mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-05 02:07:56 +00:00
76695802bd
llvm-svn: 203345
922 lines
33 KiB
C++
922 lines
33 KiB
C++
//===-- ToolRunner.cpp ----------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the interfaces described in the ToolRunner.h file.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "toolrunner"
|
|
#include "ToolRunner.h"
|
|
#include "llvm/Config/config.h" // for HAVE_LINK_R
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/FileUtilities.h"
|
|
#include "llvm/Support/Program.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <fstream>
|
|
#include <sstream>
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
cl::opt<bool>
|
|
SaveTemps("save-temps", cl::init(false), cl::desc("Save temporary files"));
|
|
}
|
|
|
|
namespace {
|
|
cl::opt<std::string>
|
|
RemoteClient("remote-client",
|
|
cl::desc("Remote execution client (rsh/ssh)"));
|
|
|
|
cl::opt<std::string>
|
|
RemoteHost("remote-host",
|
|
cl::desc("Remote execution (rsh/ssh) host"));
|
|
|
|
cl::opt<std::string>
|
|
RemotePort("remote-port",
|
|
cl::desc("Remote execution (rsh/ssh) port"));
|
|
|
|
cl::opt<std::string>
|
|
RemoteUser("remote-user",
|
|
cl::desc("Remote execution (rsh/ssh) user id"));
|
|
|
|
cl::opt<std::string>
|
|
RemoteExtra("remote-extra-options",
|
|
cl::desc("Remote execution (rsh/ssh) extra options"));
|
|
}
|
|
|
|
/// RunProgramWithTimeout - This function provides an alternate interface
|
|
/// to the sys::Program::ExecuteAndWait interface.
|
|
/// @see sys::Program::ExecuteAndWait
|
|
static int RunProgramWithTimeout(StringRef ProgramPath,
|
|
const char **Args,
|
|
StringRef StdInFile,
|
|
StringRef StdOutFile,
|
|
StringRef StdErrFile,
|
|
unsigned NumSeconds = 0,
|
|
unsigned MemoryLimit = 0,
|
|
std::string *ErrMsg = 0) {
|
|
const StringRef *Redirects[3] = { &StdInFile, &StdOutFile, &StdErrFile };
|
|
|
|
#if 0 // For debug purposes
|
|
{
|
|
errs() << "RUN:";
|
|
for (unsigned i = 0; Args[i]; ++i)
|
|
errs() << " " << Args[i];
|
|
errs() << "\n";
|
|
}
|
|
#endif
|
|
|
|
return sys::ExecuteAndWait(ProgramPath, Args, 0, Redirects,
|
|
NumSeconds, MemoryLimit, ErrMsg);
|
|
}
|
|
|
|
/// RunProgramRemotelyWithTimeout - This function runs the given program
|
|
/// remotely using the given remote client and the sys::Program::ExecuteAndWait.
|
|
/// Returns the remote program exit code or reports a remote client error if it
|
|
/// fails. Remote client is required to return 255 if it failed or program exit
|
|
/// code otherwise.
|
|
/// @see sys::Program::ExecuteAndWait
|
|
static int RunProgramRemotelyWithTimeout(StringRef RemoteClientPath,
|
|
const char **Args,
|
|
StringRef StdInFile,
|
|
StringRef StdOutFile,
|
|
StringRef StdErrFile,
|
|
unsigned NumSeconds = 0,
|
|
unsigned MemoryLimit = 0) {
|
|
const StringRef *Redirects[3] = { &StdInFile, &StdOutFile, &StdErrFile };
|
|
|
|
#if 0 // For debug purposes
|
|
{
|
|
errs() << "RUN:";
|
|
for (unsigned i = 0; Args[i]; ++i)
|
|
errs() << " " << Args[i];
|
|
errs() << "\n";
|
|
}
|
|
#endif
|
|
|
|
// Run the program remotely with the remote client
|
|
int ReturnCode = sys::ExecuteAndWait(RemoteClientPath, Args, 0,
|
|
Redirects, NumSeconds, MemoryLimit);
|
|
|
|
// Has the remote client fail?
|
|
if (255 == ReturnCode) {
|
|
std::ostringstream OS;
|
|
OS << "\nError running remote client:\n ";
|
|
for (const char **Arg = Args; *Arg; ++Arg)
|
|
OS << " " << *Arg;
|
|
OS << "\n";
|
|
|
|
// The error message is in the output file, let's print it out from there.
|
|
std::string StdOutFileName = StdOutFile.str();
|
|
std::ifstream ErrorFile(StdOutFileName.c_str());
|
|
if (ErrorFile) {
|
|
std::copy(std::istreambuf_iterator<char>(ErrorFile),
|
|
std::istreambuf_iterator<char>(),
|
|
std::ostreambuf_iterator<char>(OS));
|
|
ErrorFile.close();
|
|
}
|
|
|
|
errs() << OS.str();
|
|
}
|
|
|
|
return ReturnCode;
|
|
}
|
|
|
|
static std::string ProcessFailure(StringRef ProgPath, const char** Args,
|
|
unsigned Timeout = 0,
|
|
unsigned MemoryLimit = 0) {
|
|
std::ostringstream OS;
|
|
OS << "\nError running tool:\n ";
|
|
for (const char **Arg = Args; *Arg; ++Arg)
|
|
OS << " " << *Arg;
|
|
OS << "\n";
|
|
|
|
// Rerun the compiler, capturing any error messages to print them.
|
|
SmallString<128> ErrorFilename;
|
|
int ErrorFD;
|
|
error_code EC = sys::fs::createTemporaryFile(
|
|
"bugpoint.program_error_messages", "", ErrorFD, ErrorFilename);
|
|
if (EC) {
|
|
errs() << "Error making unique filename: " << EC.message() << "\n";
|
|
exit(1);
|
|
}
|
|
RunProgramWithTimeout(ProgPath, Args, "", ErrorFilename.str(),
|
|
ErrorFilename.str(), Timeout, MemoryLimit);
|
|
// FIXME: check return code ?
|
|
|
|
// Print out the error messages generated by GCC if possible...
|
|
std::ifstream ErrorFile(ErrorFilename.c_str());
|
|
if (ErrorFile) {
|
|
std::copy(std::istreambuf_iterator<char>(ErrorFile),
|
|
std::istreambuf_iterator<char>(),
|
|
std::ostreambuf_iterator<char>(OS));
|
|
ErrorFile.close();
|
|
}
|
|
|
|
sys::fs::remove(ErrorFilename.c_str());
|
|
return OS.str();
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// LLI Implementation of AbstractIntepreter interface
|
|
//
|
|
namespace {
|
|
class LLI : public AbstractInterpreter {
|
|
std::string LLIPath; // The path to the LLI executable
|
|
std::vector<std::string> ToolArgs; // Args to pass to LLI
|
|
public:
|
|
LLI(const std::string &Path, const std::vector<std::string> *Args)
|
|
: LLIPath(Path) {
|
|
ToolArgs.clear ();
|
|
if (Args) { ToolArgs = *Args; }
|
|
}
|
|
|
|
int ExecuteProgram(const std::string &Bitcode,
|
|
const std::vector<std::string> &Args,
|
|
const std::string &InputFile,
|
|
const std::string &OutputFile,
|
|
std::string *Error,
|
|
const std::vector<std::string> &GCCArgs,
|
|
const std::vector<std::string> &SharedLibs =
|
|
std::vector<std::string>(),
|
|
unsigned Timeout = 0,
|
|
unsigned MemoryLimit = 0) override;
|
|
};
|
|
}
|
|
|
|
int LLI::ExecuteProgram(const std::string &Bitcode,
|
|
const std::vector<std::string> &Args,
|
|
const std::string &InputFile,
|
|
const std::string &OutputFile,
|
|
std::string *Error,
|
|
const std::vector<std::string> &GCCArgs,
|
|
const std::vector<std::string> &SharedLibs,
|
|
unsigned Timeout,
|
|
unsigned MemoryLimit) {
|
|
std::vector<const char*> LLIArgs;
|
|
LLIArgs.push_back(LLIPath.c_str());
|
|
LLIArgs.push_back("-force-interpreter=true");
|
|
|
|
for (std::vector<std::string>::const_iterator i = SharedLibs.begin(),
|
|
e = SharedLibs.end(); i != e; ++i) {
|
|
LLIArgs.push_back("-load");
|
|
LLIArgs.push_back((*i).c_str());
|
|
}
|
|
|
|
// Add any extra LLI args.
|
|
for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
|
|
LLIArgs.push_back(ToolArgs[i].c_str());
|
|
|
|
LLIArgs.push_back(Bitcode.c_str());
|
|
// Add optional parameters to the running program from Argv
|
|
for (unsigned i=0, e = Args.size(); i != e; ++i)
|
|
LLIArgs.push_back(Args[i].c_str());
|
|
LLIArgs.push_back(0);
|
|
|
|
outs() << "<lli>"; outs().flush();
|
|
DEBUG(errs() << "\nAbout to run:\t";
|
|
for (unsigned i=0, e = LLIArgs.size()-1; i != e; ++i)
|
|
errs() << " " << LLIArgs[i];
|
|
errs() << "\n";
|
|
);
|
|
return RunProgramWithTimeout(LLIPath, &LLIArgs[0],
|
|
InputFile, OutputFile, OutputFile,
|
|
Timeout, MemoryLimit, Error);
|
|
}
|
|
|
|
void AbstractInterpreter::anchor() { }
|
|
|
|
#if defined(LLVM_ON_UNIX)
|
|
const char EXESuffix[] = "";
|
|
#elif defined (LLVM_ON_WIN32)
|
|
const char EXESuffix[] = "exe";
|
|
#endif
|
|
|
|
/// Prepend the path to the program being executed
|
|
/// to \p ExeName, given the value of argv[0] and the address of main()
|
|
/// itself. This allows us to find another LLVM tool if it is built in the same
|
|
/// directory. An empty string is returned on error; note that this function
|
|
/// just mainpulates the path and doesn't check for executability.
|
|
/// @brief Find a named executable.
|
|
static std::string PrependMainExecutablePath(const std::string &ExeName,
|
|
const char *Argv0,
|
|
void *MainAddr) {
|
|
// Check the directory that the calling program is in. We can do
|
|
// this if ProgramPath contains at least one / character, indicating that it
|
|
// is a relative path to the executable itself.
|
|
std::string Main = sys::fs::getMainExecutable(Argv0, MainAddr);
|
|
StringRef Result = sys::path::parent_path(Main);
|
|
|
|
if (!Result.empty()) {
|
|
SmallString<128> Storage = Result;
|
|
sys::path::append(Storage, ExeName);
|
|
sys::path::replace_extension(Storage, EXESuffix);
|
|
return Storage.str();
|
|
}
|
|
|
|
return Result.str();
|
|
}
|
|
|
|
// LLI create method - Try to find the LLI executable
|
|
AbstractInterpreter *AbstractInterpreter::createLLI(const char *Argv0,
|
|
std::string &Message,
|
|
const std::vector<std::string> *ToolArgs) {
|
|
std::string LLIPath =
|
|
PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t) & createLLI);
|
|
if (!LLIPath.empty()) {
|
|
Message = "Found lli: " + LLIPath + "\n";
|
|
return new LLI(LLIPath, ToolArgs);
|
|
}
|
|
|
|
Message = "Cannot find `lli' in executable directory!\n";
|
|
return 0;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// Custom compiler command implementation of AbstractIntepreter interface
|
|
//
|
|
// Allows using a custom command for compiling the bitcode, thus allows, for
|
|
// example, to compile a bitcode fragment without linking or executing, then
|
|
// using a custom wrapper script to check for compiler errors.
|
|
namespace {
|
|
class CustomCompiler : public AbstractInterpreter {
|
|
std::string CompilerCommand;
|
|
std::vector<std::string> CompilerArgs;
|
|
public:
|
|
CustomCompiler(
|
|
const std::string &CompilerCmd, std::vector<std::string> CompArgs) :
|
|
CompilerCommand(CompilerCmd), CompilerArgs(CompArgs) {}
|
|
|
|
void compileProgram(const std::string &Bitcode,
|
|
std::string *Error,
|
|
unsigned Timeout = 0,
|
|
unsigned MemoryLimit = 0) override;
|
|
|
|
int ExecuteProgram(const std::string &Bitcode,
|
|
const std::vector<std::string> &Args,
|
|
const std::string &InputFile,
|
|
const std::string &OutputFile,
|
|
std::string *Error,
|
|
const std::vector<std::string> &GCCArgs =
|
|
std::vector<std::string>(),
|
|
const std::vector<std::string> &SharedLibs =
|
|
std::vector<std::string>(),
|
|
unsigned Timeout = 0,
|
|
unsigned MemoryLimit = 0) override {
|
|
*Error = "Execution not supported with -compile-custom";
|
|
return -1;
|
|
}
|
|
};
|
|
}
|
|
|
|
void CustomCompiler::compileProgram(const std::string &Bitcode,
|
|
std::string *Error,
|
|
unsigned Timeout,
|
|
unsigned MemoryLimit) {
|
|
|
|
std::vector<const char*> ProgramArgs;
|
|
ProgramArgs.push_back(CompilerCommand.c_str());
|
|
|
|
for (std::size_t i = 0; i < CompilerArgs.size(); ++i)
|
|
ProgramArgs.push_back(CompilerArgs.at(i).c_str());
|
|
ProgramArgs.push_back(Bitcode.c_str());
|
|
ProgramArgs.push_back(0);
|
|
|
|
// Add optional parameters to the running program from Argv
|
|
for (unsigned i = 0, e = CompilerArgs.size(); i != e; ++i)
|
|
ProgramArgs.push_back(CompilerArgs[i].c_str());
|
|
|
|
if (RunProgramWithTimeout(CompilerCommand, &ProgramArgs[0],
|
|
"", "", "",
|
|
Timeout, MemoryLimit, Error))
|
|
*Error = ProcessFailure(CompilerCommand, &ProgramArgs[0],
|
|
Timeout, MemoryLimit);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// Custom execution command implementation of AbstractIntepreter interface
|
|
//
|
|
// Allows using a custom command for executing the bitcode, thus allows,
|
|
// for example, to invoke a cross compiler for code generation followed by
|
|
// a simulator that executes the generated binary.
|
|
namespace {
|
|
class CustomExecutor : public AbstractInterpreter {
|
|
std::string ExecutionCommand;
|
|
std::vector<std::string> ExecutorArgs;
|
|
public:
|
|
CustomExecutor(
|
|
const std::string &ExecutionCmd, std::vector<std::string> ExecArgs) :
|
|
ExecutionCommand(ExecutionCmd), ExecutorArgs(ExecArgs) {}
|
|
|
|
int ExecuteProgram(const std::string &Bitcode,
|
|
const std::vector<std::string> &Args,
|
|
const std::string &InputFile,
|
|
const std::string &OutputFile,
|
|
std::string *Error,
|
|
const std::vector<std::string> &GCCArgs,
|
|
const std::vector<std::string> &SharedLibs =
|
|
std::vector<std::string>(),
|
|
unsigned Timeout = 0,
|
|
unsigned MemoryLimit = 0) override;
|
|
};
|
|
}
|
|
|
|
int CustomExecutor::ExecuteProgram(const std::string &Bitcode,
|
|
const std::vector<std::string> &Args,
|
|
const std::string &InputFile,
|
|
const std::string &OutputFile,
|
|
std::string *Error,
|
|
const std::vector<std::string> &GCCArgs,
|
|
const std::vector<std::string> &SharedLibs,
|
|
unsigned Timeout,
|
|
unsigned MemoryLimit) {
|
|
|
|
std::vector<const char*> ProgramArgs;
|
|
ProgramArgs.push_back(ExecutionCommand.c_str());
|
|
|
|
for (std::size_t i = 0; i < ExecutorArgs.size(); ++i)
|
|
ProgramArgs.push_back(ExecutorArgs.at(i).c_str());
|
|
ProgramArgs.push_back(Bitcode.c_str());
|
|
ProgramArgs.push_back(0);
|
|
|
|
// Add optional parameters to the running program from Argv
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
ProgramArgs.push_back(Args[i].c_str());
|
|
|
|
return RunProgramWithTimeout(
|
|
ExecutionCommand,
|
|
&ProgramArgs[0], InputFile, OutputFile,
|
|
OutputFile, Timeout, MemoryLimit, Error);
|
|
}
|
|
|
|
// Tokenize the CommandLine to the command and the args to allow
|
|
// defining a full command line as the command instead of just the
|
|
// executed program. We cannot just pass the whole string after the command
|
|
// as a single argument because then program sees only a single
|
|
// command line argument (with spaces in it: "foo bar" instead
|
|
// of "foo" and "bar").
|
|
//
|
|
// code borrowed from:
|
|
// http://oopweb.com/CPP/Documents/CPPHOWTO/Volume/C++Programming-HOWTO-7.html
|
|
static void lexCommand(std::string &Message, const std::string &CommandLine,
|
|
std::string &CmdPath, std::vector<std::string> &Args) {
|
|
|
|
std::string Command = "";
|
|
std::string delimiters = " ";
|
|
|
|
std::string::size_type lastPos = CommandLine.find_first_not_of(delimiters, 0);
|
|
std::string::size_type pos = CommandLine.find_first_of(delimiters, lastPos);
|
|
|
|
while (std::string::npos != pos || std::string::npos != lastPos) {
|
|
std::string token = CommandLine.substr(lastPos, pos - lastPos);
|
|
if (Command == "")
|
|
Command = token;
|
|
else
|
|
Args.push_back(token);
|
|
// Skip delimiters. Note the "not_of"
|
|
lastPos = CommandLine.find_first_not_of(delimiters, pos);
|
|
// Find next "non-delimiter"
|
|
pos = CommandLine.find_first_of(delimiters, lastPos);
|
|
}
|
|
|
|
CmdPath = sys::FindProgramByName(Command);
|
|
if (CmdPath.empty()) {
|
|
Message =
|
|
std::string("Cannot find '") + Command +
|
|
"' in PATH!\n";
|
|
return;
|
|
}
|
|
|
|
Message = "Found command in: " + CmdPath + "\n";
|
|
}
|
|
|
|
// Custom execution environment create method, takes the execution command
|
|
// as arguments
|
|
AbstractInterpreter *AbstractInterpreter::createCustomCompiler(
|
|
std::string &Message,
|
|
const std::string &CompileCommandLine) {
|
|
|
|
std::string CmdPath;
|
|
std::vector<std::string> Args;
|
|
lexCommand(Message, CompileCommandLine, CmdPath, Args);
|
|
if (CmdPath.empty())
|
|
return 0;
|
|
|
|
return new CustomCompiler(CmdPath, Args);
|
|
}
|
|
|
|
// Custom execution environment create method, takes the execution command
|
|
// as arguments
|
|
AbstractInterpreter *AbstractInterpreter::createCustomExecutor(
|
|
std::string &Message,
|
|
const std::string &ExecCommandLine) {
|
|
|
|
|
|
std::string CmdPath;
|
|
std::vector<std::string> Args;
|
|
lexCommand(Message, ExecCommandLine, CmdPath, Args);
|
|
if (CmdPath.empty())
|
|
return 0;
|
|
|
|
return new CustomExecutor(CmdPath, Args);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LLC Implementation of AbstractIntepreter interface
|
|
//
|
|
GCC::FileType LLC::OutputCode(const std::string &Bitcode,
|
|
std::string &OutputAsmFile, std::string &Error,
|
|
unsigned Timeout, unsigned MemoryLimit) {
|
|
const char *Suffix = (UseIntegratedAssembler ? ".llc.o" : ".llc.s");
|
|
|
|
SmallString<128> UniqueFile;
|
|
error_code EC =
|
|
sys::fs::createUniqueFile(Bitcode + "-%%%%%%%" + Suffix, UniqueFile);
|
|
if (EC) {
|
|
errs() << "Error making unique filename: " << EC.message() << "\n";
|
|
exit(1);
|
|
}
|
|
OutputAsmFile = UniqueFile.str();
|
|
std::vector<const char *> LLCArgs;
|
|
LLCArgs.push_back(LLCPath.c_str());
|
|
|
|
// Add any extra LLC args.
|
|
for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
|
|
LLCArgs.push_back(ToolArgs[i].c_str());
|
|
|
|
LLCArgs.push_back("-o");
|
|
LLCArgs.push_back(OutputAsmFile.c_str()); // Output to the Asm file
|
|
LLCArgs.push_back(Bitcode.c_str()); // This is the input bitcode
|
|
|
|
if (UseIntegratedAssembler)
|
|
LLCArgs.push_back("-filetype=obj");
|
|
|
|
LLCArgs.push_back (0);
|
|
|
|
outs() << (UseIntegratedAssembler ? "<llc-ia>" : "<llc>");
|
|
outs().flush();
|
|
DEBUG(errs() << "\nAbout to run:\t";
|
|
for (unsigned i = 0, e = LLCArgs.size()-1; i != e; ++i)
|
|
errs() << " " << LLCArgs[i];
|
|
errs() << "\n";
|
|
);
|
|
if (RunProgramWithTimeout(LLCPath, &LLCArgs[0],
|
|
"", "", "",
|
|
Timeout, MemoryLimit))
|
|
Error = ProcessFailure(LLCPath, &LLCArgs[0],
|
|
Timeout, MemoryLimit);
|
|
return UseIntegratedAssembler ? GCC::ObjectFile : GCC::AsmFile;
|
|
}
|
|
|
|
void LLC::compileProgram(const std::string &Bitcode, std::string *Error,
|
|
unsigned Timeout, unsigned MemoryLimit) {
|
|
std::string OutputAsmFile;
|
|
OutputCode(Bitcode, OutputAsmFile, *Error, Timeout, MemoryLimit);
|
|
sys::fs::remove(OutputAsmFile);
|
|
}
|
|
|
|
int LLC::ExecuteProgram(const std::string &Bitcode,
|
|
const std::vector<std::string> &Args,
|
|
const std::string &InputFile,
|
|
const std::string &OutputFile,
|
|
std::string *Error,
|
|
const std::vector<std::string> &ArgsForGCC,
|
|
const std::vector<std::string> &SharedLibs,
|
|
unsigned Timeout,
|
|
unsigned MemoryLimit) {
|
|
|
|
std::string OutputAsmFile;
|
|
GCC::FileType FileKind = OutputCode(Bitcode, OutputAsmFile, *Error, Timeout,
|
|
MemoryLimit);
|
|
FileRemover OutFileRemover(OutputAsmFile, !SaveTemps);
|
|
|
|
std::vector<std::string> GCCArgs(ArgsForGCC);
|
|
GCCArgs.insert(GCCArgs.end(), SharedLibs.begin(), SharedLibs.end());
|
|
|
|
// Assuming LLC worked, compile the result with GCC and run it.
|
|
return gcc->ExecuteProgram(OutputAsmFile, Args, FileKind,
|
|
InputFile, OutputFile, Error, GCCArgs,
|
|
Timeout, MemoryLimit);
|
|
}
|
|
|
|
/// createLLC - Try to find the LLC executable
|
|
///
|
|
LLC *AbstractInterpreter::createLLC(const char *Argv0,
|
|
std::string &Message,
|
|
const std::string &GCCBinary,
|
|
const std::vector<std::string> *Args,
|
|
const std::vector<std::string> *GCCArgs,
|
|
bool UseIntegratedAssembler) {
|
|
std::string LLCPath =
|
|
PrependMainExecutablePath("llc", Argv0, (void *)(intptr_t) & createLLC);
|
|
if (LLCPath.empty()) {
|
|
Message = "Cannot find `llc' in executable directory!\n";
|
|
return 0;
|
|
}
|
|
|
|
GCC *gcc = GCC::create(Message, GCCBinary, GCCArgs);
|
|
if (!gcc) {
|
|
errs() << Message << "\n";
|
|
exit(1);
|
|
}
|
|
Message = "Found llc: " + LLCPath + "\n";
|
|
return new LLC(LLCPath, gcc, Args, UseIntegratedAssembler);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// JIT Implementation of AbstractIntepreter interface
|
|
//
|
|
namespace {
|
|
class JIT : public AbstractInterpreter {
|
|
std::string LLIPath; // The path to the LLI executable
|
|
std::vector<std::string> ToolArgs; // Args to pass to LLI
|
|
public:
|
|
JIT(const std::string &Path, const std::vector<std::string> *Args)
|
|
: LLIPath(Path) {
|
|
ToolArgs.clear ();
|
|
if (Args) { ToolArgs = *Args; }
|
|
}
|
|
|
|
int ExecuteProgram(const std::string &Bitcode,
|
|
const std::vector<std::string> &Args,
|
|
const std::string &InputFile,
|
|
const std::string &OutputFile,
|
|
std::string *Error,
|
|
const std::vector<std::string> &GCCArgs =
|
|
std::vector<std::string>(),
|
|
const std::vector<std::string> &SharedLibs =
|
|
std::vector<std::string>(),
|
|
unsigned Timeout = 0,
|
|
unsigned MemoryLimit = 0) override;
|
|
};
|
|
}
|
|
|
|
int JIT::ExecuteProgram(const std::string &Bitcode,
|
|
const std::vector<std::string> &Args,
|
|
const std::string &InputFile,
|
|
const std::string &OutputFile,
|
|
std::string *Error,
|
|
const std::vector<std::string> &GCCArgs,
|
|
const std::vector<std::string> &SharedLibs,
|
|
unsigned Timeout,
|
|
unsigned MemoryLimit) {
|
|
// Construct a vector of parameters, incorporating those from the command-line
|
|
std::vector<const char*> JITArgs;
|
|
JITArgs.push_back(LLIPath.c_str());
|
|
JITArgs.push_back("-force-interpreter=false");
|
|
|
|
// Add any extra LLI args.
|
|
for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
|
|
JITArgs.push_back(ToolArgs[i].c_str());
|
|
|
|
for (unsigned i = 0, e = SharedLibs.size(); i != e; ++i) {
|
|
JITArgs.push_back("-load");
|
|
JITArgs.push_back(SharedLibs[i].c_str());
|
|
}
|
|
JITArgs.push_back(Bitcode.c_str());
|
|
// Add optional parameters to the running program from Argv
|
|
for (unsigned i=0, e = Args.size(); i != e; ++i)
|
|
JITArgs.push_back(Args[i].c_str());
|
|
JITArgs.push_back(0);
|
|
|
|
outs() << "<jit>"; outs().flush();
|
|
DEBUG(errs() << "\nAbout to run:\t";
|
|
for (unsigned i=0, e = JITArgs.size()-1; i != e; ++i)
|
|
errs() << " " << JITArgs[i];
|
|
errs() << "\n";
|
|
);
|
|
DEBUG(errs() << "\nSending output to " << OutputFile << "\n");
|
|
return RunProgramWithTimeout(LLIPath, &JITArgs[0],
|
|
InputFile, OutputFile, OutputFile,
|
|
Timeout, MemoryLimit, Error);
|
|
}
|
|
|
|
/// createJIT - Try to find the LLI executable
|
|
///
|
|
AbstractInterpreter *AbstractInterpreter::createJIT(const char *Argv0,
|
|
std::string &Message, const std::vector<std::string> *Args) {
|
|
std::string LLIPath =
|
|
PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t) & createJIT);
|
|
if (!LLIPath.empty()) {
|
|
Message = "Found lli: " + LLIPath + "\n";
|
|
return new JIT(LLIPath, Args);
|
|
}
|
|
|
|
Message = "Cannot find `lli' in executable directory!\n";
|
|
return 0;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// GCC abstraction
|
|
//
|
|
|
|
static bool IsARMArchitecture(std::vector<const char*> Args) {
|
|
for (std::vector<const char*>::const_iterator
|
|
I = Args.begin(), E = Args.end(); I != E; ++I) {
|
|
if (StringRef(*I).equals_lower("-arch")) {
|
|
++I;
|
|
if (I != E && StringRef(*I).startswith_lower("arm"))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int GCC::ExecuteProgram(const std::string &ProgramFile,
|
|
const std::vector<std::string> &Args,
|
|
FileType fileType,
|
|
const std::string &InputFile,
|
|
const std::string &OutputFile,
|
|
std::string *Error,
|
|
const std::vector<std::string> &ArgsForGCC,
|
|
unsigned Timeout,
|
|
unsigned MemoryLimit) {
|
|
std::vector<const char*> GCCArgs;
|
|
|
|
GCCArgs.push_back(GCCPath.c_str());
|
|
|
|
if (TargetTriple.getArch() == Triple::x86)
|
|
GCCArgs.push_back("-m32");
|
|
|
|
for (std::vector<std::string>::const_iterator
|
|
I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I)
|
|
GCCArgs.push_back(I->c_str());
|
|
|
|
// Specify -x explicitly in case the extension is wonky
|
|
if (fileType != ObjectFile) {
|
|
GCCArgs.push_back("-x");
|
|
if (fileType == CFile) {
|
|
GCCArgs.push_back("c");
|
|
GCCArgs.push_back("-fno-strict-aliasing");
|
|
} else {
|
|
GCCArgs.push_back("assembler");
|
|
|
|
// For ARM architectures we don't want this flag. bugpoint isn't
|
|
// explicitly told what architecture it is working on, so we get
|
|
// it from gcc flags
|
|
if (TargetTriple.isOSDarwin() && !IsARMArchitecture(GCCArgs))
|
|
GCCArgs.push_back("-force_cpusubtype_ALL");
|
|
}
|
|
}
|
|
|
|
GCCArgs.push_back(ProgramFile.c_str()); // Specify the input filename.
|
|
|
|
GCCArgs.push_back("-x");
|
|
GCCArgs.push_back("none");
|
|
GCCArgs.push_back("-o");
|
|
|
|
SmallString<128> OutputBinary;
|
|
error_code EC =
|
|
sys::fs::createUniqueFile(ProgramFile + "-%%%%%%%.gcc.exe", OutputBinary);
|
|
if (EC) {
|
|
errs() << "Error making unique filename: " << EC.message() << "\n";
|
|
exit(1);
|
|
}
|
|
GCCArgs.push_back(OutputBinary.c_str()); // Output to the right file...
|
|
|
|
// Add any arguments intended for GCC. We locate them here because this is
|
|
// most likely -L and -l options that need to come before other libraries but
|
|
// after the source. Other options won't be sensitive to placement on the
|
|
// command line, so this should be safe.
|
|
for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i)
|
|
GCCArgs.push_back(ArgsForGCC[i].c_str());
|
|
|
|
GCCArgs.push_back("-lm"); // Hard-code the math library...
|
|
GCCArgs.push_back("-O2"); // Optimize the program a bit...
|
|
#if defined (HAVE_LINK_R)
|
|
GCCArgs.push_back("-Wl,-R."); // Search this dir for .so files
|
|
#endif
|
|
if (TargetTriple.getArch() == Triple::sparc)
|
|
GCCArgs.push_back("-mcpu=v9");
|
|
GCCArgs.push_back(0); // NULL terminator
|
|
|
|
outs() << "<gcc>"; outs().flush();
|
|
DEBUG(errs() << "\nAbout to run:\t";
|
|
for (unsigned i = 0, e = GCCArgs.size()-1; i != e; ++i)
|
|
errs() << " " << GCCArgs[i];
|
|
errs() << "\n";
|
|
);
|
|
if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], "", "", "")) {
|
|
*Error = ProcessFailure(GCCPath, &GCCArgs[0]);
|
|
return -1;
|
|
}
|
|
|
|
std::vector<const char*> ProgramArgs;
|
|
|
|
// Declared here so that the destructor only runs after
|
|
// ProgramArgs is used.
|
|
std::string Exec;
|
|
|
|
if (RemoteClientPath.empty())
|
|
ProgramArgs.push_back(OutputBinary.c_str());
|
|
else {
|
|
ProgramArgs.push_back(RemoteClientPath.c_str());
|
|
ProgramArgs.push_back(RemoteHost.c_str());
|
|
if (!RemoteUser.empty()) {
|
|
ProgramArgs.push_back("-l");
|
|
ProgramArgs.push_back(RemoteUser.c_str());
|
|
}
|
|
if (!RemotePort.empty()) {
|
|
ProgramArgs.push_back("-p");
|
|
ProgramArgs.push_back(RemotePort.c_str());
|
|
}
|
|
if (!RemoteExtra.empty()) {
|
|
ProgramArgs.push_back(RemoteExtra.c_str());
|
|
}
|
|
|
|
// Full path to the binary. We need to cd to the exec directory because
|
|
// there is a dylib there that the exec expects to find in the CWD
|
|
char* env_pwd = getenv("PWD");
|
|
Exec = "cd ";
|
|
Exec += env_pwd;
|
|
Exec += "; ./";
|
|
Exec += OutputBinary.c_str();
|
|
ProgramArgs.push_back(Exec.c_str());
|
|
}
|
|
|
|
// Add optional parameters to the running program from Argv
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
ProgramArgs.push_back(Args[i].c_str());
|
|
ProgramArgs.push_back(0); // NULL terminator
|
|
|
|
// Now that we have a binary, run it!
|
|
outs() << "<program>"; outs().flush();
|
|
DEBUG(errs() << "\nAbout to run:\t";
|
|
for (unsigned i = 0, e = ProgramArgs.size()-1; i != e; ++i)
|
|
errs() << " " << ProgramArgs[i];
|
|
errs() << "\n";
|
|
);
|
|
|
|
FileRemover OutputBinaryRemover(OutputBinary.str(), !SaveTemps);
|
|
|
|
if (RemoteClientPath.empty()) {
|
|
DEBUG(errs() << "<run locally>");
|
|
int ExitCode = RunProgramWithTimeout(OutputBinary.str(), &ProgramArgs[0],
|
|
InputFile, OutputFile, OutputFile,
|
|
Timeout, MemoryLimit, Error);
|
|
// Treat a signal (usually SIGSEGV) or timeout as part of the program output
|
|
// so that crash-causing miscompilation is handled seamlessly.
|
|
if (ExitCode < -1) {
|
|
std::ofstream outFile(OutputFile.c_str(), std::ios_base::app);
|
|
outFile << *Error << '\n';
|
|
outFile.close();
|
|
Error->clear();
|
|
}
|
|
return ExitCode;
|
|
} else {
|
|
outs() << "<run remotely>"; outs().flush();
|
|
return RunProgramRemotelyWithTimeout(RemoteClientPath,
|
|
&ProgramArgs[0], InputFile, OutputFile,
|
|
OutputFile, Timeout, MemoryLimit);
|
|
}
|
|
}
|
|
|
|
int GCC::MakeSharedObject(const std::string &InputFile, FileType fileType,
|
|
std::string &OutputFile,
|
|
const std::vector<std::string> &ArgsForGCC,
|
|
std::string &Error) {
|
|
SmallString<128> UniqueFilename;
|
|
error_code EC = sys::fs::createUniqueFile(
|
|
InputFile + "-%%%%%%%" + LTDL_SHLIB_EXT, UniqueFilename);
|
|
if (EC) {
|
|
errs() << "Error making unique filename: " << EC.message() << "\n";
|
|
exit(1);
|
|
}
|
|
OutputFile = UniqueFilename.str();
|
|
|
|
std::vector<const char*> GCCArgs;
|
|
|
|
GCCArgs.push_back(GCCPath.c_str());
|
|
|
|
if (TargetTriple.getArch() == Triple::x86)
|
|
GCCArgs.push_back("-m32");
|
|
|
|
for (std::vector<std::string>::const_iterator
|
|
I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I)
|
|
GCCArgs.push_back(I->c_str());
|
|
|
|
// Compile the C/asm file into a shared object
|
|
if (fileType != ObjectFile) {
|
|
GCCArgs.push_back("-x");
|
|
GCCArgs.push_back(fileType == AsmFile ? "assembler" : "c");
|
|
}
|
|
GCCArgs.push_back("-fno-strict-aliasing");
|
|
GCCArgs.push_back(InputFile.c_str()); // Specify the input filename.
|
|
GCCArgs.push_back("-x");
|
|
GCCArgs.push_back("none");
|
|
if (TargetTriple.getArch() == Triple::sparc)
|
|
GCCArgs.push_back("-G"); // Compile a shared library, `-G' for Sparc
|
|
else if (TargetTriple.isOSDarwin()) {
|
|
// link all source files into a single module in data segment, rather than
|
|
// generating blocks. dynamic_lookup requires that you set
|
|
// MACOSX_DEPLOYMENT_TARGET=10.3 in your env. FIXME: it would be better for
|
|
// bugpoint to just pass that in the environment of GCC.
|
|
GCCArgs.push_back("-single_module");
|
|
GCCArgs.push_back("-dynamiclib"); // `-dynamiclib' for MacOS X/PowerPC
|
|
GCCArgs.push_back("-undefined");
|
|
GCCArgs.push_back("dynamic_lookup");
|
|
} else
|
|
GCCArgs.push_back("-shared"); // `-shared' for Linux/X86, maybe others
|
|
|
|
if (TargetTriple.getArch() == Triple::x86_64)
|
|
GCCArgs.push_back("-fPIC"); // Requires shared objs to contain PIC
|
|
|
|
if (TargetTriple.getArch() == Triple::sparc)
|
|
GCCArgs.push_back("-mcpu=v9");
|
|
|
|
GCCArgs.push_back("-o");
|
|
GCCArgs.push_back(OutputFile.c_str()); // Output to the right filename.
|
|
GCCArgs.push_back("-O2"); // Optimize the program a bit.
|
|
|
|
|
|
|
|
// Add any arguments intended for GCC. We locate them here because this is
|
|
// most likely -L and -l options that need to come before other libraries but
|
|
// after the source. Other options won't be sensitive to placement on the
|
|
// command line, so this should be safe.
|
|
for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i)
|
|
GCCArgs.push_back(ArgsForGCC[i].c_str());
|
|
GCCArgs.push_back(0); // NULL terminator
|
|
|
|
|
|
|
|
outs() << "<gcc>"; outs().flush();
|
|
DEBUG(errs() << "\nAbout to run:\t";
|
|
for (unsigned i = 0, e = GCCArgs.size()-1; i != e; ++i)
|
|
errs() << " " << GCCArgs[i];
|
|
errs() << "\n";
|
|
);
|
|
if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], "", "", "")) {
|
|
Error = ProcessFailure(GCCPath, &GCCArgs[0]);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// create - Try to find the `gcc' executable
|
|
///
|
|
GCC *GCC::create(std::string &Message,
|
|
const std::string &GCCBinary,
|
|
const std::vector<std::string> *Args) {
|
|
std::string GCCPath = sys::FindProgramByName(GCCBinary);
|
|
if (GCCPath.empty()) {
|
|
Message = "Cannot find `"+ GCCBinary +"' in PATH!\n";
|
|
return 0;
|
|
}
|
|
|
|
std::string RemoteClientPath;
|
|
if (!RemoteClient.empty())
|
|
RemoteClientPath = sys::FindProgramByName(RemoteClient);
|
|
|
|
Message = "Found gcc: " + GCCPath + "\n";
|
|
return new GCC(GCCPath, RemoteClientPath, Args);
|
|
}
|