llvm-mirror/tools/llvm-mca/Scheduler.cpp
Andrea Di Biagio 9519f9efed [llvm-mca] Fix handling of zero-latency instructions.
This patch fixes a problem found when testing zero latency instructions on
target AArch64 -mcpu=exynos-m3 / -mcpu=exynos-m1.

On Exynos-m3/m1, direct branches are zero-latency instructions that don't consume
any processor resources.  The DispatchUnit marks zero-latency instructions as
"executed", so that no scheduling is required.  The event of instruction
executed is then notified to all the listeners, and the reorder buffer (managed
by the RetireControlUnit) is updated. In particular, the entry associated to the
zero-latency instruction in the reorder buffer is marked as executed.

Before this patch, the DispatchUnit forgot to assign a retire control unit token
(RCUToken) to the zero-latency instruction. As a consequence, the RCUToken was
used uninitialized. This was causing a crash in the RetireControlUnit logic.

Fixes PR36650.

llvm-svn: 327056
2018-03-08 20:21:55 +00:00

460 lines
15 KiB
C++

//===--------------------- Scheduler.cpp ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A scheduler for processor resource units and processor resource groups.
//
//===----------------------------------------------------------------------===//
#include "Scheduler.h"
#include "Backend.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "llvm-mca"
namespace mca {
using namespace llvm;
uint64_t ResourceState::selectNextInSequence() {
assert(isReady());
uint64_t Next = getNextInSequence();
while (!isSubResourceReady(Next)) {
updateNextInSequence();
Next = getNextInSequence();
}
return Next;
}
#ifndef NDEBUG
void ResourceState::dump() const {
dbgs() << "MASK: " << ResourceMask << ", SIZE_MASK: " << ResourceSizeMask
<< ", NEXT: " << NextInSequenceMask << ", RDYMASK: " << ReadyMask
<< ", BufferSize=" << BufferSize
<< ", AvailableSlots=" << AvailableSlots
<< ", Reserved=" << Unavailable << '\n';
}
#endif
// Adds a new resource state in Resources, as well as a new descriptor in
// ResourceDescriptor. Map 'Resources' allows to quickly obtain ResourceState
// objects from resource mask identifiers.
void ResourceManager::addResource(const MCProcResourceDesc &Desc,
uint64_t Mask) {
assert(Resources.find(Mask) == Resources.end() && "Resource already added!");
Resources[Mask] = llvm::make_unique<ResourceState>(Desc, Mask);
}
// Populate vector ProcResID2Mask with resource masks. One per each processor
// resource declared by the scheduling model.
void ResourceManager::computeProcResourceMasks(const MCSchedModel &SM) {
unsigned ProcResourceID = 0;
// Create a unique bitmask for every processor resource unit.
// Skip resource at index 0, since it always references 'InvalidUnit'.
ProcResID2Mask.resize(SM.getNumProcResourceKinds());
for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
const MCProcResourceDesc &Desc = *SM.getProcResource(I);
if (Desc.SubUnitsIdxBegin)
continue;
ProcResID2Mask[I] = 1ULL << ProcResourceID;
ProcResourceID++;
}
// Create a unique bitmask for every processor resource group.
for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
const MCProcResourceDesc &Desc = *SM.getProcResource(I);
if (!Desc.SubUnitsIdxBegin)
continue;
ProcResID2Mask[I] |= 1ULL << ProcResourceID;
for (unsigned U = 0; U < Desc.NumUnits; ++U) {
uint64_t OtherMask = ProcResID2Mask[Desc.SubUnitsIdxBegin[U]];
ProcResID2Mask[I] |= OtherMask;
}
ProcResourceID++;
}
}
// Returns the actual resource consumed by this Use.
// First, is the primary resource ID.
// Second, is the specific sub-resource ID.
std::pair<uint64_t, uint64_t> ResourceManager::selectPipe(uint64_t ResourceID) {
ResourceState &RS = *Resources[ResourceID];
uint64_t SubResourceID = RS.selectNextInSequence();
if (RS.isAResourceGroup())
return selectPipe(SubResourceID);
return std::pair<uint64_t, uint64_t>(ResourceID, SubResourceID);
}
void ResourceState::removeFromNextInSequence(uint64_t ID) {
assert(NextInSequenceMask);
assert(countPopulation(ID) == 1);
if (ID > getNextInSequence())
RemovedFromNextInSequence |= ID;
NextInSequenceMask = NextInSequenceMask & (~ID);
if (!NextInSequenceMask) {
NextInSequenceMask = ResourceSizeMask;
assert(NextInSequenceMask != RemovedFromNextInSequence);
NextInSequenceMask ^= RemovedFromNextInSequence;
RemovedFromNextInSequence = 0;
}
}
void ResourceManager::use(ResourceRef RR) {
// Mark the sub-resource referenced by RR as used.
ResourceState &RS = *Resources[RR.first];
RS.markSubResourceAsUsed(RR.second);
// If there are still available units in RR.first,
// then we are done.
if (RS.isReady())
return;
// Notify to other resources that RR.first is no longer available.
for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) {
ResourceState &Current = *Res.second.get();
if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first)
continue;
if (Current.containsResource(RR.first)) {
Current.markSubResourceAsUsed(RR.first);
Current.removeFromNextInSequence(RR.first);
}
}
}
void ResourceManager::release(ResourceRef RR) {
ResourceState &RS = *Resources[RR.first];
bool WasFullyUsed = !RS.isReady();
RS.releaseSubResource(RR.second);
if (!WasFullyUsed)
return;
for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) {
ResourceState &Current = *Res.second.get();
if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first)
continue;
if (Current.containsResource(RR.first))
Current.releaseSubResource(RR.first);
}
}
void ResourceManager::reserveDispatchHazardResources(const InstrDesc &Desc) {
for (const uint64_t R : Desc.Buffers) {
ResourceState &Resource = *Resources[R];
if (Resource.isADispatchHazard()) {
assert(!Resource.isReserved());
Resource.setReserved();
}
}
}
bool ResourceManager::canBeIssued(const InstrDesc &Desc) const {
return std::all_of(Desc.Resources.begin(), Desc.Resources.end(),
[&](const std::pair<uint64_t, const ResourceUsage> &E) {
unsigned NumUnits =
E.second.isReserved() ? 0U : E.second.NumUnits;
return isReady(E.first, NumUnits);
});
}
// Returns true if all resources are in-order, and there is at least one
// resource which is a dispatch hazard (BufferSize = 0).
bool ResourceManager::mustIssueImmediately(const InstrDesc &Desc) {
if (!canBeIssued(Desc))
return false;
bool AllInOrderResources = std::all_of(
Desc.Buffers.begin(), Desc.Buffers.end(), [&](const unsigned BufferMask) {
const ResourceState &Resource = *Resources[BufferMask];
return Resource.isInOrder() || Resource.isADispatchHazard();
});
if (!AllInOrderResources)
return false;
return std::any_of(Desc.Buffers.begin(), Desc.Buffers.end(),
[&](const unsigned BufferMask) {
return Resources[BufferMask]->isADispatchHazard();
});
}
double ResourceManager::getRThroughput(const InstrDesc &ID) const {
double RThroughput = 0;
for (const std::pair<uint64_t, ResourceUsage> &Usage : ID.Resources) {
const CycleSegment &CS = Usage.second.CS;
assert(CS.begin() == 0);
if (Usage.second.isReserved()) {
RThroughput = std::max(RThroughput, (double)CS.size());
continue;
}
unsigned Population = std::max(1U, countPopulation(Usage.first) - 1);
unsigned NumUnits = Population * getNumUnits(Usage.first);
NumUnits -= Usage.second.NumUnits - 1;
unsigned Cycles = CS.size();
RThroughput = std::max(RThroughput, (double)Cycles / NumUnits);
}
return RThroughput;
}
void ResourceManager::issueInstruction(
unsigned Index, const InstrDesc &Desc,
SmallVectorImpl<std::pair<ResourceRef, unsigned>> &Pipes) {
releaseBuffers(Desc);
for (const std::pair<uint64_t, ResourceUsage> &R : Desc.Resources) {
const CycleSegment &CS = R.second.CS;
if (!CS.size()) {
releaseResource(R.first);
continue;
}
assert(CS.begin() == 0 && "Invalid {Start, End} cycles!");
if (!R.second.isReserved()) {
ResourceRef Pipe = selectPipe(R.first);
use(Pipe);
BusyResources[Pipe] += CS.size();
Pipes.emplace_back(std::pair<ResourceRef, unsigned>(Pipe, CS.size()));
} else {
assert((countPopulation(R.first) > 1) && "Expected a group!");
// Mark this group as reserved.
assert(R.second.isReserved());
reserveResource(R.first);
BusyResources[ResourceRef(R.first, R.first)] += CS.size();
}
}
}
void ResourceManager::cycleEvent(SmallVectorImpl<ResourceRef> &ResourcesFreed) {
for (std::pair<ResourceRef, unsigned> &BR : BusyResources) {
if (BR.second)
BR.second--;
if (!BR.second) {
// Release this resource.
const ResourceRef &RR = BR.first;
if (countPopulation(RR.first) == 1)
release(RR);
releaseResource(RR.first);
ResourcesFreed.push_back(RR);
}
}
for (const ResourceRef &RF : ResourcesFreed)
BusyResources.erase(RF);
}
Instruction *Scheduler::scheduleInstruction(unsigned Idx, Instruction *MCIS) {
assert(WaitQueue.find(Idx) == WaitQueue.end());
assert(ReadyQueue.find(Idx) == ReadyQueue.end());
assert(IssuedQueue.find(Idx) == IssuedQueue.end());
// Special case where MCIS is a zero-latency instruction. A zero-latency
// instruction doesn't consume any scheduler resources. That is because it
// doesn't need to be executed. Most of the times, zero latency instructions
// are removed at register renaming stage. For example, register-register
// moves can be removed at register renaming stage by creating new aliases.
// Zero-idiom instruction (for example: a `xor reg, reg`) can also be
// eliminated at register renaming stage, since we know in advance that those
// clear their output register.
if (MCIS->isZeroLatency()) {
notifyInstructionReady(Idx);
MCIS->forceExecuted();
notifyInstructionIssued(Idx, {});
notifyInstructionExecuted(Idx);
return MCIS;
}
// Consume entries in the reservation stations.
const InstrDesc &Desc = MCIS->getDesc();
Resources->reserveBuffers(Desc);
// Mark units with BufferSize=0 as reserved. These resources will only
// be released after MCIS is issued, and all the ResourceCycles for
// those units have been consumed.
Resources->reserveDispatchHazardResources(Desc);
bool MayLoad = Desc.MayLoad;
bool MayStore = Desc.MayStore;
if (MayLoad || MayStore)
LSU->reserve(Idx, MayLoad, MayStore, Desc.HasSideEffects);
MCIS->dispatch();
bool IsReady = MCIS->isReady();
if (IsReady && (MayLoad || MayStore))
IsReady &= LSU->isReady(Idx);
if (!IsReady) {
DEBUG(dbgs() << "[SCHEDULER] Adding " << Idx << " to the Wait Queue\n");
WaitQueue[Idx] = MCIS;
return MCIS;
}
notifyInstructionReady(Idx);
// Special case where the instruction is ready, and it uses an in-order
// dispatch/issue processor resource. The instruction is issued immediately to
// the pipelines. Any other in-order buffered resources (i.e. BufferSize=1)
// are consumed.
if (Resources->mustIssueImmediately(Desc)) {
DEBUG(dbgs() << "[SCHEDULER] Instruction " << Idx
<< " issued immediately\n");
issueInstruction(MCIS, Idx);
return MCIS;
}
DEBUG(dbgs() << "[SCHEDULER] Adding " << Idx << " to the Ready Queue\n");
ReadyQueue[Idx] = MCIS;
return MCIS;
}
void Scheduler::cycleEvent(unsigned /* unused */) {
SmallVector<ResourceRef, 8> ResourcesFreed;
Resources->cycleEvent(ResourcesFreed);
for (const ResourceRef &RR : ResourcesFreed)
notifyResourceAvailable(RR);
updateIssuedQueue();
updatePendingQueue();
issue();
}
#ifndef NDEBUG
void Scheduler::dump() const {
dbgs() << "[SCHEDULER]: WaitQueue size is: " << WaitQueue.size() << '\n';
dbgs() << "[SCHEDULER]: ReadyQueue size is: " << ReadyQueue.size() << '\n';
dbgs() << "[SCHEDULER]: IssuedQueue size is: " << IssuedQueue.size() << '\n';
Resources->dump();
}
#endif
Scheduler::Event Scheduler::canBeDispatched(const InstrDesc &Desc) const {
if (Desc.MayLoad && LSU->isLQFull())
return HWS_LD_QUEUE_UNAVAILABLE;
if (Desc.MayStore && LSU->isSQFull())
return HWS_ST_QUEUE_UNAVAILABLE;
Scheduler::Event Event;
switch (Resources->canBeDispatched(Desc)) {
case ResourceStateEvent::RS_BUFFER_AVAILABLE:
Event = HWS_AVAILABLE;
break;
case ResourceStateEvent::RS_BUFFER_UNAVAILABLE:
Event = HWS_QUEUE_UNAVAILABLE;
break;
case ResourceStateEvent::RS_RESERVED:
Event = HWS_DISPATCH_GROUP_RESTRICTION;
}
return Event;
}
void Scheduler::issueInstruction(Instruction *IS, unsigned InstrIndex) {
// Issue the instruction and collect all the consumed resources
// into a vector. That vector is then used to notify the listener.
// Most instructions consume very few resurces (typically one or
// two resources). We use a small vector here, and conservatively
// initialize its capacity to 4. This should address the majority of
// the cases.
SmallVector<std::pair<ResourceRef, unsigned>, 4> UsedResources;
const InstrDesc &D = IS->getDesc();
Resources->issueInstruction(InstrIndex, D, UsedResources);
// Notify the instruction that it started executing.
// This updates the internal state of each write.
IS->execute();
if (D.MaxLatency) {
IssuedQueue[InstrIndex] = IS;
notifyInstructionIssued(InstrIndex, UsedResources);
} else {
// A zero latency instruction which reads and/or updates registers.
notifyInstructionIssued(InstrIndex, UsedResources);
notifyInstructionExecuted(InstrIndex);
}
}
void Scheduler::issue() {
std::vector<unsigned> ToRemove;
for (const QueueEntryTy QueueEntry : ReadyQueue) {
// Give priority to older instructions in ReadyQueue. The ready queue is
// ordered by key, and therefore older instructions are visited first.
Instruction *IS = QueueEntry.second;
const InstrDesc &D = IS->getDesc();
if (!Resources->canBeIssued(D))
continue;
unsigned InstrIndex = QueueEntry.first;
issueInstruction(IS, InstrIndex);
ToRemove.emplace_back(InstrIndex);
}
for (const unsigned InstrIndex : ToRemove)
ReadyQueue.erase(InstrIndex);
}
void Scheduler::updatePendingQueue() {
// Scan the set of waiting instructions and promote them to the
// ready queue if operands are all ready.
for (auto I = WaitQueue.begin(), E = WaitQueue.end(); I != E;) {
const QueueEntryTy Entry = *I;
Entry.second->cycleEvent();
const InstrDesc &Desc = Entry.second->getDesc();
bool IsMemOp = Desc.MayLoad || Desc.MayStore;
bool IsReady = Entry.second->isReady();
if (IsReady && IsMemOp)
IsReady &= LSU->isReady(Entry.first);
if (IsReady) {
notifyInstructionReady(Entry.first);
ReadyQueue[Entry.first] = Entry.second;
auto ToRemove = I;
++I;
WaitQueue.erase(ToRemove);
} else {
++I;
}
}
}
void Scheduler::updateIssuedQueue() {
for (auto I = IssuedQueue.begin(), E = IssuedQueue.end(); I != E;) {
const QueueEntryTy Entry = *I;
Entry.second->cycleEvent();
if (Entry.second->isExecuted()) {
notifyInstructionExecuted(Entry.first);
auto ToRemove = I;
++I;
IssuedQueue.erase(ToRemove);
} else {
DEBUG(dbgs() << "[SCHEDULER]: Instruction " << Entry.first
<< " is still executing.\n");
++I;
}
}
}
void Scheduler::notifyInstructionIssued(
unsigned Index, const ArrayRef<std::pair<ResourceRef, unsigned>> &Used) {
Owner->notifyInstructionIssued(Index, Used);
}
void Scheduler::notifyInstructionExecuted(unsigned Index) {
LSU->onInstructionExecuted(Index);
Owner->notifyInstructionExecuted(Index);
}
void Scheduler::notifyInstructionReady(unsigned Index) {
Owner->notifyInstructionReady(Index);
}
void Scheduler::notifyResourceAvailable(const ResourceRef &RR) {
Owner->notifyResourceAvailable(RR);
}
} // namespace mca