
case MachineJumpTableInfo::EK_GPRel64BlockAddress:
return TD.getABIIntegerTypeAlignment(64);
case MachineJumpTableInfo::EK_GPRel32BlockAddress:
case MachineJumpTableInfo::EK_LabelDifference32:
case MachineJumpTableInfo::EK_Custom32:
return TD.getABIIntegerTypeAlignment(32);
case MachineJumpTableInfo::EK_Inline:
return 1;
}
llvm_unreachable("Unknown jump table encoding!");
}
/// Create a new jump table entry in the jump table info.
unsigned MachineJumpTableInfo::createJumpTableIndex(
const std::vector<MachineBasicBlock*> &DestBBs) {
assert(!DestBBs.empty() && "Cannot create an empty jump table!");
JumpTables.push_back(MachineJumpTableEntry(DestBBs));
return JumpTables.size()-1;
}
/// If Old is the target of any jump tables, update the jump tables to branch
/// to New instead.
bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Not making a change?");
bool MadeChange = false;
for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
ReplaceMBBInJumpTable(i, Old, New);
return MadeChange;
}
/// If Old is a target of the jump tables, update the jump table to branch to
/// New instead.
bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Not making a change?");
bool MadeChange = false;
MachineJumpTableEntry &JTE = JumpTables[Idx];
for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
if (JTE.MBBs[j] == Old) {
JTE.MBBs[j] = New;
MadeChange = true;
}
return MadeChange;
}
void MachineJumpTableInfo::print(raw_ostream &OS) const {
if (JumpTables.empty()) return;
OS << "Jump Tables:\n";
for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
OS << " jt#" << i << ": ";
for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
}
OS << '\n';
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MachineJumpTableInfo::dump() const { print(dbgs()); }
#endif
//===----------------------------------------------------------------------===//
// MachineConstantPool implementation
//===----------------------------------------------------------------------===//
void MachineConstantPoolValue::anchor() { }
Type *MachineConstantPoolEntry::getType() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getType();
return Val.ConstVal->getType();
}
bool MachineConstantPoolEntry::needsRelocation() const {
if (isMachineConstantPoolEntry())
return true;
return Val.ConstVal->needsRelocation();
}
SectionKind
MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
if (needsRelocation())
return SectionKind::getReadOnlyWithRel();
switch (DL->getTypeAllocSize(getType())) {
case 4:
return SectionKind::getMergeableConst4();
case 8:
return SectionKind::getMergeableConst8();
case 16:
return SectionKind::getMergeableConst16();
default:
return SectionKind::getReadOnly();
}
}
MachineConstantPool::~MachineConstantPool() {
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (Constants[i].isMachineConstantPoolEntry())
delete Constants[i].Val.MachineCPVal;
for (DenseSet<MachineConstantPoolValue*>::iterator I =
MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
I != E; ++I)
delete *I;
}
/// Test whether the given two constants can be allocated the same constant pool
/// entry.
static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
const DataLayout &DL) {
// Handle the trivial case quickly.
if (A == B) return true;
// If they have the same type but weren't the same constant, quickly
// reject them.
if (A->getType() == B->getType()) return false;
// We can't handle structs or arrays.
if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
return false;
// For now, only support constants with the same size.
uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
return false;
Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
// Try constant folding a bitcast of both instructions to an integer. If we
// get two identical ConstantInt's, then we are good to share them. We use
// the constant folding APIs to do this so that we get the benefit of
// DataLayout.
if (isa<PointerType>(A->getType()))
A = ConstantFoldCastOperand(Instruction::PtrToInt,
const_cast<Constant *>(A), IntTy, DL);
else if (A->getType() != IntTy)
A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
IntTy, DL);
if (isa<PointerType>(B->getType()))
B = ConstantFoldCastOperand(Instruction::PtrToInt,
const_cast<Constant *>(B), IntTy, DL);
else if (B->getType() != IntTy)
B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
IntTy, DL);
return A == B;
}
/// Create a new entry in the constant pool or return an existing one.
/// User must specify the log2 of the minimum required alignment for the object.
unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
unsigned Alignment) {
assert(Alignment && "Alignment must be specified!");
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (!Constants[i].isMachineConstantPoolEntry() &&
CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
if ((unsigned)Constants[i].getAlignment() < Alignment)
Constants[i].Alignment = Alignment;
return i;
}
Constants.push_back(MachineConstantPoolEntry(C, Alignment));
return Constants.size()-1;
}
unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
unsigned Alignment) {
assert(Alignment && "Alignment must be specified!");
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
int Idx = V->getExistingMachineCPValue(this, Alignment);
if (Idx != -1) {
MachineCPVsSharingEntries.insert(V);
return (unsigned)Idx;
}
Constants.push_back(MachineConstantPoolEntry(V, Alignment));
return Constants.size()-1;
}
void MachineConstantPool::print(raw_ostream &OS) const {
if (Constants.empty()) return;
OS << "Constant Pool:\n";
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
OS << " cp#" << i << ": ";
if (Constants[i].isMachineConstantPoolEntry())
Constants[i].Val.MachineCPVal->print(OS);
else
Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
OS << ", align=" << Constants[i].getAlignment();
OS << "\n";
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MachineConstantPool::dump() const { print(dbgs()); }
#endif