llvm-mirror/lib/CodeGen/TwoAddressInstructionPass.cpp
2010-05-11 00:04:31 +00:00

1204 lines
44 KiB
C++

//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TwoAddress instruction pass which is used
// by most register allocators. Two-Address instructions are rewritten
// from:
//
// A = B op C
//
// to:
//
// A = B
// A op= C
//
// Note that if a register allocator chooses to use this pass, that it
// has to be capable of handling the non-SSA nature of these rewritten
// virtual registers.
//
// It is also worth noting that the duplicate operand of the two
// address instruction is removed.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "twoaddrinstr"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
STATISTIC(NumReMats, "Number of instructions re-materialized");
STATISTIC(NumDeletes, "Number of dead instructions deleted");
namespace {
class TwoAddressInstructionPass : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI;
LiveVariables *LV;
AliasAnalysis *AA;
// DistanceMap - Keep track the distance of a MI from the start of the
// current basic block.
DenseMap<MachineInstr*, unsigned> DistanceMap;
// SrcRegMap - A map from virtual registers to physical registers which
// are likely targets to be coalesced to due to copies from physical
// registers to virtual registers. e.g. v1024 = move r0.
DenseMap<unsigned, unsigned> SrcRegMap;
// DstRegMap - A map from virtual registers to physical registers which
// are likely targets to be coalesced to due to copies to physical
// registers from virtual registers. e.g. r1 = move v1024.
DenseMap<unsigned, unsigned> DstRegMap;
/// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
/// during the initial walk of the machine function.
SmallVector<MachineInstr*, 16> RegSequences;
bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
unsigned Reg,
MachineBasicBlock::iterator OldPos);
bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
MachineInstr *MI, MachineInstr *DefMI,
MachineBasicBlock *MBB, unsigned Loc);
bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
unsigned &LastDef);
MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
unsigned Dist);
bool isProfitableToCommute(unsigned regB, unsigned regC,
MachineInstr *MI, MachineBasicBlock *MBB,
unsigned Dist);
bool CommuteInstruction(MachineBasicBlock::iterator &mi,
MachineFunction::iterator &mbbi,
unsigned RegB, unsigned RegC, unsigned Dist);
bool isProfitableToConv3Addr(unsigned RegA);
bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi,
unsigned RegB, unsigned Dist);
typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
SmallVector<NewKill, 4> &NewKills,
MachineBasicBlock *MBB, unsigned Dist);
bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi, unsigned Dist);
bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi,
unsigned SrcIdx, unsigned DstIdx,
unsigned Dist);
void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
SmallPtrSet<MachineInstr*, 8> &Processed);
/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
/// sub-register references of the register defined by REG_SEQUENCE.
bool EliminateRegSequences();
public:
static char ID; // Pass identification, replacement for typeid
TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<LiveVariables>();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
if (StrongPHIElim)
AU.addPreservedID(StrongPHIEliminationID);
else
AU.addPreservedID(PHIEliminationID);
MachineFunctionPass::getAnalysisUsage(AU);
}
/// runOnMachineFunction - Pass entry point.
bool runOnMachineFunction(MachineFunction&);
};
}
char TwoAddressInstructionPass::ID = 0;
static RegisterPass<TwoAddressInstructionPass>
X("twoaddressinstruction", "Two-Address instruction pass");
const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
/// Sink3AddrInstruction - A two-address instruction has been converted to a
/// three-address instruction to avoid clobbering a register. Try to sink it
/// past the instruction that would kill the above mentioned register to reduce
/// register pressure.
bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
MachineInstr *MI, unsigned SavedReg,
MachineBasicBlock::iterator OldPos) {
// Check if it's safe to move this instruction.
bool SeenStore = true; // Be conservative.
if (!MI->isSafeToMove(TII, AA, SeenStore))
return false;
unsigned DefReg = 0;
SmallSet<unsigned, 4> UseRegs;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned MOReg = MO.getReg();
if (!MOReg)
continue;
if (MO.isUse() && MOReg != SavedReg)
UseRegs.insert(MO.getReg());
if (!MO.isDef())
continue;
if (MO.isImplicit())
// Don't try to move it if it implicitly defines a register.
return false;
if (DefReg)
// For now, don't move any instructions that define multiple registers.
return false;
DefReg = MO.getReg();
}
// Find the instruction that kills SavedReg.
MachineInstr *KillMI = NULL;
for (MachineRegisterInfo::use_nodbg_iterator
UI = MRI->use_nodbg_begin(SavedReg),
UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
MachineOperand &UseMO = UI.getOperand();
if (!UseMO.isKill())
continue;
KillMI = UseMO.getParent();
break;
}
if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
return false;
// If any of the definitions are used by another instruction between the
// position and the kill use, then it's not safe to sink it.
//
// FIXME: This can be sped up if there is an easy way to query whether an
// instruction is before or after another instruction. Then we can use
// MachineRegisterInfo def / use instead.
MachineOperand *KillMO = NULL;
MachineBasicBlock::iterator KillPos = KillMI;
++KillPos;
unsigned NumVisited = 0;
for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
MachineInstr *OtherMI = I;
// DBG_VALUE cannot be counted against the limit.
if (OtherMI->isDebugValue())
continue;
if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
return false;
++NumVisited;
for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = OtherMI->getOperand(i);
if (!MO.isReg())
continue;
unsigned MOReg = MO.getReg();
if (!MOReg)
continue;
if (DefReg == MOReg)
return false;
if (MO.isKill()) {
if (OtherMI == KillMI && MOReg == SavedReg)
// Save the operand that kills the register. We want to unset the kill
// marker if we can sink MI past it.
KillMO = &MO;
else if (UseRegs.count(MOReg))
// One of the uses is killed before the destination.
return false;
}
}
}
// Update kill and LV information.
KillMO->setIsKill(false);
KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
KillMO->setIsKill(true);
if (LV)
LV->replaceKillInstruction(SavedReg, KillMI, MI);
// Move instruction to its destination.
MBB->remove(MI);
MBB->insert(KillPos, MI);
++Num3AddrSunk;
return true;
}
/// isTwoAddrUse - Return true if the specified MI is using the specified
/// register as a two-address operand.
static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
const TargetInstrDesc &TID = UseMI->getDesc();
for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
MachineOperand &MO = UseMI->getOperand(i);
if (MO.isReg() && MO.getReg() == Reg &&
(MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
// Earlier use is a two-address one.
return true;
}
return false;
}
/// isProfitableToReMat - Return true if the heuristics determines it is likely
/// to be profitable to re-materialize the definition of Reg rather than copy
/// the register.
bool
TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
const TargetRegisterClass *RC,
MachineInstr *MI, MachineInstr *DefMI,
MachineBasicBlock *MBB, unsigned Loc) {
bool OtherUse = false;
for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
MachineOperand &UseMO = UI.getOperand();
MachineInstr *UseMI = UseMO.getParent();
MachineBasicBlock *UseMBB = UseMI->getParent();
if (UseMBB == MBB) {
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
if (DI != DistanceMap.end() && DI->second == Loc)
continue; // Current use.
OtherUse = true;
// There is at least one other use in the MBB that will clobber the
// register.
if (isTwoAddrUse(UseMI, Reg))
return true;
}
}
// If other uses in MBB are not two-address uses, then don't remat.
if (OtherUse)
return false;
// No other uses in the same block, remat if it's defined in the same
// block so it does not unnecessarily extend the live range.
return MBB == DefMI->getParent();
}
/// NoUseAfterLastDef - Return true if there are no intervening uses between the
/// last instruction in the MBB that defines the specified register and the
/// two-address instruction which is being processed. It also returns the last
/// def location by reference
bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
MachineBasicBlock *MBB, unsigned Dist,
unsigned &LastDef) {
LastDef = 0;
unsigned LastUse = Dist;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
E = MRI->reg_end(); I != E; ++I) {
MachineOperand &MO = I.getOperand();
MachineInstr *MI = MO.getParent();
if (MI->getParent() != MBB || MI->isDebugValue())
continue;
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
if (DI == DistanceMap.end())
continue;
if (MO.isUse() && DI->second < LastUse)
LastUse = DI->second;
if (MO.isDef() && DI->second > LastDef)
LastDef = DI->second;
}
return !(LastUse > LastDef && LastUse < Dist);
}
MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
MachineBasicBlock *MBB,
unsigned Dist) {
unsigned LastUseDist = 0;
MachineInstr *LastUse = 0;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
E = MRI->reg_end(); I != E; ++I) {
MachineOperand &MO = I.getOperand();
MachineInstr *MI = MO.getParent();
if (MI->getParent() != MBB || MI->isDebugValue())
continue;
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
if (DI == DistanceMap.end())
continue;
if (DI->second >= Dist)
continue;
if (MO.isUse() && DI->second > LastUseDist) {
LastUse = DI->first;
LastUseDist = DI->second;
}
}
return LastUse;
}
/// isCopyToReg - Return true if the specified MI is a copy instruction or
/// a extract_subreg instruction. It also returns the source and destination
/// registers and whether they are physical registers by reference.
static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
unsigned &SrcReg, unsigned &DstReg,
bool &IsSrcPhys, bool &IsDstPhys) {
SrcReg = 0;
DstReg = 0;
unsigned SrcSubIdx, DstSubIdx;
if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
if (MI.isExtractSubreg()) {
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
} else if (MI.isInsertSubreg()) {
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(2).getReg();
} else if (MI.isSubregToReg()) {
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(2).getReg();
}
}
if (DstReg) {
IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
return true;
}
return false;
}
/// isKilled - Test if the given register value, which is used by the given
/// instruction, is killed by the given instruction. This looks through
/// coalescable copies to see if the original value is potentially not killed.
///
/// For example, in this code:
///
/// %reg1034 = copy %reg1024
/// %reg1035 = copy %reg1025<kill>
/// %reg1036 = add %reg1034<kill>, %reg1035<kill>
///
/// %reg1034 is not considered to be killed, since it is copied from a
/// register which is not killed. Treating it as not killed lets the
/// normal heuristics commute the (two-address) add, which lets
/// coalescing eliminate the extra copy.
///
static bool isKilled(MachineInstr &MI, unsigned Reg,
const MachineRegisterInfo *MRI,
const TargetInstrInfo *TII) {
MachineInstr *DefMI = &MI;
for (;;) {
if (!DefMI->killsRegister(Reg))
return false;
if (TargetRegisterInfo::isPhysicalRegister(Reg))
return true;
MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
// If there are multiple defs, we can't do a simple analysis, so just
// go with what the kill flag says.
if (llvm::next(Begin) != MRI->def_end())
return true;
DefMI = &*Begin;
bool IsSrcPhys, IsDstPhys;
unsigned SrcReg, DstReg;
// If the def is something other than a copy, then it isn't going to
// be coalesced, so follow the kill flag.
if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
return true;
Reg = SrcReg;
}
}
/// isTwoAddrUse - Return true if the specified MI uses the specified register
/// as a two-address use. If so, return the destination register by reference.
static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
const TargetInstrDesc &TID = MI.getDesc();
unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
for (unsigned i = 0; i != NumOps; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
continue;
unsigned ti;
if (MI.isRegTiedToDefOperand(i, &ti)) {
DstReg = MI.getOperand(ti).getReg();
return true;
}
}
return false;
}
/// findOnlyInterestingUse - Given a register, if has a single in-basic block
/// use, return the use instruction if it's a copy or a two-address use.
static
MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
MachineRegisterInfo *MRI,
const TargetInstrInfo *TII,
bool &IsCopy,
unsigned &DstReg, bool &IsDstPhys) {
if (!MRI->hasOneNonDBGUse(Reg))
// None or more than one use.
return 0;
MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
if (UseMI.getParent() != MBB)
return 0;
unsigned SrcReg;
bool IsSrcPhys;
if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
IsCopy = true;
return &UseMI;
}
IsDstPhys = false;
if (isTwoAddrUse(UseMI, Reg, DstReg)) {
IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
return &UseMI;
}
return 0;
}
/// getMappedReg - Return the physical register the specified virtual register
/// might be mapped to.
static unsigned
getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
while (TargetRegisterInfo::isVirtualRegister(Reg)) {
DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
if (SI == RegMap.end())
return 0;
Reg = SI->second;
}
if (TargetRegisterInfo::isPhysicalRegister(Reg))
return Reg;
return 0;
}
/// regsAreCompatible - Return true if the two registers are equal or aliased.
///
static bool
regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
if (RegA == RegB)
return true;
if (!RegA || !RegB)
return false;
return TRI->regsOverlap(RegA, RegB);
}
/// isProfitableToReMat - Return true if it's potentially profitable to commute
/// the two-address instruction that's being processed.
bool
TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
MachineInstr *MI, MachineBasicBlock *MBB,
unsigned Dist) {
// Determine if it's profitable to commute this two address instruction. In
// general, we want no uses between this instruction and the definition of
// the two-address register.
// e.g.
// %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
// %reg1029<def> = MOV8rr %reg1028
// %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
// insert => %reg1030<def> = MOV8rr %reg1028
// %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
// In this case, it might not be possible to coalesce the second MOV8rr
// instruction if the first one is coalesced. So it would be profitable to
// commute it:
// %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
// %reg1029<def> = MOV8rr %reg1028
// %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
// insert => %reg1030<def> = MOV8rr %reg1029
// %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
if (!MI->killsRegister(regC))
return false;
// Ok, we have something like:
// %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
// let's see if it's worth commuting it.
// Look for situations like this:
// %reg1024<def> = MOV r1
// %reg1025<def> = MOV r0
// %reg1026<def> = ADD %reg1024, %reg1025
// r0 = MOV %reg1026
// Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
unsigned FromRegB = getMappedReg(regB, SrcRegMap);
unsigned FromRegC = getMappedReg(regC, SrcRegMap);
unsigned ToRegB = getMappedReg(regB, DstRegMap);
unsigned ToRegC = getMappedReg(regC, DstRegMap);
if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
(regsAreCompatible(FromRegB, ToRegC, TRI) ||
regsAreCompatible(FromRegC, ToRegB, TRI)))
return true;
// If there is a use of regC between its last def (could be livein) and this
// instruction, then bail.
unsigned LastDefC = 0;
if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
return false;
// If there is a use of regB between its last def (could be livein) and this
// instruction, then go ahead and make this transformation.
unsigned LastDefB = 0;
if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
return true;
// Since there are no intervening uses for both registers, then commute
// if the def of regC is closer. Its live interval is shorter.
return LastDefB && LastDefC && LastDefC > LastDefB;
}
/// CommuteInstruction - Commute a two-address instruction and update the basic
/// block, distance map, and live variables if needed. Return true if it is
/// successful.
bool
TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
MachineFunction::iterator &mbbi,
unsigned RegB, unsigned RegC, unsigned Dist) {
MachineInstr *MI = mi;
DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
MachineInstr *NewMI = TII->commuteInstruction(MI);
if (NewMI == 0) {
DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
return false;
}
DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
// If the instruction changed to commute it, update livevar.
if (NewMI != MI) {
if (LV)
// Update live variables
LV->replaceKillInstruction(RegC, MI, NewMI);
mbbi->insert(mi, NewMI); // Insert the new inst
mbbi->erase(mi); // Nuke the old inst.
mi = NewMI;
DistanceMap.insert(std::make_pair(NewMI, Dist));
}
// Update source register map.
unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
if (FromRegC) {
unsigned RegA = MI->getOperand(0).getReg();
SrcRegMap[RegA] = FromRegC;
}
return true;
}
/// isProfitableToConv3Addr - Return true if it is profitable to convert the
/// given 2-address instruction to a 3-address one.
bool
TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
// Look for situations like this:
// %reg1024<def> = MOV r1
// %reg1025<def> = MOV r0
// %reg1026<def> = ADD %reg1024, %reg1025
// r2 = MOV %reg1026
// Turn ADD into a 3-address instruction to avoid a copy.
unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
unsigned ToRegA = getMappedReg(RegA, DstRegMap);
return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
}
/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
/// three address one. Return true if this transformation was successful.
bool
TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi,
unsigned RegB, unsigned Dist) {
MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
if (NewMI) {
DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
bool Sunk = false;
if (NewMI->findRegisterUseOperand(RegB, false, TRI))
// FIXME: Temporary workaround. If the new instruction doesn't
// uses RegB, convertToThreeAddress must have created more
// then one instruction.
Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
mbbi->erase(mi); // Nuke the old inst.
if (!Sunk) {
DistanceMap.insert(std::make_pair(NewMI, Dist));
mi = NewMI;
nmi = llvm::next(mi);
}
return true;
}
return false;
}
/// ProcessCopy - If the specified instruction is not yet processed, process it
/// if it's a copy. For a copy instruction, we find the physical registers the
/// source and destination registers might be mapped to. These are kept in
/// point-to maps used to determine future optimizations. e.g.
/// v1024 = mov r0
/// v1025 = mov r1
/// v1026 = add v1024, v1025
/// r1 = mov r1026
/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
/// potentially joined with r1 on the output side. It's worthwhile to commute
/// 'add' to eliminate a copy.
void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
MachineBasicBlock *MBB,
SmallPtrSet<MachineInstr*, 8> &Processed) {
if (Processed.count(MI))
return;
bool IsSrcPhys, IsDstPhys;
unsigned SrcReg, DstReg;
if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
return;
if (IsDstPhys && !IsSrcPhys)
DstRegMap.insert(std::make_pair(SrcReg, DstReg));
else if (!IsDstPhys && IsSrcPhys) {
bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
if (!isNew)
assert(SrcRegMap[DstReg] == SrcReg &&
"Can't map to two src physical registers!");
SmallVector<unsigned, 4> VirtRegPairs;
bool IsCopy = false;
unsigned NewReg = 0;
while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
IsCopy, NewReg, IsDstPhys)) {
if (IsCopy) {
if (!Processed.insert(UseMI))
break;
}
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
if (DI != DistanceMap.end())
// Earlier in the same MBB.Reached via a back edge.
break;
if (IsDstPhys) {
VirtRegPairs.push_back(NewReg);
break;
}
bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
if (!isNew)
assert(SrcRegMap[NewReg] == DstReg &&
"Can't map to two src physical registers!");
VirtRegPairs.push_back(NewReg);
DstReg = NewReg;
}
if (!VirtRegPairs.empty()) {
unsigned ToReg = VirtRegPairs.back();
VirtRegPairs.pop_back();
while (!VirtRegPairs.empty()) {
unsigned FromReg = VirtRegPairs.back();
VirtRegPairs.pop_back();
bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
if (!isNew)
assert(DstRegMap[FromReg] == ToReg &&
"Can't map to two dst physical registers!");
ToReg = FromReg;
}
}
}
Processed.insert(MI);
}
/// isSafeToDelete - If the specified instruction does not produce any side
/// effects and all of its defs are dead, then it's safe to delete.
static bool isSafeToDelete(MachineInstr *MI,
const TargetInstrInfo *TII,
SmallVector<unsigned, 4> &Kills) {
const TargetInstrDesc &TID = MI->getDesc();
if (TID.mayStore() || TID.isCall())
return false;
if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
return false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
if (MO.isDef() && !MO.isDead())
return false;
if (MO.isUse() && MO.isKill())
Kills.push_back(MO.getReg());
}
return true;
}
/// canUpdateDeletedKills - Check if all the registers listed in Kills are
/// killed by instructions in MBB preceding the current instruction at
/// position Dist. If so, return true and record information about the
/// preceding kills in NewKills.
bool TwoAddressInstructionPass::
canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
SmallVector<NewKill, 4> &NewKills,
MachineBasicBlock *MBB, unsigned Dist) {
while (!Kills.empty()) {
unsigned Kill = Kills.back();
Kills.pop_back();
if (TargetRegisterInfo::isPhysicalRegister(Kill))
return false;
MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
if (!LastKill)
return false;
bool isModRef = LastKill->modifiesRegister(Kill);
NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
LastKill));
}
return true;
}
/// DeleteUnusedInstr - If an instruction with a tied register operand can
/// be safely deleted, just delete it.
bool
TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi,
unsigned Dist) {
// Check if the instruction has no side effects and if all its defs are dead.
SmallVector<unsigned, 4> Kills;
if (!isSafeToDelete(mi, TII, Kills))
return false;
// If this instruction kills some virtual registers, we need to
// update the kill information. If it's not possible to do so,
// then bail out.
SmallVector<NewKill, 4> NewKills;
if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
return false;
if (LV) {
while (!NewKills.empty()) {
MachineInstr *NewKill = NewKills.back().second;
unsigned Kill = NewKills.back().first.first;
bool isDead = NewKills.back().first.second;
NewKills.pop_back();
if (LV->removeVirtualRegisterKilled(Kill, mi)) {
if (isDead)
LV->addVirtualRegisterDead(Kill, NewKill);
else
LV->addVirtualRegisterKilled(Kill, NewKill);
}
}
}
mbbi->erase(mi); // Nuke the old inst.
mi = nmi;
return true;
}
/// TryInstructionTransform - For the case where an instruction has a single
/// pair of tied register operands, attempt some transformations that may
/// either eliminate the tied operands or improve the opportunities for
/// coalescing away the register copy. Returns true if the tied operands
/// are eliminated altogether.
bool TwoAddressInstructionPass::
TryInstructionTransform(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi,
unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
const TargetInstrDesc &TID = mi->getDesc();
unsigned regA = mi->getOperand(DstIdx).getReg();
unsigned regB = mi->getOperand(SrcIdx).getReg();
assert(TargetRegisterInfo::isVirtualRegister(regB) &&
"cannot make instruction into two-address form");
// If regA is dead and the instruction can be deleted, just delete
// it so it doesn't clobber regB.
bool regBKilled = isKilled(*mi, regB, MRI, TII);
if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
++NumDeletes;
return true; // Done with this instruction.
}
// Check if it is profitable to commute the operands.
unsigned SrcOp1, SrcOp2;
unsigned regC = 0;
unsigned regCIdx = ~0U;
bool TryCommute = false;
bool AggressiveCommute = false;
if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
if (SrcIdx == SrcOp1)
regCIdx = SrcOp2;
else if (SrcIdx == SrcOp2)
regCIdx = SrcOp1;
if (regCIdx != ~0U) {
regC = mi->getOperand(regCIdx).getReg();
if (!regBKilled && isKilled(*mi, regC, MRI, TII))
// If C dies but B does not, swap the B and C operands.
// This makes the live ranges of A and C joinable.
TryCommute = true;
else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
TryCommute = true;
AggressiveCommute = true;
}
}
}
// If it's profitable to commute, try to do so.
if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
++NumCommuted;
if (AggressiveCommute)
++NumAggrCommuted;
return false;
}
if (TID.isConvertibleTo3Addr()) {
// This instruction is potentially convertible to a true
// three-address instruction. Check if it is profitable.
if (!regBKilled || isProfitableToConv3Addr(regA)) {
// Try to convert it.
if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
++NumConvertedTo3Addr;
return true; // Done with this instruction.
}
}
}
return false;
}
/// runOnMachineFunction - Reduce two-address instructions to two operands.
///
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "Machine Function\n");
const TargetMachine &TM = MF.getTarget();
MRI = &MF.getRegInfo();
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
LV = getAnalysisIfAvailable<LiveVariables>();
AA = &getAnalysis<AliasAnalysis>();
bool MadeChange = false;
DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
DEBUG(dbgs() << "********** Function: "
<< MF.getFunction()->getName() << '\n');
// ReMatRegs - Keep track of the registers whose def's are remat'ed.
BitVector ReMatRegs;
ReMatRegs.resize(MRI->getLastVirtReg()+1);
typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
TiedOperandMap;
TiedOperandMap TiedOperands(4);
SmallPtrSet<MachineInstr*, 8> Processed;
for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
mbbi != mbbe; ++mbbi) {
unsigned Dist = 0;
DistanceMap.clear();
SrcRegMap.clear();
DstRegMap.clear();
Processed.clear();
for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
mi != me; ) {
MachineBasicBlock::iterator nmi = llvm::next(mi);
if (mi->isDebugValue()) {
mi = nmi;
continue;
}
// Remember REG_SEQUENCE instructions, we'll deal with them later.
if (mi->isRegSequence())
RegSequences.push_back(&*mi);
const TargetInstrDesc &TID = mi->getDesc();
bool FirstTied = true;
DistanceMap.insert(std::make_pair(mi, ++Dist));
ProcessCopy(&*mi, &*mbbi, Processed);
// First scan through all the tied register uses in this instruction
// and record a list of pairs of tied operands for each register.
unsigned NumOps = mi->isInlineAsm()
? mi->getNumOperands() : TID.getNumOperands();
for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
unsigned DstIdx = 0;
if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
continue;
if (FirstTied) {
FirstTied = false;
++NumTwoAddressInstrs;
DEBUG(dbgs() << '\t' << *mi);
}
assert(mi->getOperand(SrcIdx).isReg() &&
mi->getOperand(SrcIdx).getReg() &&
mi->getOperand(SrcIdx).isUse() &&
"two address instruction invalid");
unsigned regB = mi->getOperand(SrcIdx).getReg();
TiedOperandMap::iterator OI = TiedOperands.find(regB);
if (OI == TiedOperands.end()) {
SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
}
OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
}
// Now iterate over the information collected above.
for (TiedOperandMap::iterator OI = TiedOperands.begin(),
OE = TiedOperands.end(); OI != OE; ++OI) {
SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
// If the instruction has a single pair of tied operands, try some
// transformations that may either eliminate the tied operands or
// improve the opportunities for coalescing away the register copy.
if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
unsigned SrcIdx = TiedPairs[0].first;
unsigned DstIdx = TiedPairs[0].second;
// If the registers are already equal, nothing needs to be done.
if (mi->getOperand(SrcIdx).getReg() ==
mi->getOperand(DstIdx).getReg())
break; // Done with this instruction.
if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
break; // The tied operands have been eliminated.
}
bool RemovedKillFlag = false;
bool AllUsesCopied = true;
unsigned LastCopiedReg = 0;
unsigned regB = OI->first;
for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
unsigned SrcIdx = TiedPairs[tpi].first;
unsigned DstIdx = TiedPairs[tpi].second;
unsigned regA = mi->getOperand(DstIdx).getReg();
// Grab regB from the instruction because it may have changed if the
// instruction was commuted.
regB = mi->getOperand(SrcIdx).getReg();
if (regA == regB) {
// The register is tied to multiple destinations (or else we would
// not have continued this far), but this use of the register
// already matches the tied destination. Leave it.
AllUsesCopied = false;
continue;
}
LastCopiedReg = regA;
assert(TargetRegisterInfo::isVirtualRegister(regB) &&
"cannot make instruction into two-address form");
#ifndef NDEBUG
// First, verify that we don't have a use of "a" in the instruction
// (a = b + a for example) because our transformation will not
// work. This should never occur because we are in SSA form.
for (unsigned i = 0; i != mi->getNumOperands(); ++i)
assert(i == DstIdx ||
!mi->getOperand(i).isReg() ||
mi->getOperand(i).getReg() != regA);
#endif
// Emit a copy or rematerialize the definition.
const TargetRegisterClass *rc = MRI->getRegClass(regB);
MachineInstr *DefMI = MRI->getVRegDef(regB);
// If it's safe and profitable, remat the definition instead of
// copying it.
if (DefMI &&
DefMI->getDesc().isAsCheapAsAMove() &&
DefMI->isSafeToReMat(TII, AA, regB) &&
isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, TRI);
ReMatRegs.set(regB);
++NumReMats;
} else {
bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc,
mi->getDebugLoc());
(void)Emitted;
assert(Emitted && "Unable to issue a copy instruction!\n");
}
MachineBasicBlock::iterator prevMI = prior(mi);
// Update DistanceMap.
DistanceMap.insert(std::make_pair(prevMI, Dist));
DistanceMap[mi] = ++Dist;
DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
MachineOperand &MO = mi->getOperand(SrcIdx);
assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
"inconsistent operand info for 2-reg pass");
if (MO.isKill()) {
MO.setIsKill(false);
RemovedKillFlag = true;
}
MO.setReg(regA);
}
if (AllUsesCopied) {
// Replace other (un-tied) uses of regB with LastCopiedReg.
for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
MachineOperand &MO = mi->getOperand(i);
if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
if (MO.isKill()) {
MO.setIsKill(false);
RemovedKillFlag = true;
}
MO.setReg(LastCopiedReg);
}
}
// Update live variables for regB.
if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
LV->addVirtualRegisterKilled(regB, prior(mi));
} else if (RemovedKillFlag) {
// Some tied uses of regB matched their destination registers, so
// regB is still used in this instruction, but a kill flag was
// removed from a different tied use of regB, so now we need to add
// a kill flag to one of the remaining uses of regB.
for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
MachineOperand &MO = mi->getOperand(i);
if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
MO.setIsKill(true);
break;
}
}
}
MadeChange = true;
DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
}
// Clear TiedOperands here instead of at the top of the loop
// since most instructions do not have tied operands.
TiedOperands.clear();
mi = nmi;
}
}
// Some remat'ed instructions are dead.
int VReg = ReMatRegs.find_first();
while (VReg != -1) {
if (MRI->use_nodbg_empty(VReg)) {
MachineInstr *DefMI = MRI->getVRegDef(VReg);
DefMI->eraseFromParent();
}
VReg = ReMatRegs.find_next(VReg);
}
// Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
// SSA form. It's now safe to de-SSA.
MadeChange |= EliminateRegSequences();
return MadeChange;
}
static void UpdateRegSequenceSrcs(unsigned SrcReg,
unsigned DstReg, unsigned SrcIdx,
MachineRegisterInfo *MRI) {
for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
UE = MRI->reg_end(); RI != UE; ) {
MachineOperand &MO = RI.getOperand();
++RI;
MO.setReg(DstReg);
MO.setSubReg(SrcIdx);
}
}
/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
/// sub-register references of the register defined by REG_SEQUENCE. e.g.
///
/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
/// =>
/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
bool TwoAddressInstructionPass::EliminateRegSequences() {
if (RegSequences.empty())
return false;
for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
MachineInstr *MI = RegSequences[i];
unsigned DstReg = MI->getOperand(0).getReg();
if (MI->getOperand(0).getSubReg() ||
TargetRegisterInfo::isPhysicalRegister(DstReg) ||
!(MI->getNumOperands() & 1)) {
DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
llvm_unreachable(0);
}
SmallSet<unsigned, 4> Seen;
for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
unsigned SrcReg = MI->getOperand(i).getReg();
if (MI->getOperand(i).getSubReg() ||
TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
llvm_unreachable(0);
}
if (!Seen.insert(SrcReg)) {
// REG_SEQUENCE cannot have duplicated operands. Add a copy.
const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
unsigned NewReg = MRI->createVirtualRegister(RC);
bool Emitted =
TII->copyRegToReg(*MI->getParent(), MI, NewReg, SrcReg, RC, RC,
MI->getDebugLoc());
(void)Emitted;
assert(Emitted && "Unable to issue a copy instruction!\n");
MI->getOperand(i).setReg(NewReg);
MI->getOperand(i).setIsKill();
}
}
for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
unsigned SrcReg = MI->getOperand(i).getReg();
unsigned SrcIdx = MI->getOperand(i+1).getImm();
UpdateRegSequenceSrcs(SrcReg, DstReg, SrcIdx, MRI);
}
DEBUG(dbgs() << "Eliminated: " << *MI);
MI->eraseFromParent();
}
RegSequences.clear();
return true;
}