mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-23 12:08:25 +00:00
1ae9ec6124
No functional change. Part of PR6965 llvm-svn: 132763
13074 lines
499 KiB
C++
13074 lines
499 KiB
C++
//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that X86 uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "x86-isel"
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86ISelLowering.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "X86TargetObjectFile.h"
|
|
#include "Utils/X86ShuffleDecode.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/GlobalAlias.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/CodeGen/IntrinsicLowering.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/VectorExtras.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Dwarf.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
using namespace dwarf;
|
|
|
|
STATISTIC(NumTailCalls, "Number of tail calls");
|
|
|
|
// Forward declarations.
|
|
static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
|
|
SDValue V2);
|
|
|
|
static SDValue Insert128BitVector(SDValue Result,
|
|
SDValue Vec,
|
|
SDValue Idx,
|
|
SelectionDAG &DAG,
|
|
DebugLoc dl);
|
|
|
|
static SDValue Extract128BitVector(SDValue Vec,
|
|
SDValue Idx,
|
|
SelectionDAG &DAG,
|
|
DebugLoc dl);
|
|
|
|
static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG);
|
|
|
|
|
|
/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
|
|
/// sets things up to match to an AVX VEXTRACTF128 instruction or a
|
|
/// simple subregister reference. Idx is an index in the 128 bits we
|
|
/// want. It need not be aligned to a 128-bit bounday. That makes
|
|
/// lowering EXTRACT_VECTOR_ELT operations easier.
|
|
static SDValue Extract128BitVector(SDValue Vec,
|
|
SDValue Idx,
|
|
SelectionDAG &DAG,
|
|
DebugLoc dl) {
|
|
EVT VT = Vec.getValueType();
|
|
assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
|
|
|
|
EVT ElVT = VT.getVectorElementType();
|
|
|
|
int Factor = VT.getSizeInBits() / 128;
|
|
|
|
EVT ResultVT = EVT::getVectorVT(*DAG.getContext(),
|
|
ElVT,
|
|
VT.getVectorNumElements() / Factor);
|
|
|
|
// Extract from UNDEF is UNDEF.
|
|
if (Vec.getOpcode() == ISD::UNDEF)
|
|
return DAG.getNode(ISD::UNDEF, dl, ResultVT);
|
|
|
|
if (isa<ConstantSDNode>(Idx)) {
|
|
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
|
|
// Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR
|
|
// we can match to VEXTRACTF128.
|
|
unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
|
|
|
|
// This is the index of the first element of the 128-bit chunk
|
|
// we want.
|
|
unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
|
|
* ElemsPerChunk);
|
|
|
|
SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
|
|
|
|
SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
|
|
VecIdx);
|
|
|
|
return Result;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Generate a DAG to put 128-bits into a vector > 128 bits. This
|
|
/// sets things up to match to an AVX VINSERTF128 instruction or a
|
|
/// simple superregister reference. Idx is an index in the 128 bits
|
|
/// we want. It need not be aligned to a 128-bit bounday. That makes
|
|
/// lowering INSERT_VECTOR_ELT operations easier.
|
|
static SDValue Insert128BitVector(SDValue Result,
|
|
SDValue Vec,
|
|
SDValue Idx,
|
|
SelectionDAG &DAG,
|
|
DebugLoc dl) {
|
|
if (isa<ConstantSDNode>(Idx)) {
|
|
EVT VT = Vec.getValueType();
|
|
assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
|
|
|
|
EVT ElVT = VT.getVectorElementType();
|
|
|
|
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
|
|
EVT ResultVT = Result.getValueType();
|
|
|
|
// Insert the relevant 128 bits.
|
|
unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
|
|
|
|
// This is the index of the first element of the 128-bit chunk
|
|
// we want.
|
|
unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
|
|
* ElemsPerChunk);
|
|
|
|
SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
|
|
|
|
Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
|
|
VecIdx);
|
|
return Result;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Given two vectors, concat them.
|
|
static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG) {
|
|
DebugLoc dl = Lower.getDebugLoc();
|
|
|
|
assert(Lower.getValueType() == Upper.getValueType() && "Mismatched vectors!");
|
|
|
|
EVT VT = EVT::getVectorVT(*DAG.getContext(),
|
|
Lower.getValueType().getVectorElementType(),
|
|
Lower.getValueType().getVectorNumElements() * 2);
|
|
|
|
// TODO: Generalize to arbitrary vector length (this assumes 256-bit vectors).
|
|
assert(VT.getSizeInBits() == 256 && "Unsupported vector concat!");
|
|
|
|
// Insert the upper subvector.
|
|
SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
|
|
DAG.getConstant(
|
|
// This is half the length of the result
|
|
// vector. Start inserting the upper 128
|
|
// bits here.
|
|
Lower.getValueType().getVectorNumElements(),
|
|
MVT::i32),
|
|
DAG, dl);
|
|
|
|
// Insert the lower subvector.
|
|
Vec = Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32), DAG, dl);
|
|
return Vec;
|
|
}
|
|
|
|
static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
|
|
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
|
|
bool is64Bit = Subtarget->is64Bit();
|
|
|
|
if (Subtarget->isTargetEnvMacho()) {
|
|
if (is64Bit)
|
|
return new X8664_MachoTargetObjectFile();
|
|
return new TargetLoweringObjectFileMachO();
|
|
}
|
|
|
|
if (Subtarget->isTargetELF()) {
|
|
if (is64Bit)
|
|
return new X8664_ELFTargetObjectFile(TM);
|
|
return new X8632_ELFTargetObjectFile(TM);
|
|
}
|
|
if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
|
|
return new TargetLoweringObjectFileCOFF();
|
|
llvm_unreachable("unknown subtarget type");
|
|
}
|
|
|
|
X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
|
|
: TargetLowering(TM, createTLOF(TM)) {
|
|
Subtarget = &TM.getSubtarget<X86Subtarget>();
|
|
X86ScalarSSEf64 = Subtarget->hasXMMInt();
|
|
X86ScalarSSEf32 = Subtarget->hasXMM();
|
|
X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
|
|
|
|
RegInfo = TM.getRegisterInfo();
|
|
TD = getTargetData();
|
|
|
|
// Set up the TargetLowering object.
|
|
static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
|
|
|
|
// X86 is weird, it always uses i8 for shift amounts and setcc results.
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
|
|
// For 64-bit since we have so many registers use the ILP scheduler, for
|
|
// 32-bit code use the register pressure specific scheduling.
|
|
if (Subtarget->is64Bit())
|
|
setSchedulingPreference(Sched::ILP);
|
|
else
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
setStackPointerRegisterToSaveRestore(X86StackPtr);
|
|
|
|
if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
|
|
// Setup Windows compiler runtime calls.
|
|
setLibcallName(RTLIB::SDIV_I64, "_alldiv");
|
|
setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
|
|
setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
|
|
setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
|
|
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
|
|
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
|
|
setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
|
|
setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
|
|
}
|
|
|
|
if (Subtarget->isTargetDarwin()) {
|
|
// Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
|
|
setUseUnderscoreSetJmp(false);
|
|
setUseUnderscoreLongJmp(false);
|
|
} else if (Subtarget->isTargetMingw()) {
|
|
// MS runtime is weird: it exports _setjmp, but longjmp!
|
|
setUseUnderscoreSetJmp(true);
|
|
setUseUnderscoreLongJmp(false);
|
|
} else {
|
|
setUseUnderscoreSetJmp(true);
|
|
setUseUnderscoreLongJmp(true);
|
|
}
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(MVT::i8, X86::GR8RegisterClass);
|
|
addRegisterClass(MVT::i16, X86::GR16RegisterClass);
|
|
addRegisterClass(MVT::i32, X86::GR32RegisterClass);
|
|
if (Subtarget->is64Bit())
|
|
addRegisterClass(MVT::i64, X86::GR64RegisterClass);
|
|
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
|
|
// We don't accept any truncstore of integer registers.
|
|
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
|
|
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
|
|
setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
|
|
setTruncStoreAction(MVT::i32, MVT::i16, Expand);
|
|
setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
|
|
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
|
|
|
|
// SETOEQ and SETUNE require checking two conditions.
|
|
setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
|
|
setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
|
|
|
|
// Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
|
|
// operation.
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
|
|
} else if (!UseSoftFloat) {
|
|
// We have an algorithm for SSE2->double, and we turn this into a
|
|
// 64-bit FILD followed by conditional FADD for other targets.
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
|
|
// We have an algorithm for SSE2, and we turn this into a 64-bit
|
|
// FILD for other targets.
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
|
|
}
|
|
|
|
// Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
|
|
// this operation.
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
|
|
|
|
if (!UseSoftFloat) {
|
|
// SSE has no i16 to fp conversion, only i32
|
|
if (X86ScalarSSEf32) {
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
|
|
// f32 and f64 cases are Legal, f80 case is not
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
|
|
} else {
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
|
|
}
|
|
} else {
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
|
|
}
|
|
|
|
// In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
|
|
// are Legal, f80 is custom lowered.
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
|
|
|
|
// Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
|
|
// this operation.
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
|
|
|
|
if (X86ScalarSSEf32) {
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
|
|
// f32 and f64 cases are Legal, f80 case is not
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
|
|
} else {
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
|
|
}
|
|
|
|
// Handle FP_TO_UINT by promoting the destination to a larger signed
|
|
// conversion.
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
|
|
} else if (!UseSoftFloat) {
|
|
if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
|
|
// Expand FP_TO_UINT into a select.
|
|
// FIXME: We would like to use a Custom expander here eventually to do
|
|
// the optimal thing for SSE vs. the default expansion in the legalizer.
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
|
|
else
|
|
// With SSE3 we can use fisttpll to convert to a signed i64; without
|
|
// SSE, we're stuck with a fistpll.
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
|
|
}
|
|
|
|
// TODO: when we have SSE, these could be more efficient, by using movd/movq.
|
|
if (!X86ScalarSSEf64) {
|
|
setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
|
|
setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
|
|
// Without SSE, i64->f64 goes through memory.
|
|
setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
|
|
}
|
|
}
|
|
|
|
// Scalar integer divide and remainder are lowered to use operations that
|
|
// produce two results, to match the available instructions. This exposes
|
|
// the two-result form to trivial CSE, which is able to combine x/y and x%y
|
|
// into a single instruction.
|
|
//
|
|
// Scalar integer multiply-high is also lowered to use two-result
|
|
// operations, to match the available instructions. However, plain multiply
|
|
// (low) operations are left as Legal, as there are single-result
|
|
// instructions for this in x86. Using the two-result multiply instructions
|
|
// when both high and low results are needed must be arranged by dagcombine.
|
|
for (unsigned i = 0, e = 4; i != e; ++i) {
|
|
MVT VT = IntVTs[i];
|
|
setOperationAction(ISD::MULHS, VT, Expand);
|
|
setOperationAction(ISD::MULHU, VT, Expand);
|
|
setOperationAction(ISD::SDIV, VT, Expand);
|
|
setOperationAction(ISD::UDIV, VT, Expand);
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::UREM, VT, Expand);
|
|
|
|
// Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
|
|
setOperationAction(ISD::ADDC, VT, Custom);
|
|
setOperationAction(ISD::ADDE, VT, Custom);
|
|
setOperationAction(ISD::SUBC, VT, Custom);
|
|
setOperationAction(ISD::SUBE, VT, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::BR_JT , MVT::Other, Expand);
|
|
setOperationAction(ISD::BRCOND , MVT::Other, Custom);
|
|
setOperationAction(ISD::BR_CC , MVT::Other, Expand);
|
|
setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
|
|
if (Subtarget->is64Bit())
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
|
|
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
|
|
setOperationAction(ISD::FREM , MVT::f32 , Expand);
|
|
setOperationAction(ISD::FREM , MVT::f64 , Expand);
|
|
setOperationAction(ISD::FREM , MVT::f80 , Expand);
|
|
setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
|
|
|
|
setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
|
|
setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
|
|
setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
|
|
setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
|
|
setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
|
|
setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
|
|
setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
|
|
}
|
|
|
|
if (Subtarget->hasPOPCNT()) {
|
|
setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
|
|
} else {
|
|
setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
|
|
setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
|
|
setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
|
|
if (Subtarget->is64Bit())
|
|
setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
|
|
setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
|
|
|
|
// These should be promoted to a larger select which is supported.
|
|
setOperationAction(ISD::SELECT , MVT::i1 , Promote);
|
|
// X86 wants to expand cmov itself.
|
|
setOperationAction(ISD::SELECT , MVT::i8 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::i16 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::f32 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::f64 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::f80 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::i8 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::i16 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::f32 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::f64 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::f80 , Custom);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::SELECT , MVT::i64 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::i64 , Custom);
|
|
}
|
|
setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
|
|
|
|
// Darwin ABI issue.
|
|
setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
|
|
setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
|
|
setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
|
|
if (Subtarget->is64Bit())
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
|
|
setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
|
|
setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
|
|
setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
|
|
setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
|
|
setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
|
|
}
|
|
// 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
|
|
setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
|
|
setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
|
|
setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
|
|
}
|
|
|
|
if (Subtarget->hasXMM())
|
|
setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
|
|
|
|
// We may not have a libcall for MEMBARRIER so we should lower this.
|
|
setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom);
|
|
|
|
// On X86 and X86-64, atomic operations are lowered to locked instructions.
|
|
// Locked instructions, in turn, have implicit fence semantics (all memory
|
|
// operations are flushed before issuing the locked instruction, and they
|
|
// are not buffered), so we can fold away the common pattern of
|
|
// fence-atomic-fence.
|
|
setShouldFoldAtomicFences(true);
|
|
|
|
// Expand certain atomics
|
|
for (unsigned i = 0, e = 4; i != e; ++i) {
|
|
MVT VT = IntVTs[i];
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
|
|
}
|
|
|
|
if (!Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
|
|
}
|
|
|
|
// FIXME - use subtarget debug flags
|
|
if (!Subtarget->isTargetDarwin() &&
|
|
!Subtarget->isTargetELF() &&
|
|
!Subtarget->isTargetCygMing()) {
|
|
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
|
|
setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
|
|
setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
|
|
setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
|
|
if (Subtarget->is64Bit()) {
|
|
setExceptionPointerRegister(X86::RAX);
|
|
setExceptionSelectorRegister(X86::RDX);
|
|
} else {
|
|
setExceptionPointerRegister(X86::EAX);
|
|
setExceptionSelectorRegister(X86::EDX);
|
|
}
|
|
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
|
|
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
|
|
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
|
|
setOperationAction(ISD::VASTART , MVT::Other, Custom);
|
|
setOperationAction(ISD::VAEND , MVT::Other, Expand);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::VAARG , MVT::Other, Custom);
|
|
setOperationAction(ISD::VACOPY , MVT::Other, Custom);
|
|
} else {
|
|
setOperationAction(ISD::VAARG , MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC,
|
|
(Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
|
|
(Subtarget->isTargetCOFF()
|
|
&& !Subtarget->isTargetEnvMacho()
|
|
? Custom : Expand));
|
|
|
|
if (!UseSoftFloat && X86ScalarSSEf64) {
|
|
// f32 and f64 use SSE.
|
|
// Set up the FP register classes.
|
|
addRegisterClass(MVT::f32, X86::FR32RegisterClass);
|
|
addRegisterClass(MVT::f64, X86::FR64RegisterClass);
|
|
|
|
// Use ANDPD to simulate FABS.
|
|
setOperationAction(ISD::FABS , MVT::f64, Custom);
|
|
setOperationAction(ISD::FABS , MVT::f32, Custom);
|
|
|
|
// Use XORP to simulate FNEG.
|
|
setOperationAction(ISD::FNEG , MVT::f64, Custom);
|
|
setOperationAction(ISD::FNEG , MVT::f32, Custom);
|
|
|
|
// Use ANDPD and ORPD to simulate FCOPYSIGN.
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
|
|
// Lower this to FGETSIGNx86 plus an AND.
|
|
setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
|
|
setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
|
|
|
|
// We don't support sin/cos/fmod
|
|
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
|
|
// Expand FP immediates into loads from the stack, except for the special
|
|
// cases we handle.
|
|
addLegalFPImmediate(APFloat(+0.0)); // xorpd
|
|
addLegalFPImmediate(APFloat(+0.0f)); // xorps
|
|
} else if (!UseSoftFloat && X86ScalarSSEf32) {
|
|
// Use SSE for f32, x87 for f64.
|
|
// Set up the FP register classes.
|
|
addRegisterClass(MVT::f32, X86::FR32RegisterClass);
|
|
addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
|
|
|
|
// Use ANDPS to simulate FABS.
|
|
setOperationAction(ISD::FABS , MVT::f32, Custom);
|
|
|
|
// Use XORP to simulate FNEG.
|
|
setOperationAction(ISD::FNEG , MVT::f32, Custom);
|
|
|
|
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
|
|
|
|
// Use ANDPS and ORPS to simulate FCOPYSIGN.
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
|
|
// We don't support sin/cos/fmod
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
|
|
// Special cases we handle for FP constants.
|
|
addLegalFPImmediate(APFloat(+0.0f)); // xorps
|
|
addLegalFPImmediate(APFloat(+0.0)); // FLD0
|
|
addLegalFPImmediate(APFloat(+1.0)); // FLD1
|
|
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
|
|
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
|
|
|
|
if (!UnsafeFPMath) {
|
|
setOperationAction(ISD::FSIN , MVT::f64 , Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64 , Expand);
|
|
}
|
|
} else if (!UseSoftFloat) {
|
|
// f32 and f64 in x87.
|
|
// Set up the FP register classes.
|
|
addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
|
|
addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
|
|
|
|
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
|
|
setOperationAction(ISD::UNDEF, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
|
|
|
if (!UnsafeFPMath) {
|
|
setOperationAction(ISD::FSIN , MVT::f64 , Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64 , Expand);
|
|
}
|
|
addLegalFPImmediate(APFloat(+0.0)); // FLD0
|
|
addLegalFPImmediate(APFloat(+1.0)); // FLD1
|
|
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
|
|
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
|
|
addLegalFPImmediate(APFloat(+0.0f)); // FLD0
|
|
addLegalFPImmediate(APFloat(+1.0f)); // FLD1
|
|
addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
|
|
addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
|
|
}
|
|
|
|
// Long double always uses X87.
|
|
if (!UseSoftFloat) {
|
|
addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
|
|
setOperationAction(ISD::UNDEF, MVT::f80, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
|
|
{
|
|
APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
|
|
addLegalFPImmediate(TmpFlt); // FLD0
|
|
TmpFlt.changeSign();
|
|
addLegalFPImmediate(TmpFlt); // FLD0/FCHS
|
|
|
|
bool ignored;
|
|
APFloat TmpFlt2(+1.0);
|
|
TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
addLegalFPImmediate(TmpFlt2); // FLD1
|
|
TmpFlt2.changeSign();
|
|
addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
|
|
}
|
|
|
|
if (!UnsafeFPMath) {
|
|
setOperationAction(ISD::FSIN , MVT::f80 , Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f80 , Expand);
|
|
}
|
|
}
|
|
|
|
// Always use a library call for pow.
|
|
setOperationAction(ISD::FPOW , MVT::f32 , Expand);
|
|
setOperationAction(ISD::FPOW , MVT::f64 , Expand);
|
|
setOperationAction(ISD::FPOW , MVT::f80 , Expand);
|
|
|
|
setOperationAction(ISD::FLOG, MVT::f80, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::f80, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::f80, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::f80, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::f80, Expand);
|
|
|
|
// First set operation action for all vector types to either promote
|
|
// (for widening) or expand (for scalarization). Then we will selectively
|
|
// turn on ones that can be effectively codegen'd.
|
|
for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
|
|
setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
|
|
setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
|
|
setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
|
|
setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand);
|
|
for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
|
|
setTruncStoreAction((MVT::SimpleValueType)VT,
|
|
(MVT::SimpleValueType)InnerVT, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
|
|
}
|
|
|
|
// FIXME: In order to prevent SSE instructions being expanded to MMX ones
|
|
// with -msoft-float, disable use of MMX as well.
|
|
if (!UseSoftFloat && Subtarget->hasMMX()) {
|
|
addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
|
|
// No operations on x86mmx supported, everything uses intrinsics.
|
|
}
|
|
|
|
// MMX-sized vectors (other than x86mmx) are expected to be expanded
|
|
// into smaller operations.
|
|
setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::AND, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::AND, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::AND, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::AND, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::OR, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::OR, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::OR, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::OR, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::XOR, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::XOR, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::XOR, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::XOR, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
|
|
|
|
if (!UseSoftFloat && Subtarget->hasXMM()) {
|
|
addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
|
|
|
|
setOperationAction(ISD::FADD, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::VSETCC, MVT::v4f32, Custom);
|
|
}
|
|
|
|
if (!UseSoftFloat && Subtarget->hasXMMInt()) {
|
|
addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
|
|
|
|
// FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
|
|
// registers cannot be used even for integer operations.
|
|
addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
|
|
addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
|
|
addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
|
|
addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
|
|
|
|
setOperationAction(ISD::ADD, MVT::v16i8, Legal);
|
|
setOperationAction(ISD::ADD, MVT::v8i16, Legal);
|
|
setOperationAction(ISD::ADD, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::ADD, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::SUB, MVT::v16i8, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v8i16, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::MUL, MVT::v8i16, Legal);
|
|
setOperationAction(ISD::FADD, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
|
|
|
|
setOperationAction(ISD::VSETCC, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::VSETCC, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::VSETCC, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::VSETCC, MVT::v4i32, Custom);
|
|
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
|
|
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
|
|
|
|
// Custom lower build_vector, vector_shuffle, and extract_vector_elt.
|
|
for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
|
|
EVT VT = (MVT::SimpleValueType)i;
|
|
// Do not attempt to custom lower non-power-of-2 vectors
|
|
if (!isPowerOf2_32(VT.getVectorNumElements()))
|
|
continue;
|
|
// Do not attempt to custom lower non-128-bit vectors
|
|
if (!VT.is128BitVector())
|
|
continue;
|
|
setOperationAction(ISD::BUILD_VECTOR,
|
|
VT.getSimpleVT().SimpleTy, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE,
|
|
VT.getSimpleVT().SimpleTy, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT,
|
|
VT.getSimpleVT().SimpleTy, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
|
|
}
|
|
|
|
// Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
|
|
for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
|
|
MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
|
|
EVT VT = SVT;
|
|
|
|
// Do not attempt to promote non-128-bit vectors
|
|
if (!VT.is128BitVector())
|
|
continue;
|
|
|
|
setOperationAction(ISD::AND, SVT, Promote);
|
|
AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
|
|
setOperationAction(ISD::OR, SVT, Promote);
|
|
AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
|
|
setOperationAction(ISD::XOR, SVT, Promote);
|
|
AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
|
|
setOperationAction(ISD::LOAD, SVT, Promote);
|
|
AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
|
|
setOperationAction(ISD::SELECT, SVT, Promote);
|
|
AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
|
|
}
|
|
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
|
|
// Custom lower v2i64 and v2f64 selects.
|
|
setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
|
|
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
|
|
}
|
|
|
|
if (Subtarget->hasSSE41()) {
|
|
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::f32, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::f64, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
|
|
|
|
// FIXME: Do we need to handle scalar-to-vector here?
|
|
setOperationAction(ISD::MUL, MVT::v4i32, Legal);
|
|
|
|
// Can turn SHL into an integer multiply.
|
|
setOperationAction(ISD::SHL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::SHL, MVT::v16i8, Custom);
|
|
|
|
// i8 and i16 vectors are custom , because the source register and source
|
|
// source memory operand types are not the same width. f32 vectors are
|
|
// custom since the immediate controlling the insert encodes additional
|
|
// information.
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
|
|
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
|
|
}
|
|
}
|
|
|
|
if (Subtarget->hasSSE2()) {
|
|
setOperationAction(ISD::SRL, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::SRL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::SRL, MVT::v16i8, Custom);
|
|
|
|
setOperationAction(ISD::SHL, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::SHL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::SHL, MVT::v8i16, Custom);
|
|
|
|
setOperationAction(ISD::SRA, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::SRA, MVT::v8i16, Custom);
|
|
}
|
|
|
|
if (Subtarget->hasSSE42())
|
|
setOperationAction(ISD::VSETCC, MVT::v2i64, Custom);
|
|
|
|
if (!UseSoftFloat && Subtarget->hasAVX()) {
|
|
addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
|
|
addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
|
|
addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
|
|
addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
|
|
addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v8i32, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
|
|
|
|
setOperationAction(ISD::FADD, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
|
|
|
|
setOperationAction(ISD::FADD, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
|
|
|
|
// Custom lower build_vector, vector_shuffle, scalar_to_vector,
|
|
// insert_vector_elt extract_subvector and extract_vector_elt for
|
|
// 256-bit types.
|
|
for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
|
|
++i) {
|
|
MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
|
|
// Do not attempt to custom lower non-256-bit vectors
|
|
if (!isPowerOf2_32(MVT(VT).getVectorNumElements())
|
|
|| (MVT(VT).getSizeInBits() < 256))
|
|
continue;
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
|
|
}
|
|
// Custom-lower insert_subvector and extract_subvector based on
|
|
// the result type.
|
|
for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
|
|
++i) {
|
|
MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
|
|
// Do not attempt to custom lower non-256-bit vectors
|
|
if (!isPowerOf2_32(MVT(VT).getVectorNumElements()))
|
|
continue;
|
|
|
|
if (MVT(VT).getSizeInBits() == 128) {
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
|
|
}
|
|
else if (MVT(VT).getSizeInBits() == 256) {
|
|
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
|
|
}
|
|
}
|
|
|
|
// Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
|
|
// Don't promote loads because we need them for VPERM vector index versions.
|
|
|
|
for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE;
|
|
VT++) {
|
|
if (!isPowerOf2_32(MVT((MVT::SimpleValueType)VT).getVectorNumElements())
|
|
|| (MVT((MVT::SimpleValueType)VT).getSizeInBits() < 256))
|
|
continue;
|
|
setOperationAction(ISD::AND, (MVT::SimpleValueType)VT, Promote);
|
|
AddPromotedToType (ISD::AND, (MVT::SimpleValueType)VT, MVT::v4i64);
|
|
setOperationAction(ISD::OR, (MVT::SimpleValueType)VT, Promote);
|
|
AddPromotedToType (ISD::OR, (MVT::SimpleValueType)VT, MVT::v4i64);
|
|
setOperationAction(ISD::XOR, (MVT::SimpleValueType)VT, Promote);
|
|
AddPromotedToType (ISD::XOR, (MVT::SimpleValueType)VT, MVT::v4i64);
|
|
//setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Promote);
|
|
//AddPromotedToType (ISD::LOAD, (MVT::SimpleValueType)VT, MVT::v4i64);
|
|
setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
|
|
AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v4i64);
|
|
}
|
|
}
|
|
|
|
// We want to custom lower some of our intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
|
|
|
|
// Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
|
|
// handle type legalization for these operations here.
|
|
//
|
|
// FIXME: We really should do custom legalization for addition and
|
|
// subtraction on x86-32 once PR3203 is fixed. We really can't do much better
|
|
// than generic legalization for 64-bit multiplication-with-overflow, though.
|
|
for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
|
|
// Add/Sub/Mul with overflow operations are custom lowered.
|
|
MVT VT = IntVTs[i];
|
|
setOperationAction(ISD::SADDO, VT, Custom);
|
|
setOperationAction(ISD::UADDO, VT, Custom);
|
|
setOperationAction(ISD::SSUBO, VT, Custom);
|
|
setOperationAction(ISD::USUBO, VT, Custom);
|
|
setOperationAction(ISD::SMULO, VT, Custom);
|
|
setOperationAction(ISD::UMULO, VT, Custom);
|
|
}
|
|
|
|
// There are no 8-bit 3-address imul/mul instructions
|
|
setOperationAction(ISD::SMULO, MVT::i8, Expand);
|
|
setOperationAction(ISD::UMULO, MVT::i8, Expand);
|
|
|
|
if (!Subtarget->is64Bit()) {
|
|
// These libcalls are not available in 32-bit.
|
|
setLibcallName(RTLIB::SHL_I128, 0);
|
|
setLibcallName(RTLIB::SRL_I128, 0);
|
|
setLibcallName(RTLIB::SRA_I128, 0);
|
|
}
|
|
|
|
// We have target-specific dag combine patterns for the following nodes:
|
|
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
|
|
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
|
|
setTargetDAGCombine(ISD::BUILD_VECTOR);
|
|
setTargetDAGCombine(ISD::SELECT);
|
|
setTargetDAGCombine(ISD::SHL);
|
|
setTargetDAGCombine(ISD::SRA);
|
|
setTargetDAGCombine(ISD::SRL);
|
|
setTargetDAGCombine(ISD::OR);
|
|
setTargetDAGCombine(ISD::AND);
|
|
setTargetDAGCombine(ISD::ADD);
|
|
setTargetDAGCombine(ISD::SUB);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
|
setTargetDAGCombine(ISD::SINT_TO_FP);
|
|
if (Subtarget->is64Bit())
|
|
setTargetDAGCombine(ISD::MUL);
|
|
|
|
computeRegisterProperties();
|
|
|
|
// On Darwin, -Os means optimize for size without hurting performance,
|
|
// do not reduce the limit.
|
|
maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
|
|
maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
|
|
maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
|
|
maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
|
|
maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
|
|
maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
|
|
setPrefLoopAlignment(16);
|
|
benefitFromCodePlacementOpt = true;
|
|
|
|
setPrefFunctionAlignment(4);
|
|
}
|
|
|
|
|
|
MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
|
|
return MVT::i8;
|
|
}
|
|
|
|
|
|
/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
|
|
/// the desired ByVal argument alignment.
|
|
static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
|
|
if (MaxAlign == 16)
|
|
return;
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
|
|
if (VTy->getBitWidth() == 128)
|
|
MaxAlign = 16;
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
unsigned EltAlign = 0;
|
|
getMaxByValAlign(ATy->getElementType(), EltAlign);
|
|
if (EltAlign > MaxAlign)
|
|
MaxAlign = EltAlign;
|
|
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
unsigned EltAlign = 0;
|
|
getMaxByValAlign(STy->getElementType(i), EltAlign);
|
|
if (EltAlign > MaxAlign)
|
|
MaxAlign = EltAlign;
|
|
if (MaxAlign == 16)
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area. For X86, aggregates
|
|
/// that contain SSE vectors are placed at 16-byte boundaries while the rest
|
|
/// are at 4-byte boundaries.
|
|
unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
|
|
if (Subtarget->is64Bit()) {
|
|
// Max of 8 and alignment of type.
|
|
unsigned TyAlign = TD->getABITypeAlignment(Ty);
|
|
if (TyAlign > 8)
|
|
return TyAlign;
|
|
return 8;
|
|
}
|
|
|
|
unsigned Align = 4;
|
|
if (Subtarget->hasXMM())
|
|
getMaxByValAlign(Ty, Align);
|
|
return Align;
|
|
}
|
|
|
|
/// getOptimalMemOpType - Returns the target specific optimal type for load
|
|
/// and store operations as a result of memset, memcpy, and memmove
|
|
/// lowering. If DstAlign is zero that means it's safe to destination
|
|
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
|
/// means there isn't a need to check it against alignment requirement,
|
|
/// probably because the source does not need to be loaded. If
|
|
/// 'NonScalarIntSafe' is true, that means it's safe to return a
|
|
/// non-scalar-integer type, e.g. empty string source, constant, or loaded
|
|
/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
|
|
/// constant so it does not need to be loaded.
|
|
/// It returns EVT::Other if the type should be determined using generic
|
|
/// target-independent logic.
|
|
EVT
|
|
X86TargetLowering::getOptimalMemOpType(uint64_t Size,
|
|
unsigned DstAlign, unsigned SrcAlign,
|
|
bool NonScalarIntSafe,
|
|
bool MemcpyStrSrc,
|
|
MachineFunction &MF) const {
|
|
// FIXME: This turns off use of xmm stores for memset/memcpy on targets like
|
|
// linux. This is because the stack realignment code can't handle certain
|
|
// cases like PR2962. This should be removed when PR2962 is fixed.
|
|
const Function *F = MF.getFunction();
|
|
if (NonScalarIntSafe &&
|
|
!F->hasFnAttr(Attribute::NoImplicitFloat)) {
|
|
if (Size >= 16 &&
|
|
(Subtarget->isUnalignedMemAccessFast() ||
|
|
((DstAlign == 0 || DstAlign >= 16) &&
|
|
(SrcAlign == 0 || SrcAlign >= 16))) &&
|
|
Subtarget->getStackAlignment() >= 16) {
|
|
if (Subtarget->hasSSE2())
|
|
return MVT::v4i32;
|
|
if (Subtarget->hasSSE1())
|
|
return MVT::v4f32;
|
|
} else if (!MemcpyStrSrc && Size >= 8 &&
|
|
!Subtarget->is64Bit() &&
|
|
Subtarget->getStackAlignment() >= 8 &&
|
|
Subtarget->hasXMMInt()) {
|
|
// Do not use f64 to lower memcpy if source is string constant. It's
|
|
// better to use i32 to avoid the loads.
|
|
return MVT::f64;
|
|
}
|
|
}
|
|
if (Subtarget->is64Bit() && Size >= 8)
|
|
return MVT::i64;
|
|
return MVT::i32;
|
|
}
|
|
|
|
/// getJumpTableEncoding - Return the entry encoding for a jump table in the
|
|
/// current function. The returned value is a member of the
|
|
/// MachineJumpTableInfo::JTEntryKind enum.
|
|
unsigned X86TargetLowering::getJumpTableEncoding() const {
|
|
// In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
|
|
// symbol.
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
|
|
Subtarget->isPICStyleGOT())
|
|
return MachineJumpTableInfo::EK_Custom32;
|
|
|
|
// Otherwise, use the normal jump table encoding heuristics.
|
|
return TargetLowering::getJumpTableEncoding();
|
|
}
|
|
|
|
const MCExpr *
|
|
X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
|
|
const MachineBasicBlock *MBB,
|
|
unsigned uid,MCContext &Ctx) const{
|
|
assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
|
|
Subtarget->isPICStyleGOT());
|
|
// In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
|
|
// entries.
|
|
return MCSymbolRefExpr::Create(MBB->getSymbol(),
|
|
MCSymbolRefExpr::VK_GOTOFF, Ctx);
|
|
}
|
|
|
|
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
|
|
/// jumptable.
|
|
SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
|
|
SelectionDAG &DAG) const {
|
|
if (!Subtarget->is64Bit())
|
|
// This doesn't have DebugLoc associated with it, but is not really the
|
|
// same as a Register.
|
|
return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
|
|
return Table;
|
|
}
|
|
|
|
/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
|
|
/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
|
|
/// MCExpr.
|
|
const MCExpr *X86TargetLowering::
|
|
getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
|
|
MCContext &Ctx) const {
|
|
// X86-64 uses RIP relative addressing based on the jump table label.
|
|
if (Subtarget->isPICStyleRIPRel())
|
|
return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
|
|
|
|
// Otherwise, the reference is relative to the PIC base.
|
|
return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
|
|
}
|
|
|
|
// FIXME: Why this routine is here? Move to RegInfo!
|
|
std::pair<const TargetRegisterClass*, uint8_t>
|
|
X86TargetLowering::findRepresentativeClass(EVT VT) const{
|
|
const TargetRegisterClass *RRC = 0;
|
|
uint8_t Cost = 1;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
return TargetLowering::findRepresentativeClass(VT);
|
|
case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
|
|
RRC = (Subtarget->is64Bit()
|
|
? X86::GR64RegisterClass : X86::GR32RegisterClass);
|
|
break;
|
|
case MVT::x86mmx:
|
|
RRC = X86::VR64RegisterClass;
|
|
break;
|
|
case MVT::f32: case MVT::f64:
|
|
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
|
|
case MVT::v4f32: case MVT::v2f64:
|
|
case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
|
|
case MVT::v4f64:
|
|
RRC = X86::VR128RegisterClass;
|
|
break;
|
|
}
|
|
return std::make_pair(RRC, Cost);
|
|
}
|
|
|
|
bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
|
|
unsigned &Offset) const {
|
|
if (!Subtarget->isTargetLinux())
|
|
return false;
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
// %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
|
|
Offset = 0x28;
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
|
|
AddressSpace = 256;
|
|
else
|
|
AddressSpace = 257;
|
|
} else {
|
|
// %gs:0x14 on i386
|
|
Offset = 0x14;
|
|
AddressSpace = 256;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return Value Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86GenCallingConv.inc"
|
|
|
|
bool
|
|
X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
|
|
MachineFunction &MF, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
|
|
RVLocs, Context);
|
|
return CCInfo.CheckReturn(Outs, RetCC_X86);
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
DebugLoc dl, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
|
|
RVLocs, *DAG.getContext());
|
|
CCInfo.AnalyzeReturn(Outs, RetCC_X86);
|
|
|
|
// Add the regs to the liveout set for the function.
|
|
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i)
|
|
if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
|
|
MRI.addLiveOut(RVLocs[i].getLocReg());
|
|
|
|
SDValue Flag;
|
|
|
|
SmallVector<SDValue, 6> RetOps;
|
|
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
|
|
// Operand #1 = Bytes To Pop
|
|
RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
|
|
MVT::i16));
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
SDValue ValToCopy = OutVals[i];
|
|
EVT ValVT = ValToCopy.getValueType();
|
|
|
|
// If this is x86-64, and we disabled SSE, we can't return FP values,
|
|
// or SSE or MMX vectors.
|
|
if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
|
|
VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
|
|
(Subtarget->is64Bit() && !Subtarget->hasXMM())) {
|
|
report_fatal_error("SSE register return with SSE disabled");
|
|
}
|
|
// Likewise we can't return F64 values with SSE1 only. gcc does so, but
|
|
// llvm-gcc has never done it right and no one has noticed, so this
|
|
// should be OK for now.
|
|
if (ValVT == MVT::f64 &&
|
|
(Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
|
|
report_fatal_error("SSE2 register return with SSE2 disabled");
|
|
|
|
// Returns in ST0/ST1 are handled specially: these are pushed as operands to
|
|
// the RET instruction and handled by the FP Stackifier.
|
|
if (VA.getLocReg() == X86::ST0 ||
|
|
VA.getLocReg() == X86::ST1) {
|
|
// If this is a copy from an xmm register to ST(0), use an FPExtend to
|
|
// change the value to the FP stack register class.
|
|
if (isScalarFPTypeInSSEReg(VA.getValVT()))
|
|
ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
|
|
RetOps.push_back(ValToCopy);
|
|
// Don't emit a copytoreg.
|
|
continue;
|
|
}
|
|
|
|
// 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
|
|
// which is returned in RAX / RDX.
|
|
if (Subtarget->is64Bit()) {
|
|
if (ValVT == MVT::x86mmx) {
|
|
if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
|
|
ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
|
|
ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
|
|
ValToCopy);
|
|
// If we don't have SSE2 available, convert to v4f32 so the generated
|
|
// register is legal.
|
|
if (!Subtarget->hasSSE2())
|
|
ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
|
|
}
|
|
}
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
|
|
Flag = Chain.getValue(1);
|
|
}
|
|
|
|
// The x86-64 ABI for returning structs by value requires that we copy
|
|
// the sret argument into %rax for the return. We saved the argument into
|
|
// a virtual register in the entry block, so now we copy the value out
|
|
// and into %rax.
|
|
if (Subtarget->is64Bit() &&
|
|
DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
unsigned Reg = FuncInfo->getSRetReturnReg();
|
|
assert(Reg &&
|
|
"SRetReturnReg should have been set in LowerFormalArguments().");
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
|
|
Flag = Chain.getValue(1);
|
|
|
|
// RAX now acts like a return value.
|
|
MRI.addLiveOut(X86::RAX);
|
|
}
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
// Add the flag if we have it.
|
|
if (Flag.getNode())
|
|
RetOps.push_back(Flag);
|
|
|
|
return DAG.getNode(X86ISD::RET_FLAG, dl,
|
|
MVT::Other, &RetOps[0], RetOps.size());
|
|
}
|
|
|
|
bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
|
|
if (N->getNumValues() != 1)
|
|
return false;
|
|
if (!N->hasNUsesOfValue(1, 0))
|
|
return false;
|
|
|
|
SDNode *Copy = *N->use_begin();
|
|
if (Copy->getOpcode() != ISD::CopyToReg &&
|
|
Copy->getOpcode() != ISD::FP_EXTEND)
|
|
return false;
|
|
|
|
bool HasRet = false;
|
|
for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
|
|
UI != UE; ++UI) {
|
|
if (UI->getOpcode() != X86ISD::RET_FLAG)
|
|
return false;
|
|
HasRet = true;
|
|
}
|
|
|
|
return HasRet;
|
|
}
|
|
|
|
EVT
|
|
X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
|
|
ISD::NodeType ExtendKind) const {
|
|
MVT ReturnMVT;
|
|
// TODO: Is this also valid on 32-bit?
|
|
if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
|
|
ReturnMVT = MVT::i8;
|
|
else
|
|
ReturnMVT = MVT::i32;
|
|
|
|
EVT MinVT = getRegisterType(Context, ReturnMVT);
|
|
return VT.bitsLT(MinVT) ? MinVT : VT;
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
///
|
|
SDValue
|
|
X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
bool Is64Bit = Subtarget->is64Bit();
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs, *DAG.getContext());
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
EVT CopyVT = VA.getValVT();
|
|
|
|
// If this is x86-64, and we disabled SSE, we can't return FP values
|
|
if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
|
|
((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
|
|
report_fatal_error("SSE register return with SSE disabled");
|
|
}
|
|
|
|
SDValue Val;
|
|
|
|
// If this is a call to a function that returns an fp value on the floating
|
|
// point stack, we must guarantee the the value is popped from the stack, so
|
|
// a CopyFromReg is not good enough - the copy instruction may be eliminated
|
|
// if the return value is not used. We use the FpGET_ST0 instructions
|
|
// instead.
|
|
if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
|
|
// If we prefer to use the value in xmm registers, copy it out as f80 and
|
|
// use a truncate to move it from fp stack reg to xmm reg.
|
|
if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
|
|
bool isST0 = VA.getLocReg() == X86::ST0;
|
|
unsigned Opc = 0;
|
|
if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
|
|
if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
|
|
if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
|
|
SDValue Ops[] = { Chain, InFlag };
|
|
Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
|
|
Ops, 2), 1);
|
|
Val = Chain.getValue(0);
|
|
|
|
// Round the f80 to the right size, which also moves it to the appropriate
|
|
// xmm register.
|
|
if (CopyVT != VA.getValVT())
|
|
Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
|
|
// This truncation won't change the value.
|
|
DAG.getIntPtrConstant(1));
|
|
} else {
|
|
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
|
|
CopyVT, InFlag).getValue(1);
|
|
Val = Chain.getValue(0);
|
|
}
|
|
InFlag = Chain.getValue(2);
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// C & StdCall & Fast Calling Convention implementation
|
|
//===----------------------------------------------------------------------===//
|
|
// StdCall calling convention seems to be standard for many Windows' API
|
|
// routines and around. It differs from C calling convention just a little:
|
|
// callee should clean up the stack, not caller. Symbols should be also
|
|
// decorated in some fancy way :) It doesn't support any vector arguments.
|
|
// For info on fast calling convention see Fast Calling Convention (tail call)
|
|
// implementation LowerX86_32FastCCCallTo.
|
|
|
|
/// CallIsStructReturn - Determines whether a call uses struct return
|
|
/// semantics.
|
|
static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
|
|
if (Outs.empty())
|
|
return false;
|
|
|
|
return Outs[0].Flags.isSRet();
|
|
}
|
|
|
|
/// ArgsAreStructReturn - Determines whether a function uses struct
|
|
/// return semantics.
|
|
static bool
|
|
ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
|
|
if (Ins.empty())
|
|
return false;
|
|
|
|
return Ins[0].Flags.isSRet();
|
|
}
|
|
|
|
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
|
|
/// by "Src" to address "Dst" with size and alignment information specified by
|
|
/// the specific parameter attribute. The copy will be passed as a byval
|
|
/// function parameter.
|
|
static SDValue
|
|
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
|
|
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
|
|
DebugLoc dl) {
|
|
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
|
|
|
|
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
|
|
/*isVolatile*/false, /*AlwaysInline=*/true,
|
|
MachinePointerInfo(), MachinePointerInfo());
|
|
}
|
|
|
|
/// IsTailCallConvention - Return true if the calling convention is one that
|
|
/// supports tail call optimization.
|
|
static bool IsTailCallConvention(CallingConv::ID CC) {
|
|
return (CC == CallingConv::Fast || CC == CallingConv::GHC);
|
|
}
|
|
|
|
bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
|
|
if (!CI->isTailCall())
|
|
return false;
|
|
|
|
CallSite CS(CI);
|
|
CallingConv::ID CalleeCC = CS.getCallingConv();
|
|
if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// FuncIsMadeTailCallSafe - Return true if the function is being made into
|
|
/// a tailcall target by changing its ABI.
|
|
static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
|
|
return GuaranteedTailCallOpt && IsTailCallConvention(CC);
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerMemArgument(SDValue Chain,
|
|
CallingConv::ID CallConv,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA,
|
|
MachineFrameInfo *MFI,
|
|
unsigned i) const {
|
|
// Create the nodes corresponding to a load from this parameter slot.
|
|
ISD::ArgFlagsTy Flags = Ins[i].Flags;
|
|
bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
|
|
bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
|
|
EVT ValVT;
|
|
|
|
// If value is passed by pointer we have address passed instead of the value
|
|
// itself.
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
ValVT = VA.getLocVT();
|
|
else
|
|
ValVT = VA.getValVT();
|
|
|
|
// FIXME: For now, all byval parameter objects are marked mutable. This can be
|
|
// changed with more analysis.
|
|
// In case of tail call optimization mark all arguments mutable. Since they
|
|
// could be overwritten by lowering of arguments in case of a tail call.
|
|
if (Flags.isByVal()) {
|
|
unsigned Bytes = Flags.getByValSize();
|
|
if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
|
|
int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
|
|
return DAG.getFrameIndex(FI, getPointerTy());
|
|
} else {
|
|
int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
|
|
VA.getLocMemOffset(), isImmutable);
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
return DAG.getLoad(ValVT, dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0);
|
|
}
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl,
|
|
SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals)
|
|
const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
const Function* Fn = MF.getFunction();
|
|
if (Fn->hasExternalLinkage() &&
|
|
Subtarget->isTargetCygMing() &&
|
|
Fn->getName() == "main")
|
|
FuncInfo->setForceFramePointer(true);
|
|
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
bool Is64Bit = Subtarget->is64Bit();
|
|
bool IsWin64 = Subtarget->isTargetWin64();
|
|
|
|
assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
|
|
"Var args not supported with calling convention fastcc or ghc");
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
|
|
ArgLocs, *DAG.getContext());
|
|
|
|
// Allocate shadow area for Win64
|
|
if (IsWin64) {
|
|
CCInfo.AllocateStack(32, 8);
|
|
}
|
|
|
|
CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
|
|
|
|
unsigned LastVal = ~0U;
|
|
SDValue ArgValue;
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
// TODO: If an arg is passed in two places (e.g. reg and stack), skip later
|
|
// places.
|
|
assert(VA.getValNo() != LastVal &&
|
|
"Don't support value assigned to multiple locs yet");
|
|
LastVal = VA.getValNo();
|
|
|
|
if (VA.isRegLoc()) {
|
|
EVT RegVT = VA.getLocVT();
|
|
TargetRegisterClass *RC = NULL;
|
|
if (RegVT == MVT::i32)
|
|
RC = X86::GR32RegisterClass;
|
|
else if (Is64Bit && RegVT == MVT::i64)
|
|
RC = X86::GR64RegisterClass;
|
|
else if (RegVT == MVT::f32)
|
|
RC = X86::FR32RegisterClass;
|
|
else if (RegVT == MVT::f64)
|
|
RC = X86::FR64RegisterClass;
|
|
else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
|
|
RC = X86::VR256RegisterClass;
|
|
else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
|
|
RC = X86::VR128RegisterClass;
|
|
else if (RegVT == MVT::x86mmx)
|
|
RC = X86::VR64RegisterClass;
|
|
else
|
|
llvm_unreachable("Unknown argument type!");
|
|
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
|
|
|
|
// If this is an 8 or 16-bit value, it is really passed promoted to 32
|
|
// bits. Insert an assert[sz]ext to capture this, then truncate to the
|
|
// right size.
|
|
if (VA.getLocInfo() == CCValAssign::SExt)
|
|
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
else if (VA.getLocInfo() == CCValAssign::ZExt)
|
|
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
else if (VA.getLocInfo() == CCValAssign::BCvt)
|
|
ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
|
|
|
|
if (VA.isExtInLoc()) {
|
|
// Handle MMX values passed in XMM regs.
|
|
if (RegVT.isVector()) {
|
|
ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
|
|
ArgValue);
|
|
} else
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
}
|
|
} else {
|
|
assert(VA.isMemLoc());
|
|
ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
|
|
}
|
|
|
|
// If value is passed via pointer - do a load.
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
|
|
MachinePointerInfo(), false, false, 0);
|
|
|
|
InVals.push_back(ArgValue);
|
|
}
|
|
|
|
// The x86-64 ABI for returning structs by value requires that we copy
|
|
// the sret argument into %rax for the return. Save the argument into
|
|
// a virtual register so that we can access it from the return points.
|
|
if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
unsigned Reg = FuncInfo->getSRetReturnReg();
|
|
if (!Reg) {
|
|
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
|
|
FuncInfo->setSRetReturnReg(Reg);
|
|
}
|
|
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
|
|
}
|
|
|
|
unsigned StackSize = CCInfo.getNextStackOffset();
|
|
// Align stack specially for tail calls.
|
|
if (FuncIsMadeTailCallSafe(CallConv))
|
|
StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
|
|
|
|
// If the function takes variable number of arguments, make a frame index for
|
|
// the start of the first vararg value... for expansion of llvm.va_start.
|
|
if (isVarArg) {
|
|
if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
|
|
CallConv != CallingConv::X86_ThisCall)) {
|
|
FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
|
|
}
|
|
if (Is64Bit) {
|
|
unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
|
|
|
|
// FIXME: We should really autogenerate these arrays
|
|
static const unsigned GPR64ArgRegsWin64[] = {
|
|
X86::RCX, X86::RDX, X86::R8, X86::R9
|
|
};
|
|
static const unsigned GPR64ArgRegs64Bit[] = {
|
|
X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
|
|
};
|
|
static const unsigned XMMArgRegs64Bit[] = {
|
|
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
|
|
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
|
|
};
|
|
const unsigned *GPR64ArgRegs;
|
|
unsigned NumXMMRegs = 0;
|
|
|
|
if (IsWin64) {
|
|
// The XMM registers which might contain var arg parameters are shadowed
|
|
// in their paired GPR. So we only need to save the GPR to their home
|
|
// slots.
|
|
TotalNumIntRegs = 4;
|
|
GPR64ArgRegs = GPR64ArgRegsWin64;
|
|
} else {
|
|
TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
|
|
GPR64ArgRegs = GPR64ArgRegs64Bit;
|
|
|
|
NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
|
|
}
|
|
unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
|
|
TotalNumIntRegs);
|
|
|
|
bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
|
|
assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
|
|
"SSE register cannot be used when SSE is disabled!");
|
|
assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
|
|
"SSE register cannot be used when SSE is disabled!");
|
|
if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
|
|
// Kernel mode asks for SSE to be disabled, so don't push them
|
|
// on the stack.
|
|
TotalNumXMMRegs = 0;
|
|
|
|
if (IsWin64) {
|
|
const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
|
|
// Get to the caller-allocated home save location. Add 8 to account
|
|
// for the return address.
|
|
int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
|
|
FuncInfo->setRegSaveFrameIndex(
|
|
MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
|
|
// Fixup to set vararg frame on shadow area (4 x i64).
|
|
if (NumIntRegs < 4)
|
|
FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
|
|
} else {
|
|
// For X86-64, if there are vararg parameters that are passed via
|
|
// registers, then we must store them to their spots on the stack so they
|
|
// may be loaded by deferencing the result of va_next.
|
|
FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
|
|
FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
|
|
FuncInfo->setRegSaveFrameIndex(
|
|
MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
|
|
false));
|
|
}
|
|
|
|
// Store the integer parameter registers.
|
|
SmallVector<SDValue, 8> MemOps;
|
|
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
|
|
getPointerTy());
|
|
unsigned Offset = FuncInfo->getVarArgsGPOffset();
|
|
for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
|
|
SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
|
|
DAG.getIntPtrConstant(Offset));
|
|
unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
|
|
X86::GR64RegisterClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
|
|
SDValue Store =
|
|
DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo::getFixedStack(
|
|
FuncInfo->getRegSaveFrameIndex(), Offset),
|
|
false, false, 0);
|
|
MemOps.push_back(Store);
|
|
Offset += 8;
|
|
}
|
|
|
|
if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
|
|
// Now store the XMM (fp + vector) parameter registers.
|
|
SmallVector<SDValue, 11> SaveXMMOps;
|
|
SaveXMMOps.push_back(Chain);
|
|
|
|
unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
|
|
SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
|
|
SaveXMMOps.push_back(ALVal);
|
|
|
|
SaveXMMOps.push_back(DAG.getIntPtrConstant(
|
|
FuncInfo->getRegSaveFrameIndex()));
|
|
SaveXMMOps.push_back(DAG.getIntPtrConstant(
|
|
FuncInfo->getVarArgsFPOffset()));
|
|
|
|
for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
|
|
unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
|
|
X86::VR128RegisterClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
|
|
SaveXMMOps.push_back(Val);
|
|
}
|
|
MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
|
|
MVT::Other,
|
|
&SaveXMMOps[0], SaveXMMOps.size()));
|
|
}
|
|
|
|
if (!MemOps.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOps[0], MemOps.size());
|
|
}
|
|
}
|
|
|
|
// Some CCs need callee pop.
|
|
if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
|
|
FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
|
|
} else {
|
|
FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
|
|
// If this is an sret function, the return should pop the hidden pointer.
|
|
if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
|
|
FuncInfo->setBytesToPopOnReturn(4);
|
|
}
|
|
|
|
if (!Is64Bit) {
|
|
// RegSaveFrameIndex is X86-64 only.
|
|
FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
|
|
if (CallConv == CallingConv::X86_FastCall ||
|
|
CallConv == CallingConv::X86_ThisCall)
|
|
// fastcc functions can't have varargs.
|
|
FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
|
|
SDValue StackPtr, SDValue Arg,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA,
|
|
ISD::ArgFlagsTy Flags) const {
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
|
|
if (Flags.isByVal())
|
|
return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
|
|
|
|
return DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo::getStack(LocMemOffset),
|
|
false, false, 0);
|
|
}
|
|
|
|
/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
|
|
/// optimization is performed and it is required.
|
|
SDValue
|
|
X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
|
|
SDValue &OutRetAddr, SDValue Chain,
|
|
bool IsTailCall, bool Is64Bit,
|
|
int FPDiff, DebugLoc dl) const {
|
|
// Adjust the Return address stack slot.
|
|
EVT VT = getPointerTy();
|
|
OutRetAddr = getReturnAddressFrameIndex(DAG);
|
|
|
|
// Load the "old" Return address.
|
|
OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
|
|
false, false, 0);
|
|
return SDValue(OutRetAddr.getNode(), 1);
|
|
}
|
|
|
|
/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
|
|
/// optimization is performed and it is required (FPDiff!=0).
|
|
static SDValue
|
|
EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
|
|
SDValue Chain, SDValue RetAddrFrIdx,
|
|
bool Is64Bit, int FPDiff, DebugLoc dl) {
|
|
// Store the return address to the appropriate stack slot.
|
|
if (!FPDiff) return Chain;
|
|
// Calculate the new stack slot for the return address.
|
|
int SlotSize = Is64Bit ? 8 : 4;
|
|
int NewReturnAddrFI =
|
|
MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
|
|
EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
|
|
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
|
|
Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
|
|
MachinePointerInfo::getFixedStack(NewReturnAddrFI),
|
|
false, false, 0);
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool &isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool Is64Bit = Subtarget->is64Bit();
|
|
bool IsWin64 = Subtarget->isTargetWin64();
|
|
bool IsStructRet = CallIsStructReturn(Outs);
|
|
bool IsSibcall = false;
|
|
|
|
if (isTailCall) {
|
|
// Check if it's really possible to do a tail call.
|
|
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
|
|
isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
|
|
Outs, OutVals, Ins, DAG);
|
|
|
|
// Sibcalls are automatically detected tailcalls which do not require
|
|
// ABI changes.
|
|
if (!GuaranteedTailCallOpt && isTailCall)
|
|
IsSibcall = true;
|
|
|
|
if (isTailCall)
|
|
++NumTailCalls;
|
|
}
|
|
|
|
assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
|
|
"Var args not supported with calling convention fastcc or ghc");
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
|
|
ArgLocs, *DAG.getContext());
|
|
|
|
// Allocate shadow area for Win64
|
|
if (IsWin64) {
|
|
CCInfo.AllocateStack(32, 8);
|
|
}
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = CCInfo.getNextStackOffset();
|
|
if (IsSibcall)
|
|
// This is a sibcall. The memory operands are available in caller's
|
|
// own caller's stack.
|
|
NumBytes = 0;
|
|
else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
|
|
NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
|
|
|
|
int FPDiff = 0;
|
|
if (isTailCall && !IsSibcall) {
|
|
// Lower arguments at fp - stackoffset + fpdiff.
|
|
unsigned NumBytesCallerPushed =
|
|
MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
|
|
FPDiff = NumBytesCallerPushed - NumBytes;
|
|
|
|
// Set the delta of movement of the returnaddr stackslot.
|
|
// But only set if delta is greater than previous delta.
|
|
if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
|
|
MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
|
|
}
|
|
|
|
if (!IsSibcall)
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
|
|
|
|
SDValue RetAddrFrIdx;
|
|
// Load return address for tail calls.
|
|
if (isTailCall && FPDiff)
|
|
Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
|
|
Is64Bit, FPDiff, dl);
|
|
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
SDValue StackPtr;
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads. In the case
|
|
// of tail call optimization arguments are handle later.
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
EVT RegVT = VA.getLocVT();
|
|
SDValue Arg = OutVals[i];
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
bool isByVal = Flags.isByVal();
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
|
|
// Special case: passing MMX values in XMM registers.
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
|
|
Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
|
|
Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
|
|
} else
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
|
|
break;
|
|
case CCValAssign::Indirect: {
|
|
// Store the argument.
|
|
SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
|
|
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
|
|
Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0);
|
|
Arg = SpillSlot;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (VA.isRegLoc()) {
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
if (isVarArg && IsWin64) {
|
|
// Win64 ABI requires argument XMM reg to be copied to the corresponding
|
|
// shadow reg if callee is a varargs function.
|
|
unsigned ShadowReg = 0;
|
|
switch (VA.getLocReg()) {
|
|
case X86::XMM0: ShadowReg = X86::RCX; break;
|
|
case X86::XMM1: ShadowReg = X86::RDX; break;
|
|
case X86::XMM2: ShadowReg = X86::R8; break;
|
|
case X86::XMM3: ShadowReg = X86::R9; break;
|
|
}
|
|
if (ShadowReg)
|
|
RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
|
|
}
|
|
} else if (!IsSibcall && (!isTailCall || isByVal)) {
|
|
assert(VA.isMemLoc());
|
|
if (StackPtr.getNode() == 0)
|
|
StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
|
|
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
|
|
dl, DAG, VA, Flags));
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOpChains[0], MemOpChains.size());
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into registers.
|
|
SDValue InFlag;
|
|
// Tail call byval lowering might overwrite argument registers so in case of
|
|
// tail call optimization the copies to registers are lowered later.
|
|
if (!isTailCall)
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
if (Subtarget->isPICStyleGOT()) {
|
|
// ELF / PIC requires GOT in the EBX register before function calls via PLT
|
|
// GOT pointer.
|
|
if (!isTailCall) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
|
|
DAG.getNode(X86ISD::GlobalBaseReg,
|
|
DebugLoc(), getPointerTy()),
|
|
InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
} else {
|
|
// If we are tail calling and generating PIC/GOT style code load the
|
|
// address of the callee into ECX. The value in ecx is used as target of
|
|
// the tail jump. This is done to circumvent the ebx/callee-saved problem
|
|
// for tail calls on PIC/GOT architectures. Normally we would just put the
|
|
// address of GOT into ebx and then call target@PLT. But for tail calls
|
|
// ebx would be restored (since ebx is callee saved) before jumping to the
|
|
// target@PLT.
|
|
|
|
// Note: The actual moving to ECX is done further down.
|
|
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
|
|
if (G && !G->getGlobal()->hasHiddenVisibility() &&
|
|
!G->getGlobal()->hasProtectedVisibility())
|
|
Callee = LowerGlobalAddress(Callee, DAG);
|
|
else if (isa<ExternalSymbolSDNode>(Callee))
|
|
Callee = LowerExternalSymbol(Callee, DAG);
|
|
}
|
|
}
|
|
|
|
if (Is64Bit && isVarArg && !IsWin64) {
|
|
// From AMD64 ABI document:
|
|
// For calls that may call functions that use varargs or stdargs
|
|
// (prototype-less calls or calls to functions containing ellipsis (...) in
|
|
// the declaration) %al is used as hidden argument to specify the number
|
|
// of SSE registers used. The contents of %al do not need to match exactly
|
|
// the number of registers, but must be an ubound on the number of SSE
|
|
// registers used and is in the range 0 - 8 inclusive.
|
|
|
|
// Count the number of XMM registers allocated.
|
|
static const unsigned XMMArgRegs[] = {
|
|
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
|
|
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
|
|
};
|
|
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
|
|
assert((Subtarget->hasXMM() || !NumXMMRegs)
|
|
&& "SSE registers cannot be used when SSE is disabled");
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
|
|
DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
|
|
// For tail calls lower the arguments to the 'real' stack slot.
|
|
if (isTailCall) {
|
|
// Force all the incoming stack arguments to be loaded from the stack
|
|
// before any new outgoing arguments are stored to the stack, because the
|
|
// outgoing stack slots may alias the incoming argument stack slots, and
|
|
// the alias isn't otherwise explicit. This is slightly more conservative
|
|
// than necessary, because it means that each store effectively depends
|
|
// on every argument instead of just those arguments it would clobber.
|
|
SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
|
|
|
|
SmallVector<SDValue, 8> MemOpChains2;
|
|
SDValue FIN;
|
|
int FI = 0;
|
|
// Do not flag preceding copytoreg stuff together with the following stuff.
|
|
InFlag = SDValue();
|
|
if (GuaranteedTailCallOpt) {
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
if (VA.isRegLoc())
|
|
continue;
|
|
assert(VA.isMemLoc());
|
|
SDValue Arg = OutVals[i];
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
// Create frame index.
|
|
int32_t Offset = VA.getLocMemOffset()+FPDiff;
|
|
uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
|
|
FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
|
|
FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
|
|
if (Flags.isByVal()) {
|
|
// Copy relative to framepointer.
|
|
SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
|
|
if (StackPtr.getNode() == 0)
|
|
StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
|
|
getPointerTy());
|
|
Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
|
|
|
|
MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
|
|
ArgChain,
|
|
Flags, DAG, dl));
|
|
} else {
|
|
// Store relative to framepointer.
|
|
MemOpChains2.push_back(
|
|
DAG.getStore(ArgChain, dl, Arg, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains2.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOpChains2[0], MemOpChains2.size());
|
|
|
|
// Copy arguments to their registers.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
InFlag =SDValue();
|
|
|
|
// Store the return address to the appropriate stack slot.
|
|
Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
|
|
FPDiff, dl);
|
|
}
|
|
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large) {
|
|
assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
|
|
// In the 64-bit large code model, we have to make all calls
|
|
// through a register, since the call instruction's 32-bit
|
|
// pc-relative offset may not be large enough to hold the whole
|
|
// address.
|
|
} else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
// If the callee is a GlobalAddress node (quite common, every direct call
|
|
// is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
|
|
// it.
|
|
|
|
// We should use extra load for direct calls to dllimported functions in
|
|
// non-JIT mode.
|
|
const GlobalValue *GV = G->getGlobal();
|
|
if (!GV->hasDLLImportLinkage()) {
|
|
unsigned char OpFlags = 0;
|
|
|
|
// On ELF targets, in both X86-64 and X86-32 mode, direct calls to
|
|
// external symbols most go through the PLT in PIC mode. If the symbol
|
|
// has hidden or protected visibility, or if it is static or local, then
|
|
// we don't need to use the PLT - we can directly call it.
|
|
if (Subtarget->isTargetELF() &&
|
|
getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
|
|
GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
|
|
OpFlags = X86II::MO_PLT;
|
|
} else if (Subtarget->isPICStyleStubAny() &&
|
|
(GV->isDeclaration() || GV->isWeakForLinker()) &&
|
|
(!Subtarget->getTargetTriple().isMacOSX() ||
|
|
Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
|
|
// PC-relative references to external symbols should go through $stub,
|
|
// unless we're building with the leopard linker or later, which
|
|
// automatically synthesizes these stubs.
|
|
OpFlags = X86II::MO_DARWIN_STUB;
|
|
}
|
|
|
|
Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
|
|
G->getOffset(), OpFlags);
|
|
}
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
unsigned char OpFlags = 0;
|
|
|
|
// On ELF targets, in either X86-64 or X86-32 mode, direct calls to
|
|
// external symbols should go through the PLT.
|
|
if (Subtarget->isTargetELF() &&
|
|
getTargetMachine().getRelocationModel() == Reloc::PIC_) {
|
|
OpFlags = X86II::MO_PLT;
|
|
} else if (Subtarget->isPICStyleStubAny() &&
|
|
(!Subtarget->getTargetTriple().isMacOSX() ||
|
|
Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
|
|
// PC-relative references to external symbols should go through $stub,
|
|
// unless we're building with the leopard linker or later, which
|
|
// automatically synthesizes these stubs.
|
|
OpFlags = X86II::MO_DARWIN_STUB;
|
|
}
|
|
|
|
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
|
|
OpFlags);
|
|
}
|
|
|
|
// Returns a chain & a flag for retval copy to use.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SmallVector<SDValue, 8> Ops;
|
|
|
|
if (!IsSibcall && isTailCall) {
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
if (isTailCall)
|
|
Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
// Add an implicit use GOT pointer in EBX.
|
|
if (!isTailCall && Subtarget->isPICStyleGOT())
|
|
Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
|
|
|
|
// Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
|
|
if (Is64Bit && isVarArg && !IsWin64)
|
|
Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
if (isTailCall) {
|
|
// We used to do:
|
|
//// If this is the first return lowered for this function, add the regs
|
|
//// to the liveout set for the function.
|
|
// This isn't right, although it's probably harmless on x86; liveouts
|
|
// should be computed from returns not tail calls. Consider a void
|
|
// function making a tail call to a function returning int.
|
|
return DAG.getNode(X86ISD::TC_RETURN, dl,
|
|
NodeTys, &Ops[0], Ops.size());
|
|
}
|
|
|
|
Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Create the CALLSEQ_END node.
|
|
unsigned NumBytesForCalleeToPush;
|
|
if (Subtarget->IsCalleePop(isVarArg, CallConv))
|
|
NumBytesForCalleeToPush = NumBytes; // Callee pops everything
|
|
else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
|
|
// If this is a call to a struct-return function, the callee
|
|
// pops the hidden struct pointer, so we have to push it back.
|
|
// This is common for Darwin/X86, Linux & Mingw32 targets.
|
|
NumBytesForCalleeToPush = 4;
|
|
else
|
|
NumBytesForCalleeToPush = 0; // Callee pops nothing.
|
|
|
|
// Returns a flag for retval copy to use.
|
|
if (!IsSibcall) {
|
|
Chain = DAG.getCALLSEQ_END(Chain,
|
|
DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(NumBytesForCalleeToPush,
|
|
true),
|
|
InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
|
|
Ins, dl, DAG, InVals);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Fast Calling Convention (tail call) implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Like std call, callee cleans arguments, convention except that ECX is
|
|
// reserved for storing the tail called function address. Only 2 registers are
|
|
// free for argument passing (inreg). Tail call optimization is performed
|
|
// provided:
|
|
// * tailcallopt is enabled
|
|
// * caller/callee are fastcc
|
|
// On X86_64 architecture with GOT-style position independent code only local
|
|
// (within module) calls are supported at the moment.
|
|
// To keep the stack aligned according to platform abi the function
|
|
// GetAlignedArgumentStackSize ensures that argument delta is always multiples
|
|
// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
|
|
// If a tail called function callee has more arguments than the caller the
|
|
// caller needs to make sure that there is room to move the RETADDR to. This is
|
|
// achieved by reserving an area the size of the argument delta right after the
|
|
// original REtADDR, but before the saved framepointer or the spilled registers
|
|
// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
|
|
// stack layout:
|
|
// arg1
|
|
// arg2
|
|
// RETADDR
|
|
// [ new RETADDR
|
|
// move area ]
|
|
// (possible EBP)
|
|
// ESI
|
|
// EDI
|
|
// local1 ..
|
|
|
|
/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
|
|
/// for a 16 byte align requirement.
|
|
unsigned
|
|
X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
|
|
SelectionDAG& DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const TargetFrameLowering &TFI = *TM.getFrameLowering();
|
|
unsigned StackAlignment = TFI.getStackAlignment();
|
|
uint64_t AlignMask = StackAlignment - 1;
|
|
int64_t Offset = StackSize;
|
|
uint64_t SlotSize = TD->getPointerSize();
|
|
if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
|
|
// Number smaller than 12 so just add the difference.
|
|
Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
|
|
} else {
|
|
// Mask out lower bits, add stackalignment once plus the 12 bytes.
|
|
Offset = ((~AlignMask) & Offset) + StackAlignment +
|
|
(StackAlignment-SlotSize);
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
/// MatchingStackOffset - Return true if the given stack call argument is
|
|
/// already available in the same position (relatively) of the caller's
|
|
/// incoming argument stack.
|
|
static
|
|
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
|
|
MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
|
|
const X86InstrInfo *TII) {
|
|
unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
|
|
int FI = INT_MAX;
|
|
if (Arg.getOpcode() == ISD::CopyFromReg) {
|
|
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(VR))
|
|
return false;
|
|
MachineInstr *Def = MRI->getVRegDef(VR);
|
|
if (!Def)
|
|
return false;
|
|
if (!Flags.isByVal()) {
|
|
if (!TII->isLoadFromStackSlot(Def, FI))
|
|
return false;
|
|
} else {
|
|
unsigned Opcode = Def->getOpcode();
|
|
if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
|
|
Def->getOperand(1).isFI()) {
|
|
FI = Def->getOperand(1).getIndex();
|
|
Bytes = Flags.getByValSize();
|
|
} else
|
|
return false;
|
|
}
|
|
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
|
|
if (Flags.isByVal())
|
|
// ByVal argument is passed in as a pointer but it's now being
|
|
// dereferenced. e.g.
|
|
// define @foo(%struct.X* %A) {
|
|
// tail call @bar(%struct.X* byval %A)
|
|
// }
|
|
return false;
|
|
SDValue Ptr = Ld->getBasePtr();
|
|
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
|
|
if (!FINode)
|
|
return false;
|
|
FI = FINode->getIndex();
|
|
} else
|
|
return false;
|
|
|
|
assert(FI != INT_MAX);
|
|
if (!MFI->isFixedObjectIndex(FI))
|
|
return false;
|
|
return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
|
|
}
|
|
|
|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
|
|
/// for tail call optimization. Targets which want to do tail call
|
|
/// optimization should implement this function.
|
|
bool
|
|
X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
bool isCalleeStructRet,
|
|
bool isCallerStructRet,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const {
|
|
if (!IsTailCallConvention(CalleeCC) &&
|
|
CalleeCC != CallingConv::C)
|
|
return false;
|
|
|
|
// If -tailcallopt is specified, make fastcc functions tail-callable.
|
|
const MachineFunction &MF = DAG.getMachineFunction();
|
|
const Function *CallerF = DAG.getMachineFunction().getFunction();
|
|
CallingConv::ID CallerCC = CallerF->getCallingConv();
|
|
bool CCMatch = CallerCC == CalleeCC;
|
|
|
|
if (GuaranteedTailCallOpt) {
|
|
if (IsTailCallConvention(CalleeCC) && CCMatch)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Look for obvious safe cases to perform tail call optimization that do not
|
|
// require ABI changes. This is what gcc calls sibcall.
|
|
|
|
// Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
|
|
// emit a special epilogue.
|
|
if (RegInfo->needsStackRealignment(MF))
|
|
return false;
|
|
|
|
// Also avoid sibcall optimization if either caller or callee uses struct
|
|
// return semantics.
|
|
if (isCalleeStructRet || isCallerStructRet)
|
|
return false;
|
|
|
|
// Do not sibcall optimize vararg calls unless all arguments are passed via
|
|
// registers.
|
|
if (isVarArg && !Outs.empty()) {
|
|
|
|
// Optimizing for varargs on Win64 is unlikely to be safe without
|
|
// additional testing.
|
|
if (Subtarget->isTargetWin64())
|
|
return false;
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), ArgLocs, *DAG.getContext());
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
|
|
if (!ArgLocs[i].isRegLoc())
|
|
return false;
|
|
}
|
|
|
|
// If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
|
|
// Therefore if it's not used by the call it is not safe to optimize this into
|
|
// a sibcall.
|
|
bool Unused = false;
|
|
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
|
|
if (!Ins[i].Used) {
|
|
Unused = true;
|
|
break;
|
|
}
|
|
}
|
|
if (Unused) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs, *DAG.getContext());
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
|
|
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If the calling conventions do not match, then we'd better make sure the
|
|
// results are returned in the same way as what the caller expects.
|
|
if (!CCMatch) {
|
|
SmallVector<CCValAssign, 16> RVLocs1;
|
|
CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs1, *DAG.getContext());
|
|
CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs2;
|
|
CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs2, *DAG.getContext());
|
|
CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
|
|
|
|
if (RVLocs1.size() != RVLocs2.size())
|
|
return false;
|
|
for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
|
|
if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
|
|
return false;
|
|
if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
|
|
return false;
|
|
if (RVLocs1[i].isRegLoc()) {
|
|
if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
|
|
return false;
|
|
} else {
|
|
if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the callee takes no arguments then go on to check the results of the
|
|
// call.
|
|
if (!Outs.empty()) {
|
|
// Check if stack adjustment is needed. For now, do not do this if any
|
|
// argument is passed on the stack.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), ArgLocs, *DAG.getContext());
|
|
|
|
// Allocate shadow area for Win64
|
|
if (Subtarget->isTargetWin64()) {
|
|
CCInfo.AllocateStack(32, 8);
|
|
}
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
|
|
if (CCInfo.getNextStackOffset()) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
|
|
return false;
|
|
|
|
// Check if the arguments are already laid out in the right way as
|
|
// the caller's fixed stack objects.
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const MachineRegisterInfo *MRI = &MF.getRegInfo();
|
|
const X86InstrInfo *TII =
|
|
((X86TargetMachine&)getTargetMachine()).getInstrInfo();
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue Arg = OutVals[i];
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
return false;
|
|
if (!VA.isRegLoc()) {
|
|
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
|
|
MFI, MRI, TII))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the tailcall address may be in a register, then make sure it's
|
|
// possible to register allocate for it. In 32-bit, the call address can
|
|
// only target EAX, EDX, or ECX since the tail call must be scheduled after
|
|
// callee-saved registers are restored. These happen to be the same
|
|
// registers used to pass 'inreg' arguments so watch out for those.
|
|
if (!Subtarget->is64Bit() &&
|
|
!isa<GlobalAddressSDNode>(Callee) &&
|
|
!isa<ExternalSymbolSDNode>(Callee)) {
|
|
unsigned NumInRegs = 0;
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
if (!VA.isRegLoc())
|
|
continue;
|
|
unsigned Reg = VA.getLocReg();
|
|
switch (Reg) {
|
|
default: break;
|
|
case X86::EAX: case X86::EDX: case X86::ECX:
|
|
if (++NumInRegs == 3)
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// An stdcall caller is expected to clean up its arguments; the callee
|
|
// isn't going to do that.
|
|
if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
FastISel *
|
|
X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
|
|
return X86::createFastISel(funcInfo);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Lowering Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool MayFoldLoad(SDValue Op) {
|
|
return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
|
|
}
|
|
|
|
static bool MayFoldIntoStore(SDValue Op) {
|
|
return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
|
|
}
|
|
|
|
static bool isTargetShuffle(unsigned Opcode) {
|
|
switch(Opcode) {
|
|
default: return false;
|
|
case X86ISD::PSHUFD:
|
|
case X86ISD::PSHUFHW:
|
|
case X86ISD::PSHUFLW:
|
|
case X86ISD::SHUFPD:
|
|
case X86ISD::PALIGN:
|
|
case X86ISD::SHUFPS:
|
|
case X86ISD::MOVLHPS:
|
|
case X86ISD::MOVLHPD:
|
|
case X86ISD::MOVHLPS:
|
|
case X86ISD::MOVLPS:
|
|
case X86ISD::MOVLPD:
|
|
case X86ISD::MOVSHDUP:
|
|
case X86ISD::MOVSLDUP:
|
|
case X86ISD::MOVDDUP:
|
|
case X86ISD::MOVSS:
|
|
case X86ISD::MOVSD:
|
|
case X86ISD::UNPCKLPS:
|
|
case X86ISD::UNPCKLPD:
|
|
case X86ISD::VUNPCKLPS:
|
|
case X86ISD::VUNPCKLPD:
|
|
case X86ISD::VUNPCKLPSY:
|
|
case X86ISD::VUNPCKLPDY:
|
|
case X86ISD::PUNPCKLWD:
|
|
case X86ISD::PUNPCKLBW:
|
|
case X86ISD::PUNPCKLDQ:
|
|
case X86ISD::PUNPCKLQDQ:
|
|
case X86ISD::UNPCKHPS:
|
|
case X86ISD::UNPCKHPD:
|
|
case X86ISD::PUNPCKHWD:
|
|
case X86ISD::PUNPCKHBW:
|
|
case X86ISD::PUNPCKHDQ:
|
|
case X86ISD::PUNPCKHQDQ:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
|
|
SDValue V1, SelectionDAG &DAG) {
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown x86 shuffle node");
|
|
case X86ISD::MOVSHDUP:
|
|
case X86ISD::MOVSLDUP:
|
|
case X86ISD::MOVDDUP:
|
|
return DAG.getNode(Opc, dl, VT, V1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
|
|
SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown x86 shuffle node");
|
|
case X86ISD::PSHUFD:
|
|
case X86ISD::PSHUFHW:
|
|
case X86ISD::PSHUFLW:
|
|
return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
|
|
SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown x86 shuffle node");
|
|
case X86ISD::PALIGN:
|
|
case X86ISD::SHUFPD:
|
|
case X86ISD::SHUFPS:
|
|
return DAG.getNode(Opc, dl, VT, V1, V2,
|
|
DAG.getConstant(TargetMask, MVT::i8));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
|
|
SDValue V1, SDValue V2, SelectionDAG &DAG) {
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown x86 shuffle node");
|
|
case X86ISD::MOVLHPS:
|
|
case X86ISD::MOVLHPD:
|
|
case X86ISD::MOVHLPS:
|
|
case X86ISD::MOVLPS:
|
|
case X86ISD::MOVLPD:
|
|
case X86ISD::MOVSS:
|
|
case X86ISD::MOVSD:
|
|
case X86ISD::UNPCKLPS:
|
|
case X86ISD::UNPCKLPD:
|
|
case X86ISD::VUNPCKLPS:
|
|
case X86ISD::VUNPCKLPD:
|
|
case X86ISD::VUNPCKLPSY:
|
|
case X86ISD::VUNPCKLPDY:
|
|
case X86ISD::PUNPCKLWD:
|
|
case X86ISD::PUNPCKLBW:
|
|
case X86ISD::PUNPCKLDQ:
|
|
case X86ISD::PUNPCKLQDQ:
|
|
case X86ISD::UNPCKHPS:
|
|
case X86ISD::UNPCKHPD:
|
|
case X86ISD::PUNPCKHWD:
|
|
case X86ISD::PUNPCKHBW:
|
|
case X86ISD::PUNPCKHDQ:
|
|
case X86ISD::PUNPCKHQDQ:
|
|
return DAG.getNode(Opc, dl, VT, V1, V2);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
int ReturnAddrIndex = FuncInfo->getRAIndex();
|
|
|
|
if (ReturnAddrIndex == 0) {
|
|
// Set up a frame object for the return address.
|
|
uint64_t SlotSize = TD->getPointerSize();
|
|
ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
|
|
false);
|
|
FuncInfo->setRAIndex(ReturnAddrIndex);
|
|
}
|
|
|
|
return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
|
|
}
|
|
|
|
|
|
bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
|
|
bool hasSymbolicDisplacement) {
|
|
// Offset should fit into 32 bit immediate field.
|
|
if (!isInt<32>(Offset))
|
|
return false;
|
|
|
|
// If we don't have a symbolic displacement - we don't have any extra
|
|
// restrictions.
|
|
if (!hasSymbolicDisplacement)
|
|
return true;
|
|
|
|
// FIXME: Some tweaks might be needed for medium code model.
|
|
if (M != CodeModel::Small && M != CodeModel::Kernel)
|
|
return false;
|
|
|
|
// For small code model we assume that latest object is 16MB before end of 31
|
|
// bits boundary. We may also accept pretty large negative constants knowing
|
|
// that all objects are in the positive half of address space.
|
|
if (M == CodeModel::Small && Offset < 16*1024*1024)
|
|
return true;
|
|
|
|
// For kernel code model we know that all object resist in the negative half
|
|
// of 32bits address space. We may not accept negative offsets, since they may
|
|
// be just off and we may accept pretty large positive ones.
|
|
if (M == CodeModel::Kernel && Offset > 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
|
|
/// specific condition code, returning the condition code and the LHS/RHS of the
|
|
/// comparison to make.
|
|
static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
|
|
SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
|
|
if (!isFP) {
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
|
|
if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
|
|
// X > -1 -> X == 0, jump !sign.
|
|
RHS = DAG.getConstant(0, RHS.getValueType());
|
|
return X86::COND_NS;
|
|
} else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
|
|
// X < 0 -> X == 0, jump on sign.
|
|
return X86::COND_S;
|
|
} else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
|
|
// X < 1 -> X <= 0
|
|
RHS = DAG.getConstant(0, RHS.getValueType());
|
|
return X86::COND_LE;
|
|
}
|
|
}
|
|
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Invalid integer condition!");
|
|
case ISD::SETEQ: return X86::COND_E;
|
|
case ISD::SETGT: return X86::COND_G;
|
|
case ISD::SETGE: return X86::COND_GE;
|
|
case ISD::SETLT: return X86::COND_L;
|
|
case ISD::SETLE: return X86::COND_LE;
|
|
case ISD::SETNE: return X86::COND_NE;
|
|
case ISD::SETULT: return X86::COND_B;
|
|
case ISD::SETUGT: return X86::COND_A;
|
|
case ISD::SETULE: return X86::COND_BE;
|
|
case ISD::SETUGE: return X86::COND_AE;
|
|
}
|
|
}
|
|
|
|
// First determine if it is required or is profitable to flip the operands.
|
|
|
|
// If LHS is a foldable load, but RHS is not, flip the condition.
|
|
if (ISD::isNON_EXTLoad(LHS.getNode()) &&
|
|
!ISD::isNON_EXTLoad(RHS.getNode())) {
|
|
SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
|
|
std::swap(LHS, RHS);
|
|
}
|
|
|
|
switch (SetCCOpcode) {
|
|
default: break;
|
|
case ISD::SETOLT:
|
|
case ISD::SETOLE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
std::swap(LHS, RHS);
|
|
break;
|
|
}
|
|
|
|
// On a floating point condition, the flags are set as follows:
|
|
// ZF PF CF op
|
|
// 0 | 0 | 0 | X > Y
|
|
// 0 | 0 | 1 | X < Y
|
|
// 1 | 0 | 0 | X == Y
|
|
// 1 | 1 | 1 | unordered
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Condcode should be pre-legalized away");
|
|
case ISD::SETUEQ:
|
|
case ISD::SETEQ: return X86::COND_E;
|
|
case ISD::SETOLT: // flipped
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: return X86::COND_A;
|
|
case ISD::SETOLE: // flipped
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE: return X86::COND_AE;
|
|
case ISD::SETUGT: // flipped
|
|
case ISD::SETULT:
|
|
case ISD::SETLT: return X86::COND_B;
|
|
case ISD::SETUGE: // flipped
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: return X86::COND_BE;
|
|
case ISD::SETONE:
|
|
case ISD::SETNE: return X86::COND_NE;
|
|
case ISD::SETUO: return X86::COND_P;
|
|
case ISD::SETO: return X86::COND_NP;
|
|
case ISD::SETOEQ:
|
|
case ISD::SETUNE: return X86::COND_INVALID;
|
|
}
|
|
}
|
|
|
|
/// hasFPCMov - is there a floating point cmov for the specific X86 condition
|
|
/// code. Current x86 isa includes the following FP cmov instructions:
|
|
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
|
|
static bool hasFPCMov(unsigned X86CC) {
|
|
switch (X86CC) {
|
|
default:
|
|
return false;
|
|
case X86::COND_B:
|
|
case X86::COND_BE:
|
|
case X86::COND_E:
|
|
case X86::COND_P:
|
|
case X86::COND_A:
|
|
case X86::COND_AE:
|
|
case X86::COND_NE:
|
|
case X86::COND_NP:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// isFPImmLegal - Returns true if the target can instruction select the
|
|
/// specified FP immediate natively. If false, the legalizer will
|
|
/// materialize the FP immediate as a load from a constant pool.
|
|
bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
|
|
if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isUndefOrInRange - Return true if Val is undef or if its value falls within
|
|
/// the specified range (L, H].
|
|
static bool isUndefOrInRange(int Val, int Low, int Hi) {
|
|
return (Val < 0) || (Val >= Low && Val < Hi);
|
|
}
|
|
|
|
/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
|
|
/// specified value.
|
|
static bool isUndefOrEqual(int Val, int CmpVal) {
|
|
if (Val < 0 || Val == CmpVal)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
|
|
/// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
|
|
/// the second operand.
|
|
static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
|
|
if (VT == MVT::v4f32 || VT == MVT::v4i32 )
|
|
return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
|
|
if (VT == MVT::v2f64 || VT == MVT::v2i64)
|
|
return (Mask[0] < 2 && Mask[1] < 2);
|
|
return false;
|
|
}
|
|
|
|
bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return ::isPSHUFDMask(M, N->getValueType(0));
|
|
}
|
|
|
|
/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
|
|
/// is suitable for input to PSHUFHW.
|
|
static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
|
|
if (VT != MVT::v8i16)
|
|
return false;
|
|
|
|
// Lower quadword copied in order or undef.
|
|
for (int i = 0; i != 4; ++i)
|
|
if (Mask[i] >= 0 && Mask[i] != i)
|
|
return false;
|
|
|
|
// Upper quadword shuffled.
|
|
for (int i = 4; i != 8; ++i)
|
|
if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return ::isPSHUFHWMask(M, N->getValueType(0));
|
|
}
|
|
|
|
/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
|
|
/// is suitable for input to PSHUFLW.
|
|
static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
|
|
if (VT != MVT::v8i16)
|
|
return false;
|
|
|
|
// Upper quadword copied in order.
|
|
for (int i = 4; i != 8; ++i)
|
|
if (Mask[i] >= 0 && Mask[i] != i)
|
|
return false;
|
|
|
|
// Lower quadword shuffled.
|
|
for (int i = 0; i != 4; ++i)
|
|
if (Mask[i] >= 4)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return ::isPSHUFLWMask(M, N->getValueType(0));
|
|
}
|
|
|
|
/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
|
|
/// is suitable for input to PALIGNR.
|
|
static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
|
|
bool hasSSSE3) {
|
|
int i, e = VT.getVectorNumElements();
|
|
|
|
// Do not handle v2i64 / v2f64 shuffles with palignr.
|
|
if (e < 4 || !hasSSSE3)
|
|
return false;
|
|
|
|
for (i = 0; i != e; ++i)
|
|
if (Mask[i] >= 0)
|
|
break;
|
|
|
|
// All undef, not a palignr.
|
|
if (i == e)
|
|
return false;
|
|
|
|
// Determine if it's ok to perform a palignr with only the LHS, since we
|
|
// don't have access to the actual shuffle elements to see if RHS is undef.
|
|
bool Unary = Mask[i] < (int)e;
|
|
bool NeedsUnary = false;
|
|
|
|
int s = Mask[i] - i;
|
|
|
|
// Check the rest of the elements to see if they are consecutive.
|
|
for (++i; i != e; ++i) {
|
|
int m = Mask[i];
|
|
if (m < 0)
|
|
continue;
|
|
|
|
Unary = Unary && (m < (int)e);
|
|
NeedsUnary = NeedsUnary || (m < s);
|
|
|
|
if (NeedsUnary && !Unary)
|
|
return false;
|
|
if (Unary && m != ((s+i) & (e-1)))
|
|
return false;
|
|
if (!Unary && m != (s+i))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return ::isPALIGNRMask(M, N->getValueType(0), true);
|
|
}
|
|
|
|
/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to SHUFP*.
|
|
static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
|
|
int NumElems = VT.getVectorNumElements();
|
|
if (NumElems != 2 && NumElems != 4)
|
|
return false;
|
|
|
|
int Half = NumElems / 2;
|
|
for (int i = 0; i < Half; ++i)
|
|
if (!isUndefOrInRange(Mask[i], 0, NumElems))
|
|
return false;
|
|
for (int i = Half; i < NumElems; ++i)
|
|
if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return ::isSHUFPMask(M, N->getValueType(0));
|
|
}
|
|
|
|
/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
|
|
/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
|
|
/// half elements to come from vector 1 (which would equal the dest.) and
|
|
/// the upper half to come from vector 2.
|
|
static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
|
|
int NumElems = VT.getVectorNumElements();
|
|
|
|
if (NumElems != 2 && NumElems != 4)
|
|
return false;
|
|
|
|
int Half = NumElems / 2;
|
|
for (int i = 0; i < Half; ++i)
|
|
if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
|
|
return false;
|
|
for (int i = Half; i < NumElems; ++i)
|
|
if (!isUndefOrInRange(Mask[i], 0, NumElems))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return isCommutedSHUFPMask(M, N->getValueType(0));
|
|
}
|
|
|
|
/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
|
|
bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
|
|
if (N->getValueType(0).getVectorNumElements() != 4)
|
|
return false;
|
|
|
|
// Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
|
|
return isUndefOrEqual(N->getMaskElt(0), 6) &&
|
|
isUndefOrEqual(N->getMaskElt(1), 7) &&
|
|
isUndefOrEqual(N->getMaskElt(2), 2) &&
|
|
isUndefOrEqual(N->getMaskElt(3), 3);
|
|
}
|
|
|
|
/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
|
|
/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
|
|
/// <2, 3, 2, 3>
|
|
bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
|
|
unsigned NumElems = N->getValueType(0).getVectorNumElements();
|
|
|
|
if (NumElems != 4)
|
|
return false;
|
|
|
|
return isUndefOrEqual(N->getMaskElt(0), 2) &&
|
|
isUndefOrEqual(N->getMaskElt(1), 3) &&
|
|
isUndefOrEqual(N->getMaskElt(2), 2) &&
|
|
isUndefOrEqual(N->getMaskElt(3), 3);
|
|
}
|
|
|
|
/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
|
|
bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
|
|
unsigned NumElems = N->getValueType(0).getVectorNumElements();
|
|
|
|
if (NumElems != 2 && NumElems != 4)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < NumElems/2; ++i)
|
|
if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
|
|
return false;
|
|
|
|
for (unsigned i = NumElems/2; i < NumElems; ++i)
|
|
if (!isUndefOrEqual(N->getMaskElt(i), i))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
|
|
bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
|
|
unsigned NumElems = N->getValueType(0).getVectorNumElements();
|
|
|
|
if ((NumElems != 2 && NumElems != 4)
|
|
|| N->getValueType(0).getSizeInBits() > 128)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < NumElems/2; ++i)
|
|
if (!isUndefOrEqual(N->getMaskElt(i), i))
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < NumElems/2; ++i)
|
|
if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to UNPCKL.
|
|
static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
|
|
bool V2IsSplat = false) {
|
|
int NumElts = VT.getVectorNumElements();
|
|
if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
|
|
return false;
|
|
|
|
// Handle vector lengths > 128 bits. Define a "section" as a set of
|
|
// 128 bits. AVX defines UNPCK* to operate independently on 128-bit
|
|
// sections.
|
|
unsigned NumSections = VT.getSizeInBits() / 128;
|
|
if (NumSections == 0 ) NumSections = 1; // Handle MMX
|
|
unsigned NumSectionElts = NumElts / NumSections;
|
|
|
|
unsigned Start = 0;
|
|
unsigned End = NumSectionElts;
|
|
for (unsigned s = 0; s < NumSections; ++s) {
|
|
for (unsigned i = Start, j = s * NumSectionElts;
|
|
i != End;
|
|
i += 2, ++j) {
|
|
int BitI = Mask[i];
|
|
int BitI1 = Mask[i+1];
|
|
if (!isUndefOrEqual(BitI, j))
|
|
return false;
|
|
if (V2IsSplat) {
|
|
if (!isUndefOrEqual(BitI1, NumElts))
|
|
return false;
|
|
} else {
|
|
if (!isUndefOrEqual(BitI1, j + NumElts))
|
|
return false;
|
|
}
|
|
}
|
|
// Process the next 128 bits.
|
|
Start += NumSectionElts;
|
|
End += NumSectionElts;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
|
|
}
|
|
|
|
/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to UNPCKH.
|
|
static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
|
|
bool V2IsSplat = false) {
|
|
int NumElts = VT.getVectorNumElements();
|
|
if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
|
|
return false;
|
|
|
|
for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
|
|
int BitI = Mask[i];
|
|
int BitI1 = Mask[i+1];
|
|
if (!isUndefOrEqual(BitI, j + NumElts/2))
|
|
return false;
|
|
if (V2IsSplat) {
|
|
if (isUndefOrEqual(BitI1, NumElts))
|
|
return false;
|
|
} else {
|
|
if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
|
|
}
|
|
|
|
/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
|
|
/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
|
|
/// <0, 0, 1, 1>
|
|
static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
|
|
int NumElems = VT.getVectorNumElements();
|
|
if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
|
|
return false;
|
|
|
|
// Handle vector lengths > 128 bits. Define a "section" as a set of
|
|
// 128 bits. AVX defines UNPCK* to operate independently on 128-bit
|
|
// sections.
|
|
unsigned NumSections = VT.getSizeInBits() / 128;
|
|
if (NumSections == 0 ) NumSections = 1; // Handle MMX
|
|
unsigned NumSectionElts = NumElems / NumSections;
|
|
|
|
for (unsigned s = 0; s < NumSections; ++s) {
|
|
for (unsigned i = s * NumSectionElts, j = s * NumSectionElts;
|
|
i != NumSectionElts * (s + 1);
|
|
i += 2, ++j) {
|
|
int BitI = Mask[i];
|
|
int BitI1 = Mask[i+1];
|
|
|
|
if (!isUndefOrEqual(BitI, j))
|
|
return false;
|
|
if (!isUndefOrEqual(BitI1, j))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
|
|
}
|
|
|
|
/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
|
|
/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
|
|
/// <2, 2, 3, 3>
|
|
static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
|
|
int NumElems = VT.getVectorNumElements();
|
|
if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
|
|
return false;
|
|
|
|
for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
|
|
int BitI = Mask[i];
|
|
int BitI1 = Mask[i+1];
|
|
if (!isUndefOrEqual(BitI, j))
|
|
return false;
|
|
if (!isUndefOrEqual(BitI1, j))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
|
|
}
|
|
|
|
/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVSS,
|
|
/// MOVSD, and MOVD, i.e. setting the lowest element.
|
|
static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
|
|
if (VT.getVectorElementType().getSizeInBits() < 32)
|
|
return false;
|
|
|
|
int NumElts = VT.getVectorNumElements();
|
|
|
|
if (!isUndefOrEqual(Mask[0], NumElts))
|
|
return false;
|
|
|
|
for (int i = 1; i < NumElts; ++i)
|
|
if (!isUndefOrEqual(Mask[i], i))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return ::isMOVLMask(M, N->getValueType(0));
|
|
}
|
|
|
|
/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
|
|
/// of what x86 movss want. X86 movs requires the lowest element to be lowest
|
|
/// element of vector 2 and the other elements to come from vector 1 in order.
|
|
static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
|
|
bool V2IsSplat = false, bool V2IsUndef = false) {
|
|
int NumOps = VT.getVectorNumElements();
|
|
if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
|
|
return false;
|
|
|
|
if (!isUndefOrEqual(Mask[0], 0))
|
|
return false;
|
|
|
|
for (int i = 1; i < NumOps; ++i)
|
|
if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
|
|
(V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
|
|
(V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
|
|
bool V2IsUndef = false) {
|
|
SmallVector<int, 8> M;
|
|
N->getMask(M);
|
|
return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
|
|
}
|
|
|
|
/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
|
|
bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
|
|
if (N->getValueType(0).getVectorNumElements() != 4)
|
|
return false;
|
|
|
|
// Expect 1, 1, 3, 3
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
int Elt = N->getMaskElt(i);
|
|
if (Elt >= 0 && Elt != 1)
|
|
return false;
|
|
}
|
|
|
|
bool HasHi = false;
|
|
for (unsigned i = 2; i < 4; ++i) {
|
|
int Elt = N->getMaskElt(i);
|
|
if (Elt >= 0 && Elt != 3)
|
|
return false;
|
|
if (Elt == 3)
|
|
HasHi = true;
|
|
}
|
|
// Don't use movshdup if it can be done with a shufps.
|
|
// FIXME: verify that matching u, u, 3, 3 is what we want.
|
|
return HasHi;
|
|
}
|
|
|
|
/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
|
|
bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
|
|
if (N->getValueType(0).getVectorNumElements() != 4)
|
|
return false;
|
|
|
|
// Expect 0, 0, 2, 2
|
|
for (unsigned i = 0; i < 2; ++i)
|
|
if (N->getMaskElt(i) > 0)
|
|
return false;
|
|
|
|
bool HasHi = false;
|
|
for (unsigned i = 2; i < 4; ++i) {
|
|
int Elt = N->getMaskElt(i);
|
|
if (Elt >= 0 && Elt != 2)
|
|
return false;
|
|
if (Elt == 2)
|
|
HasHi = true;
|
|
}
|
|
// Don't use movsldup if it can be done with a shufps.
|
|
return HasHi;
|
|
}
|
|
|
|
/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
|
|
bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
|
|
int e = N->getValueType(0).getVectorNumElements() / 2;
|
|
|
|
for (int i = 0; i < e; ++i)
|
|
if (!isUndefOrEqual(N->getMaskElt(i), i))
|
|
return false;
|
|
for (int i = 0; i < e; ++i)
|
|
if (!isUndefOrEqual(N->getMaskElt(e+i), i))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isVEXTRACTF128Index - Return true if the specified
|
|
/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
|
|
/// suitable for input to VEXTRACTF128.
|
|
bool X86::isVEXTRACTF128Index(SDNode *N) {
|
|
if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
|
|
return false;
|
|
|
|
// The index should be aligned on a 128-bit boundary.
|
|
uint64_t Index =
|
|
cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
|
|
|
|
unsigned VL = N->getValueType(0).getVectorNumElements();
|
|
unsigned VBits = N->getValueType(0).getSizeInBits();
|
|
unsigned ElSize = VBits / VL;
|
|
bool Result = (Index * ElSize) % 128 == 0;
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
|
|
/// operand specifies a subvector insert that is suitable for input to
|
|
/// VINSERTF128.
|
|
bool X86::isVINSERTF128Index(SDNode *N) {
|
|
if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
|
|
return false;
|
|
|
|
// The index should be aligned on a 128-bit boundary.
|
|
uint64_t Index =
|
|
cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
|
|
|
|
unsigned VL = N->getValueType(0).getVectorNumElements();
|
|
unsigned VBits = N->getValueType(0).getSizeInBits();
|
|
unsigned ElSize = VBits / VL;
|
|
bool Result = (Index * ElSize) % 128 == 0;
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
|
|
/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
|
|
unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
|
int NumOperands = SVOp->getValueType(0).getVectorNumElements();
|
|
|
|
unsigned Shift = (NumOperands == 4) ? 2 : 1;
|
|
unsigned Mask = 0;
|
|
for (int i = 0; i < NumOperands; ++i) {
|
|
int Val = SVOp->getMaskElt(NumOperands-i-1);
|
|
if (Val < 0) Val = 0;
|
|
if (Val >= NumOperands) Val -= NumOperands;
|
|
Mask |= Val;
|
|
if (i != NumOperands - 1)
|
|
Mask <<= Shift;
|
|
}
|
|
return Mask;
|
|
}
|
|
|
|
/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
|
|
/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
|
|
unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
|
unsigned Mask = 0;
|
|
// 8 nodes, but we only care about the last 4.
|
|
for (unsigned i = 7; i >= 4; --i) {
|
|
int Val = SVOp->getMaskElt(i);
|
|
if (Val >= 0)
|
|
Mask |= (Val - 4);
|
|
if (i != 4)
|
|
Mask <<= 2;
|
|
}
|
|
return Mask;
|
|
}
|
|
|
|
/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
|
|
/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
|
|
unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
|
unsigned Mask = 0;
|
|
// 8 nodes, but we only care about the first 4.
|
|
for (int i = 3; i >= 0; --i) {
|
|
int Val = SVOp->getMaskElt(i);
|
|
if (Val >= 0)
|
|
Mask |= Val;
|
|
if (i != 0)
|
|
Mask <<= 2;
|
|
}
|
|
return Mask;
|
|
}
|
|
|
|
/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
|
|
/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
|
|
unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
|
EVT VVT = N->getValueType(0);
|
|
unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
|
|
int Val = 0;
|
|
|
|
unsigned i, e;
|
|
for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
|
|
Val = SVOp->getMaskElt(i);
|
|
if (Val >= 0)
|
|
break;
|
|
}
|
|
return (Val - i) * EltSize;
|
|
}
|
|
|
|
/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
|
|
/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
|
|
/// instructions.
|
|
unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
|
|
if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
|
|
llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
|
|
|
|
uint64_t Index =
|
|
cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
|
|
|
|
EVT VecVT = N->getOperand(0).getValueType();
|
|
EVT ElVT = VecVT.getVectorElementType();
|
|
|
|
unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
|
|
|
|
return Index / NumElemsPerChunk;
|
|
}
|
|
|
|
/// getInsertVINSERTF128Immediate - Return the appropriate immediate
|
|
/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
|
|
/// instructions.
|
|
unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
|
|
if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
|
|
llvm_unreachable("Illegal insert subvector for VINSERTF128");
|
|
|
|
uint64_t Index =
|
|
cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
|
|
|
|
EVT VecVT = N->getValueType(0);
|
|
EVT ElVT = VecVT.getVectorElementType();
|
|
|
|
unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
|
|
|
|
return Index / NumElemsPerChunk;
|
|
}
|
|
|
|
/// isZeroNode - Returns true if Elt is a constant zero or a floating point
|
|
/// constant +0.0.
|
|
bool X86::isZeroNode(SDValue Elt) {
|
|
return ((isa<ConstantSDNode>(Elt) &&
|
|
cast<ConstantSDNode>(Elt)->isNullValue()) ||
|
|
(isa<ConstantFPSDNode>(Elt) &&
|
|
cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
|
|
}
|
|
|
|
/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
|
|
/// their permute mask.
|
|
static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
|
|
SelectionDAG &DAG) {
|
|
EVT VT = SVOp->getValueType(0);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SmallVector<int, 8> MaskVec;
|
|
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
int idx = SVOp->getMaskElt(i);
|
|
if (idx < 0)
|
|
MaskVec.push_back(idx);
|
|
else if (idx < (int)NumElems)
|
|
MaskVec.push_back(idx + NumElems);
|
|
else
|
|
MaskVec.push_back(idx - NumElems);
|
|
}
|
|
return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
|
|
SVOp->getOperand(0), &MaskVec[0]);
|
|
}
|
|
|
|
/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
|
|
/// the two vector operands have swapped position.
|
|
static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
int idx = Mask[i];
|
|
if (idx < 0)
|
|
continue;
|
|
else if (idx < (int)NumElems)
|
|
Mask[i] = idx + NumElems;
|
|
else
|
|
Mask[i] = idx - NumElems;
|
|
}
|
|
}
|
|
|
|
/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
|
|
/// match movhlps. The lower half elements should come from upper half of
|
|
/// V1 (and in order), and the upper half elements should come from the upper
|
|
/// half of V2 (and in order).
|
|
static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
|
|
if (Op->getValueType(0).getVectorNumElements() != 4)
|
|
return false;
|
|
for (unsigned i = 0, e = 2; i != e; ++i)
|
|
if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
|
|
return false;
|
|
for (unsigned i = 2; i != 4; ++i)
|
|
if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isScalarLoadToVector - Returns true if the node is a scalar load that
|
|
/// is promoted to a vector. It also returns the LoadSDNode by reference if
|
|
/// required.
|
|
static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
|
|
if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
|
|
return false;
|
|
N = N->getOperand(0).getNode();
|
|
if (!ISD::isNON_EXTLoad(N))
|
|
return false;
|
|
if (LD)
|
|
*LD = cast<LoadSDNode>(N);
|
|
return true;
|
|
}
|
|
|
|
/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
|
|
/// match movlp{s|d}. The lower half elements should come from lower half of
|
|
/// V1 (and in order), and the upper half elements should come from the upper
|
|
/// half of V2 (and in order). And since V1 will become the source of the
|
|
/// MOVLP, it must be either a vector load or a scalar load to vector.
|
|
static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
|
|
ShuffleVectorSDNode *Op) {
|
|
if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
|
|
return false;
|
|
// Is V2 is a vector load, don't do this transformation. We will try to use
|
|
// load folding shufps op.
|
|
if (ISD::isNON_EXTLoad(V2))
|
|
return false;
|
|
|
|
unsigned NumElems = Op->getValueType(0).getVectorNumElements();
|
|
|
|
if (NumElems != 2 && NumElems != 4)
|
|
return false;
|
|
for (unsigned i = 0, e = NumElems/2; i != e; ++i)
|
|
if (!isUndefOrEqual(Op->getMaskElt(i), i))
|
|
return false;
|
|
for (unsigned i = NumElems/2; i != NumElems; ++i)
|
|
if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
|
|
/// all the same.
|
|
static bool isSplatVector(SDNode *N) {
|
|
if (N->getOpcode() != ISD::BUILD_VECTOR)
|
|
return false;
|
|
|
|
SDValue SplatValue = N->getOperand(0);
|
|
for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
|
|
if (N->getOperand(i) != SplatValue)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
|
|
/// to an zero vector.
|
|
/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
|
|
static bool isZeroShuffle(ShuffleVectorSDNode *N) {
|
|
SDValue V1 = N->getOperand(0);
|
|
SDValue V2 = N->getOperand(1);
|
|
unsigned NumElems = N->getValueType(0).getVectorNumElements();
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
int Idx = N->getMaskElt(i);
|
|
if (Idx >= (int)NumElems) {
|
|
unsigned Opc = V2.getOpcode();
|
|
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
|
|
continue;
|
|
if (Opc != ISD::BUILD_VECTOR ||
|
|
!X86::isZeroNode(V2.getOperand(Idx-NumElems)))
|
|
return false;
|
|
} else if (Idx >= 0) {
|
|
unsigned Opc = V1.getOpcode();
|
|
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
|
|
continue;
|
|
if (Opc != ISD::BUILD_VECTOR ||
|
|
!X86::isZeroNode(V1.getOperand(Idx)))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// getZeroVector - Returns a vector of specified type with all zero elements.
|
|
///
|
|
static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
|
|
DebugLoc dl) {
|
|
assert(VT.isVector() && "Expected a vector type");
|
|
|
|
// Always build SSE zero vectors as <4 x i32> bitcasted
|
|
// to their dest type. This ensures they get CSE'd.
|
|
SDValue Vec;
|
|
if (VT.getSizeInBits() == 128) { // SSE
|
|
if (HasSSE2) { // SSE2
|
|
SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
|
|
} else { // SSE1
|
|
SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
|
|
}
|
|
} else if (VT.getSizeInBits() == 256) { // AVX
|
|
// 256-bit logic and arithmetic instructions in AVX are
|
|
// all floating-point, no support for integer ops. Default
|
|
// to emitting fp zeroed vectors then.
|
|
SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
|
|
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
|
|
}
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
|
|
}
|
|
|
|
/// getOnesVector - Returns a vector of specified type with all bits set.
|
|
///
|
|
static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
|
|
assert(VT.isVector() && "Expected a vector type");
|
|
|
|
// Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
|
|
// type. This ensures they get CSE'd.
|
|
SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
|
|
SDValue Vec;
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
|
|
}
|
|
|
|
|
|
/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
|
|
/// that point to V2 points to its first element.
|
|
static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
|
|
EVT VT = SVOp->getValueType(0);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
bool Changed = false;
|
|
SmallVector<int, 8> MaskVec;
|
|
SVOp->getMask(MaskVec);
|
|
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
if (MaskVec[i] > (int)NumElems) {
|
|
MaskVec[i] = NumElems;
|
|
Changed = true;
|
|
}
|
|
}
|
|
if (Changed)
|
|
return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
|
|
SVOp->getOperand(1), &MaskVec[0]);
|
|
return SDValue(SVOp, 0);
|
|
}
|
|
|
|
/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
|
|
/// operation of specified width.
|
|
static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
|
|
SDValue V2) {
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SmallVector<int, 8> Mask;
|
|
Mask.push_back(NumElems);
|
|
for (unsigned i = 1; i != NumElems; ++i)
|
|
Mask.push_back(i);
|
|
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
|
|
}
|
|
|
|
/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
|
|
static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
|
|
SDValue V2) {
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SmallVector<int, 8> Mask;
|
|
for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
|
|
Mask.push_back(i);
|
|
Mask.push_back(i + NumElems);
|
|
}
|
|
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
|
|
}
|
|
|
|
/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
|
|
static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
|
|
SDValue V2) {
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
unsigned Half = NumElems/2;
|
|
SmallVector<int, 8> Mask;
|
|
for (unsigned i = 0; i != Half; ++i) {
|
|
Mask.push_back(i + Half);
|
|
Mask.push_back(i + NumElems + Half);
|
|
}
|
|
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
|
|
}
|
|
|
|
/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
|
|
static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
|
|
EVT PVT = MVT::v4f32;
|
|
EVT VT = SV->getValueType(0);
|
|
DebugLoc dl = SV->getDebugLoc();
|
|
SDValue V1 = SV->getOperand(0);
|
|
int NumElems = VT.getVectorNumElements();
|
|
int EltNo = SV->getSplatIndex();
|
|
|
|
// unpack elements to the correct location
|
|
while (NumElems > 4) {
|
|
if (EltNo < NumElems/2) {
|
|
V1 = getUnpackl(DAG, dl, VT, V1, V1);
|
|
} else {
|
|
V1 = getUnpackh(DAG, dl, VT, V1, V1);
|
|
EltNo -= NumElems/2;
|
|
}
|
|
NumElems >>= 1;
|
|
}
|
|
|
|
// Perform the splat.
|
|
int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
|
|
V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, V1);
|
|
}
|
|
|
|
/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
|
|
/// vector of zero or undef vector. This produces a shuffle where the low
|
|
/// element of V2 is swizzled into the zero/undef vector, landing at element
|
|
/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
|
|
static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
|
|
bool isZero, bool HasSSE2,
|
|
SelectionDAG &DAG) {
|
|
EVT VT = V2.getValueType();
|
|
SDValue V1 = isZero
|
|
? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SmallVector<int, 16> MaskVec;
|
|
for (unsigned i = 0; i != NumElems; ++i)
|
|
// If this is the insertion idx, put the low elt of V2 here.
|
|
MaskVec.push_back(i == Idx ? NumElems : i);
|
|
return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
|
|
}
|
|
|
|
/// getShuffleScalarElt - Returns the scalar element that will make up the ith
|
|
/// element of the result of the vector shuffle.
|
|
static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
|
|
unsigned Depth) {
|
|
if (Depth == 6)
|
|
return SDValue(); // Limit search depth.
|
|
|
|
SDValue V = SDValue(N, 0);
|
|
EVT VT = V.getValueType();
|
|
unsigned Opcode = V.getOpcode();
|
|
|
|
// Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
|
|
if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
|
|
Index = SV->getMaskElt(Index);
|
|
|
|
if (Index < 0)
|
|
return DAG.getUNDEF(VT.getVectorElementType());
|
|
|
|
int NumElems = VT.getVectorNumElements();
|
|
SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
|
|
return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
|
|
}
|
|
|
|
// Recurse into target specific vector shuffles to find scalars.
|
|
if (isTargetShuffle(Opcode)) {
|
|
int NumElems = VT.getVectorNumElements();
|
|
SmallVector<unsigned, 16> ShuffleMask;
|
|
SDValue ImmN;
|
|
|
|
switch(Opcode) {
|
|
case X86ISD::SHUFPS:
|
|
case X86ISD::SHUFPD:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodeSHUFPSMask(NumElems,
|
|
cast<ConstantSDNode>(ImmN)->getZExtValue(),
|
|
ShuffleMask);
|
|
break;
|
|
case X86ISD::PUNPCKHBW:
|
|
case X86ISD::PUNPCKHWD:
|
|
case X86ISD::PUNPCKHDQ:
|
|
case X86ISD::PUNPCKHQDQ:
|
|
DecodePUNPCKHMask(NumElems, ShuffleMask);
|
|
break;
|
|
case X86ISD::UNPCKHPS:
|
|
case X86ISD::UNPCKHPD:
|
|
DecodeUNPCKHPMask(NumElems, ShuffleMask);
|
|
break;
|
|
case X86ISD::PUNPCKLBW:
|
|
case X86ISD::PUNPCKLWD:
|
|
case X86ISD::PUNPCKLDQ:
|
|
case X86ISD::PUNPCKLQDQ:
|
|
DecodePUNPCKLMask(VT, ShuffleMask);
|
|
break;
|
|
case X86ISD::UNPCKLPS:
|
|
case X86ISD::UNPCKLPD:
|
|
case X86ISD::VUNPCKLPS:
|
|
case X86ISD::VUNPCKLPD:
|
|
case X86ISD::VUNPCKLPSY:
|
|
case X86ISD::VUNPCKLPDY:
|
|
DecodeUNPCKLPMask(VT, ShuffleMask);
|
|
break;
|
|
case X86ISD::MOVHLPS:
|
|
DecodeMOVHLPSMask(NumElems, ShuffleMask);
|
|
break;
|
|
case X86ISD::MOVLHPS:
|
|
DecodeMOVLHPSMask(NumElems, ShuffleMask);
|
|
break;
|
|
case X86ISD::PSHUFD:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodePSHUFMask(NumElems,
|
|
cast<ConstantSDNode>(ImmN)->getZExtValue(),
|
|
ShuffleMask);
|
|
break;
|
|
case X86ISD::PSHUFHW:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
|
|
ShuffleMask);
|
|
break;
|
|
case X86ISD::PSHUFLW:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
|
|
ShuffleMask);
|
|
break;
|
|
case X86ISD::MOVSS:
|
|
case X86ISD::MOVSD: {
|
|
// The index 0 always comes from the first element of the second source,
|
|
// this is why MOVSS and MOVSD are used in the first place. The other
|
|
// elements come from the other positions of the first source vector.
|
|
unsigned OpNum = (Index == 0) ? 1 : 0;
|
|
return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
|
|
Depth+1);
|
|
}
|
|
default:
|
|
assert("not implemented for target shuffle node");
|
|
return SDValue();
|
|
}
|
|
|
|
Index = ShuffleMask[Index];
|
|
if (Index < 0)
|
|
return DAG.getUNDEF(VT.getVectorElementType());
|
|
|
|
SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
|
|
return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
|
|
Depth+1);
|
|
}
|
|
|
|
// Actual nodes that may contain scalar elements
|
|
if (Opcode == ISD::BITCAST) {
|
|
V = V.getOperand(0);
|
|
EVT SrcVT = V.getValueType();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
|
|
return SDValue();
|
|
}
|
|
|
|
if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
|
|
return (Index == 0) ? V.getOperand(0)
|
|
: DAG.getUNDEF(VT.getVectorElementType());
|
|
|
|
if (V.getOpcode() == ISD::BUILD_VECTOR)
|
|
return V.getOperand(Index);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// getNumOfConsecutiveZeros - Return the number of elements of a vector
|
|
/// shuffle operation which come from a consecutively from a zero. The
|
|
/// search can start in two different directions, from left or right.
|
|
static
|
|
unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
|
|
bool ZerosFromLeft, SelectionDAG &DAG) {
|
|
int i = 0;
|
|
|
|
while (i < NumElems) {
|
|
unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
|
|
SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
|
|
if (!(Elt.getNode() &&
|
|
(Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
|
|
break;
|
|
++i;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
|
|
/// MaskE correspond consecutively to elements from one of the vector operands,
|
|
/// starting from its index OpIdx. Also tell OpNum which source vector operand.
|
|
static
|
|
bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
|
|
int OpIdx, int NumElems, unsigned &OpNum) {
|
|
bool SeenV1 = false;
|
|
bool SeenV2 = false;
|
|
|
|
for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
|
|
int Idx = SVOp->getMaskElt(i);
|
|
// Ignore undef indicies
|
|
if (Idx < 0)
|
|
continue;
|
|
|
|
if (Idx < NumElems)
|
|
SeenV1 = true;
|
|
else
|
|
SeenV2 = true;
|
|
|
|
// Only accept consecutive elements from the same vector
|
|
if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
|
|
return false;
|
|
}
|
|
|
|
OpNum = SeenV1 ? 0 : 1;
|
|
return true;
|
|
}
|
|
|
|
/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
|
|
/// logical left shift of a vector.
|
|
static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
|
|
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
|
|
unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
|
|
unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
|
|
false /* check zeros from right */, DAG);
|
|
unsigned OpSrc;
|
|
|
|
if (!NumZeros)
|
|
return false;
|
|
|
|
// Considering the elements in the mask that are not consecutive zeros,
|
|
// check if they consecutively come from only one of the source vectors.
|
|
//
|
|
// V1 = {X, A, B, C} 0
|
|
// \ \ \ /
|
|
// vector_shuffle V1, V2 <1, 2, 3, X>
|
|
//
|
|
if (!isShuffleMaskConsecutive(SVOp,
|
|
0, // Mask Start Index
|
|
NumElems-NumZeros-1, // Mask End Index
|
|
NumZeros, // Where to start looking in the src vector
|
|
NumElems, // Number of elements in vector
|
|
OpSrc)) // Which source operand ?
|
|
return false;
|
|
|
|
isLeft = false;
|
|
ShAmt = NumZeros;
|
|
ShVal = SVOp->getOperand(OpSrc);
|
|
return true;
|
|
}
|
|
|
|
/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
|
|
/// logical left shift of a vector.
|
|
static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
|
|
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
|
|
unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
|
|
unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
|
|
true /* check zeros from left */, DAG);
|
|
unsigned OpSrc;
|
|
|
|
if (!NumZeros)
|
|
return false;
|
|
|
|
// Considering the elements in the mask that are not consecutive zeros,
|
|
// check if they consecutively come from only one of the source vectors.
|
|
//
|
|
// 0 { A, B, X, X } = V2
|
|
// / \ / /
|
|
// vector_shuffle V1, V2 <X, X, 4, 5>
|
|
//
|
|
if (!isShuffleMaskConsecutive(SVOp,
|
|
NumZeros, // Mask Start Index
|
|
NumElems-1, // Mask End Index
|
|
0, // Where to start looking in the src vector
|
|
NumElems, // Number of elements in vector
|
|
OpSrc)) // Which source operand ?
|
|
return false;
|
|
|
|
isLeft = true;
|
|
ShAmt = NumZeros;
|
|
ShVal = SVOp->getOperand(OpSrc);
|
|
return true;
|
|
}
|
|
|
|
/// isVectorShift - Returns true if the shuffle can be implemented as a
|
|
/// logical left or right shift of a vector.
|
|
static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
|
|
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
|
|
if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
|
|
isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
|
|
///
|
|
static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
|
|
unsigned NumNonZero, unsigned NumZero,
|
|
SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
if (NumNonZero > 8)
|
|
return SDValue();
|
|
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue V(0, 0);
|
|
bool First = true;
|
|
for (unsigned i = 0; i < 16; ++i) {
|
|
bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
|
|
if (ThisIsNonZero && First) {
|
|
if (NumZero)
|
|
V = getZeroVector(MVT::v8i16, true, DAG, dl);
|
|
else
|
|
V = DAG.getUNDEF(MVT::v8i16);
|
|
First = false;
|
|
}
|
|
|
|
if ((i & 1) != 0) {
|
|
SDValue ThisElt(0, 0), LastElt(0, 0);
|
|
bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
|
|
if (LastIsNonZero) {
|
|
LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
|
|
MVT::i16, Op.getOperand(i-1));
|
|
}
|
|
if (ThisIsNonZero) {
|
|
ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
|
|
ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
|
|
ThisElt, DAG.getConstant(8, MVT::i8));
|
|
if (LastIsNonZero)
|
|
ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
|
|
} else
|
|
ThisElt = LastElt;
|
|
|
|
if (ThisElt.getNode())
|
|
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
|
|
DAG.getIntPtrConstant(i/2));
|
|
}
|
|
}
|
|
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
|
|
}
|
|
|
|
/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
|
|
///
|
|
static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
|
|
unsigned NumNonZero, unsigned NumZero,
|
|
SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
if (NumNonZero > 4)
|
|
return SDValue();
|
|
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue V(0, 0);
|
|
bool First = true;
|
|
for (unsigned i = 0; i < 8; ++i) {
|
|
bool isNonZero = (NonZeros & (1 << i)) != 0;
|
|
if (isNonZero) {
|
|
if (First) {
|
|
if (NumZero)
|
|
V = getZeroVector(MVT::v8i16, true, DAG, dl);
|
|
else
|
|
V = DAG.getUNDEF(MVT::v8i16);
|
|
First = false;
|
|
}
|
|
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
|
|
MVT::v8i16, V, Op.getOperand(i),
|
|
DAG.getIntPtrConstant(i));
|
|
}
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
/// getVShift - Return a vector logical shift node.
|
|
///
|
|
static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
|
|
unsigned NumBits, SelectionDAG &DAG,
|
|
const TargetLowering &TLI, DebugLoc dl) {
|
|
EVT ShVT = MVT::v2i64;
|
|
unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
|
|
SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getNode(Opc, dl, ShVT, SrcOp,
|
|
DAG.getConstant(NumBits,
|
|
TLI.getShiftAmountTy(SrcOp.getValueType()))));
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
|
|
SelectionDAG &DAG) const {
|
|
|
|
// Check if the scalar load can be widened into a vector load. And if
|
|
// the address is "base + cst" see if the cst can be "absorbed" into
|
|
// the shuffle mask.
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
|
|
SDValue Ptr = LD->getBasePtr();
|
|
if (!ISD::isNormalLoad(LD) || LD->isVolatile())
|
|
return SDValue();
|
|
EVT PVT = LD->getValueType(0);
|
|
if (PVT != MVT::i32 && PVT != MVT::f32)
|
|
return SDValue();
|
|
|
|
int FI = -1;
|
|
int64_t Offset = 0;
|
|
if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
|
|
FI = FINode->getIndex();
|
|
Offset = 0;
|
|
} else if (DAG.isBaseWithConstantOffset(Ptr) &&
|
|
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
|
|
FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
|
|
Offset = Ptr.getConstantOperandVal(1);
|
|
Ptr = Ptr.getOperand(0);
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue Chain = LD->getChain();
|
|
// Make sure the stack object alignment is at least 16.
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
if (DAG.InferPtrAlignment(Ptr) < 16) {
|
|
if (MFI->isFixedObjectIndex(FI)) {
|
|
// Can't change the alignment. FIXME: It's possible to compute
|
|
// the exact stack offset and reference FI + adjust offset instead.
|
|
// If someone *really* cares about this. That's the way to implement it.
|
|
return SDValue();
|
|
} else {
|
|
MFI->setObjectAlignment(FI, 16);
|
|
}
|
|
}
|
|
|
|
// (Offset % 16) must be multiple of 4. Then address is then
|
|
// Ptr + (Offset & ~15).
|
|
if (Offset < 0)
|
|
return SDValue();
|
|
if ((Offset % 16) & 3)
|
|
return SDValue();
|
|
int64_t StartOffset = Offset & ~15;
|
|
if (StartOffset)
|
|
Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
|
|
Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
|
|
|
|
int EltNo = (Offset - StartOffset) >> 2;
|
|
int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
|
|
EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
|
|
SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
|
|
LD->getPointerInfo().getWithOffset(StartOffset),
|
|
false, false, 0);
|
|
// Canonicalize it to a v4i32 shuffle.
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getVectorShuffle(MVT::v4i32, dl, V1,
|
|
DAG.getUNDEF(MVT::v4i32),&Mask[0]));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
|
|
/// vector of type 'VT', see if the elements can be replaced by a single large
|
|
/// load which has the same value as a build_vector whose operands are 'elts'.
|
|
///
|
|
/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
|
|
///
|
|
/// FIXME: we'd also like to handle the case where the last elements are zero
|
|
/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
|
|
/// There's even a handy isZeroNode for that purpose.
|
|
static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
|
|
DebugLoc &DL, SelectionDAG &DAG) {
|
|
EVT EltVT = VT.getVectorElementType();
|
|
unsigned NumElems = Elts.size();
|
|
|
|
LoadSDNode *LDBase = NULL;
|
|
unsigned LastLoadedElt = -1U;
|
|
|
|
// For each element in the initializer, see if we've found a load or an undef.
|
|
// If we don't find an initial load element, or later load elements are
|
|
// non-consecutive, bail out.
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
SDValue Elt = Elts[i];
|
|
|
|
if (!Elt.getNode() ||
|
|
(Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
|
|
return SDValue();
|
|
if (!LDBase) {
|
|
if (Elt.getNode()->getOpcode() == ISD::UNDEF)
|
|
return SDValue();
|
|
LDBase = cast<LoadSDNode>(Elt.getNode());
|
|
LastLoadedElt = i;
|
|
continue;
|
|
}
|
|
if (Elt.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
|
|
LoadSDNode *LD = cast<LoadSDNode>(Elt);
|
|
if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
|
|
return SDValue();
|
|
LastLoadedElt = i;
|
|
}
|
|
|
|
// If we have found an entire vector of loads and undefs, then return a large
|
|
// load of the entire vector width starting at the base pointer. If we found
|
|
// consecutive loads for the low half, generate a vzext_load node.
|
|
if (LastLoadedElt == NumElems - 1) {
|
|
if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
|
|
return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
|
|
LDBase->getPointerInfo(),
|
|
LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
|
|
return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
|
|
LDBase->getPointerInfo(),
|
|
LDBase->isVolatile(), LDBase->isNonTemporal(),
|
|
LDBase->getAlignment());
|
|
} else if (NumElems == 4 && LastLoadedElt == 1) {
|
|
SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
|
|
SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
|
|
SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
|
|
Ops, 2, MVT::i32,
|
|
LDBase->getMemOperand());
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
EVT VT = Op.getValueType();
|
|
EVT ExtVT = VT.getVectorElementType();
|
|
|
|
unsigned NumElems = Op.getNumOperands();
|
|
|
|
// For AVX-length vectors, build the individual 128-bit pieces and
|
|
// use shuffles to put them in place.
|
|
if (VT.getSizeInBits() > 256 &&
|
|
Subtarget->hasAVX() &&
|
|
!ISD::isBuildVectorAllZeros(Op.getNode())) {
|
|
SmallVector<SDValue, 8> V;
|
|
V.resize(NumElems);
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
V[i] = Op.getOperand(i);
|
|
}
|
|
|
|
EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
|
|
|
|
// Build the lower subvector.
|
|
SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
|
|
// Build the upper subvector.
|
|
SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
|
|
NumElems/2);
|
|
|
|
return ConcatVectors(Lower, Upper, DAG);
|
|
}
|
|
|
|
// All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
|
|
// All one's are handled with pcmpeqd. In AVX, zero's are handled with
|
|
// vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
|
|
// is present, so AllOnes is ignored.
|
|
if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
|
|
(Op.getValueType().getSizeInBits() != 256 &&
|
|
ISD::isBuildVectorAllOnes(Op.getNode()))) {
|
|
// Canonicalize this to <4 x i32> (SSE) to
|
|
// 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
|
|
// eliminated on x86-32 hosts.
|
|
if (Op.getValueType() == MVT::v4i32)
|
|
return Op;
|
|
|
|
if (ISD::isBuildVectorAllOnes(Op.getNode()))
|
|
return getOnesVector(Op.getValueType(), DAG, dl);
|
|
return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
|
|
}
|
|
|
|
unsigned EVTBits = ExtVT.getSizeInBits();
|
|
|
|
unsigned NumZero = 0;
|
|
unsigned NumNonZero = 0;
|
|
unsigned NonZeros = 0;
|
|
bool IsAllConstants = true;
|
|
SmallSet<SDValue, 8> Values;
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
SDValue Elt = Op.getOperand(i);
|
|
if (Elt.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
Values.insert(Elt);
|
|
if (Elt.getOpcode() != ISD::Constant &&
|
|
Elt.getOpcode() != ISD::ConstantFP)
|
|
IsAllConstants = false;
|
|
if (X86::isZeroNode(Elt))
|
|
NumZero++;
|
|
else {
|
|
NonZeros |= (1 << i);
|
|
NumNonZero++;
|
|
}
|
|
}
|
|
|
|
// All undef vector. Return an UNDEF. All zero vectors were handled above.
|
|
if (NumNonZero == 0)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// Special case for single non-zero, non-undef, element.
|
|
if (NumNonZero == 1) {
|
|
unsigned Idx = CountTrailingZeros_32(NonZeros);
|
|
SDValue Item = Op.getOperand(Idx);
|
|
|
|
// If this is an insertion of an i64 value on x86-32, and if the top bits of
|
|
// the value are obviously zero, truncate the value to i32 and do the
|
|
// insertion that way. Only do this if the value is non-constant or if the
|
|
// value is a constant being inserted into element 0. It is cheaper to do
|
|
// a constant pool load than it is to do a movd + shuffle.
|
|
if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
|
|
(!IsAllConstants || Idx == 0)) {
|
|
if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
|
|
// Handle SSE only.
|
|
assert(VT == MVT::v2i64 && "Expected an SSE value type!");
|
|
EVT VecVT = MVT::v4i32;
|
|
unsigned VecElts = 4;
|
|
|
|
// Truncate the value (which may itself be a constant) to i32, and
|
|
// convert it to a vector with movd (S2V+shuffle to zero extend).
|
|
Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
|
|
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
|
|
Item = getShuffleVectorZeroOrUndef(Item, 0, true,
|
|
Subtarget->hasSSE2(), DAG);
|
|
|
|
// Now we have our 32-bit value zero extended in the low element of
|
|
// a vector. If Idx != 0, swizzle it into place.
|
|
if (Idx != 0) {
|
|
SmallVector<int, 4> Mask;
|
|
Mask.push_back(Idx);
|
|
for (unsigned i = 1; i != VecElts; ++i)
|
|
Mask.push_back(i);
|
|
Item = DAG.getVectorShuffle(VecVT, dl, Item,
|
|
DAG.getUNDEF(Item.getValueType()),
|
|
&Mask[0]);
|
|
}
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
|
|
}
|
|
}
|
|
|
|
// If we have a constant or non-constant insertion into the low element of
|
|
// a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
|
|
// the rest of the elements. This will be matched as movd/movq/movss/movsd
|
|
// depending on what the source datatype is.
|
|
if (Idx == 0) {
|
|
if (NumZero == 0) {
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
|
|
} else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
|
|
(ExtVT == MVT::i64 && Subtarget->is64Bit())) {
|
|
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
|
|
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
|
|
return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
|
|
DAG);
|
|
} else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
|
|
Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
|
|
assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
|
|
EVT MiddleVT = MVT::v4i32;
|
|
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
|
|
Item = getShuffleVectorZeroOrUndef(Item, 0, true,
|
|
Subtarget->hasSSE2(), DAG);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Item);
|
|
}
|
|
}
|
|
|
|
// Is it a vector logical left shift?
|
|
if (NumElems == 2 && Idx == 1 &&
|
|
X86::isZeroNode(Op.getOperand(0)) &&
|
|
!X86::isZeroNode(Op.getOperand(1))) {
|
|
unsigned NumBits = VT.getSizeInBits();
|
|
return getVShift(true, VT,
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
|
|
VT, Op.getOperand(1)),
|
|
NumBits/2, DAG, *this, dl);
|
|
}
|
|
|
|
if (IsAllConstants) // Otherwise, it's better to do a constpool load.
|
|
return SDValue();
|
|
|
|
// Otherwise, if this is a vector with i32 or f32 elements, and the element
|
|
// is a non-constant being inserted into an element other than the low one,
|
|
// we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
|
|
// movd/movss) to move this into the low element, then shuffle it into
|
|
// place.
|
|
if (EVTBits == 32) {
|
|
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
|
|
|
|
// Turn it into a shuffle of zero and zero-extended scalar to vector.
|
|
Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
|
|
Subtarget->hasSSE2(), DAG);
|
|
SmallVector<int, 8> MaskVec;
|
|
for (unsigned i = 0; i < NumElems; i++)
|
|
MaskVec.push_back(i == Idx ? 0 : 1);
|
|
return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
|
|
}
|
|
}
|
|
|
|
// Splat is obviously ok. Let legalizer expand it to a shuffle.
|
|
if (Values.size() == 1) {
|
|
if (EVTBits == 32) {
|
|
// Instead of a shuffle like this:
|
|
// shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
|
|
// Check if it's possible to issue this instead.
|
|
// shuffle (vload ptr)), undef, <1, 1, 1, 1>
|
|
unsigned Idx = CountTrailingZeros_32(NonZeros);
|
|
SDValue Item = Op.getOperand(Idx);
|
|
if (Op.getNode()->isOnlyUserOf(Item.getNode()))
|
|
return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// A vector full of immediates; various special cases are already
|
|
// handled, so this is best done with a single constant-pool load.
|
|
if (IsAllConstants)
|
|
return SDValue();
|
|
|
|
// Let legalizer expand 2-wide build_vectors.
|
|
if (EVTBits == 64) {
|
|
if (NumNonZero == 1) {
|
|
// One half is zero or undef.
|
|
unsigned Idx = CountTrailingZeros_32(NonZeros);
|
|
SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
|
|
Op.getOperand(Idx));
|
|
return getShuffleVectorZeroOrUndef(V2, Idx, true,
|
|
Subtarget->hasSSE2(), DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// If element VT is < 32 bits, convert it to inserts into a zero vector.
|
|
if (EVTBits == 8 && NumElems == 16) {
|
|
SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
|
|
*this);
|
|
if (V.getNode()) return V;
|
|
}
|
|
|
|
if (EVTBits == 16 && NumElems == 8) {
|
|
SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
|
|
*this);
|
|
if (V.getNode()) return V;
|
|
}
|
|
|
|
// If element VT is == 32 bits, turn it into a number of shuffles.
|
|
SmallVector<SDValue, 8> V;
|
|
V.resize(NumElems);
|
|
if (NumElems == 4 && NumZero > 0) {
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
bool isZero = !(NonZeros & (1 << i));
|
|
if (isZero)
|
|
V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
|
|
else
|
|
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
|
|
}
|
|
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
|
|
default: break;
|
|
case 0:
|
|
V[i] = V[i*2]; // Must be a zero vector.
|
|
break;
|
|
case 1:
|
|
V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
|
|
break;
|
|
case 2:
|
|
V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
|
|
break;
|
|
case 3:
|
|
V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SmallVector<int, 8> MaskVec;
|
|
bool Reverse = (NonZeros & 0x3) == 2;
|
|
for (unsigned i = 0; i < 2; ++i)
|
|
MaskVec.push_back(Reverse ? 1-i : i);
|
|
Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
|
|
for (unsigned i = 0; i < 2; ++i)
|
|
MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
|
|
return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
|
|
}
|
|
|
|
if (Values.size() > 1 && VT.getSizeInBits() == 128) {
|
|
// Check for a build vector of consecutive loads.
|
|
for (unsigned i = 0; i < NumElems; ++i)
|
|
V[i] = Op.getOperand(i);
|
|
|
|
// Check for elements which are consecutive loads.
|
|
SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
|
|
if (LD.getNode())
|
|
return LD;
|
|
|
|
// For SSE 4.1, use insertps to put the high elements into the low element.
|
|
if (getSubtarget()->hasSSE41()) {
|
|
SDValue Result;
|
|
if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
|
|
Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
|
|
else
|
|
Result = DAG.getUNDEF(VT);
|
|
|
|
for (unsigned i = 1; i < NumElems; ++i) {
|
|
if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
|
|
Op.getOperand(i), DAG.getIntPtrConstant(i));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// Otherwise, expand into a number of unpckl*, start by extending each of
|
|
// our (non-undef) elements to the full vector width with the element in the
|
|
// bottom slot of the vector (which generates no code for SSE).
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
|
|
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
|
|
else
|
|
V[i] = DAG.getUNDEF(VT);
|
|
}
|
|
|
|
// Next, we iteratively mix elements, e.g. for v4f32:
|
|
// Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
|
|
// : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
|
|
// Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
|
|
unsigned EltStride = NumElems >> 1;
|
|
while (EltStride != 0) {
|
|
for (unsigned i = 0; i < EltStride; ++i) {
|
|
// If V[i+EltStride] is undef and this is the first round of mixing,
|
|
// then it is safe to just drop this shuffle: V[i] is already in the
|
|
// right place, the one element (since it's the first round) being
|
|
// inserted as undef can be dropped. This isn't safe for successive
|
|
// rounds because they will permute elements within both vectors.
|
|
if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
|
|
EltStride == NumElems/2)
|
|
continue;
|
|
|
|
V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
|
|
}
|
|
EltStride >>= 1;
|
|
}
|
|
return V[0];
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
|
|
// We support concatenate two MMX registers and place them in a MMX
|
|
// register. This is better than doing a stack convert.
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
EVT ResVT = Op.getValueType();
|
|
assert(Op.getNumOperands() == 2);
|
|
assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
|
|
ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
|
|
int Mask[2];
|
|
SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
|
|
SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
|
|
InVec = Op.getOperand(1);
|
|
if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
unsigned NumElts = ResVT.getVectorNumElements();
|
|
VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
|
|
VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
|
|
InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
|
|
} else {
|
|
InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
|
|
SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
|
|
Mask[0] = 0; Mask[1] = 2;
|
|
VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
|
|
}
|
|
return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
|
|
}
|
|
|
|
// v8i16 shuffles - Prefer shuffles in the following order:
|
|
// 1. [all] pshuflw, pshufhw, optional move
|
|
// 2. [ssse3] 1 x pshufb
|
|
// 3. [ssse3] 2 x pshufb + 1 x por
|
|
// 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
|
|
SDValue
|
|
X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
DebugLoc dl = SVOp->getDebugLoc();
|
|
SmallVector<int, 8> MaskVals;
|
|
|
|
// Determine if more than 1 of the words in each of the low and high quadwords
|
|
// of the result come from the same quadword of one of the two inputs. Undef
|
|
// mask values count as coming from any quadword, for better codegen.
|
|
SmallVector<unsigned, 4> LoQuad(4);
|
|
SmallVector<unsigned, 4> HiQuad(4);
|
|
BitVector InputQuads(4);
|
|
for (unsigned i = 0; i < 8; ++i) {
|
|
SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
|
|
int EltIdx = SVOp->getMaskElt(i);
|
|
MaskVals.push_back(EltIdx);
|
|
if (EltIdx < 0) {
|
|
++Quad[0];
|
|
++Quad[1];
|
|
++Quad[2];
|
|
++Quad[3];
|
|
continue;
|
|
}
|
|
++Quad[EltIdx / 4];
|
|
InputQuads.set(EltIdx / 4);
|
|
}
|
|
|
|
int BestLoQuad = -1;
|
|
unsigned MaxQuad = 1;
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
if (LoQuad[i] > MaxQuad) {
|
|
BestLoQuad = i;
|
|
MaxQuad = LoQuad[i];
|
|
}
|
|
}
|
|
|
|
int BestHiQuad = -1;
|
|
MaxQuad = 1;
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
if (HiQuad[i] > MaxQuad) {
|
|
BestHiQuad = i;
|
|
MaxQuad = HiQuad[i];
|
|
}
|
|
}
|
|
|
|
// For SSSE3, If all 8 words of the result come from only 1 quadword of each
|
|
// of the two input vectors, shuffle them into one input vector so only a
|
|
// single pshufb instruction is necessary. If There are more than 2 input
|
|
// quads, disable the next transformation since it does not help SSSE3.
|
|
bool V1Used = InputQuads[0] || InputQuads[1];
|
|
bool V2Used = InputQuads[2] || InputQuads[3];
|
|
if (Subtarget->hasSSSE3()) {
|
|
if (InputQuads.count() == 2 && V1Used && V2Used) {
|
|
BestLoQuad = InputQuads.find_first();
|
|
BestHiQuad = InputQuads.find_next(BestLoQuad);
|
|
}
|
|
if (InputQuads.count() > 2) {
|
|
BestLoQuad = -1;
|
|
BestHiQuad = -1;
|
|
}
|
|
}
|
|
|
|
// If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
|
|
// the shuffle mask. If a quad is scored as -1, that means that it contains
|
|
// words from all 4 input quadwords.
|
|
SDValue NewV;
|
|
if (BestLoQuad >= 0 || BestHiQuad >= 0) {
|
|
SmallVector<int, 8> MaskV;
|
|
MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
|
|
MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
|
|
NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
|
|
NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
|
|
|
|
// Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
|
|
// source words for the shuffle, to aid later transformations.
|
|
bool AllWordsInNewV = true;
|
|
bool InOrder[2] = { true, true };
|
|
for (unsigned i = 0; i != 8; ++i) {
|
|
int idx = MaskVals[i];
|
|
if (idx != (int)i)
|
|
InOrder[i/4] = false;
|
|
if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
|
|
continue;
|
|
AllWordsInNewV = false;
|
|
break;
|
|
}
|
|
|
|
bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
|
|
if (AllWordsInNewV) {
|
|
for (int i = 0; i != 8; ++i) {
|
|
int idx = MaskVals[i];
|
|
if (idx < 0)
|
|
continue;
|
|
idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
|
|
if ((idx != i) && idx < 4)
|
|
pshufhw = false;
|
|
if ((idx != i) && idx > 3)
|
|
pshuflw = false;
|
|
}
|
|
V1 = NewV;
|
|
V2Used = false;
|
|
BestLoQuad = 0;
|
|
BestHiQuad = 1;
|
|
}
|
|
|
|
// If we've eliminated the use of V2, and the new mask is a pshuflw or
|
|
// pshufhw, that's as cheap as it gets. Return the new shuffle.
|
|
if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
|
|
unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
|
|
unsigned TargetMask = 0;
|
|
NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
|
|
DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
|
|
TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
|
|
X86::getShufflePSHUFLWImmediate(NewV.getNode());
|
|
V1 = NewV.getOperand(0);
|
|
return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
|
|
}
|
|
}
|
|
|
|
// If we have SSSE3, and all words of the result are from 1 input vector,
|
|
// case 2 is generated, otherwise case 3 is generated. If no SSSE3
|
|
// is present, fall back to case 4.
|
|
if (Subtarget->hasSSSE3()) {
|
|
SmallVector<SDValue,16> pshufbMask;
|
|
|
|
// If we have elements from both input vectors, set the high bit of the
|
|
// shuffle mask element to zero out elements that come from V2 in the V1
|
|
// mask, and elements that come from V1 in the V2 mask, so that the two
|
|
// results can be OR'd together.
|
|
bool TwoInputs = V1Used && V2Used;
|
|
for (unsigned i = 0; i != 8; ++i) {
|
|
int EltIdx = MaskVals[i] * 2;
|
|
if (TwoInputs && (EltIdx >= 16)) {
|
|
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
|
|
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
|
|
continue;
|
|
}
|
|
pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
|
|
pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
|
|
}
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
|
|
V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl,
|
|
MVT::v16i8, &pshufbMask[0], 16));
|
|
if (!TwoInputs)
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
|
|
|
|
// Calculate the shuffle mask for the second input, shuffle it, and
|
|
// OR it with the first shuffled input.
|
|
pshufbMask.clear();
|
|
for (unsigned i = 0; i != 8; ++i) {
|
|
int EltIdx = MaskVals[i] * 2;
|
|
if (EltIdx < 16) {
|
|
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
|
|
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
|
|
continue;
|
|
}
|
|
pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
|
|
pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
|
|
}
|
|
V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
|
|
V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl,
|
|
MVT::v16i8, &pshufbMask[0], 16));
|
|
V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
|
|
}
|
|
|
|
// If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
|
|
// and update MaskVals with new element order.
|
|
BitVector InOrder(8);
|
|
if (BestLoQuad >= 0) {
|
|
SmallVector<int, 8> MaskV;
|
|
for (int i = 0; i != 4; ++i) {
|
|
int idx = MaskVals[i];
|
|
if (idx < 0) {
|
|
MaskV.push_back(-1);
|
|
InOrder.set(i);
|
|
} else if ((idx / 4) == BestLoQuad) {
|
|
MaskV.push_back(idx & 3);
|
|
InOrder.set(i);
|
|
} else {
|
|
MaskV.push_back(-1);
|
|
}
|
|
}
|
|
for (unsigned i = 4; i != 8; ++i)
|
|
MaskV.push_back(i);
|
|
NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
|
|
&MaskV[0]);
|
|
|
|
if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
|
|
NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
|
|
NewV.getOperand(0),
|
|
X86::getShufflePSHUFLWImmediate(NewV.getNode()),
|
|
DAG);
|
|
}
|
|
|
|
// If BestHi >= 0, generate a pshufhw to put the high elements in order,
|
|
// and update MaskVals with the new element order.
|
|
if (BestHiQuad >= 0) {
|
|
SmallVector<int, 8> MaskV;
|
|
for (unsigned i = 0; i != 4; ++i)
|
|
MaskV.push_back(i);
|
|
for (unsigned i = 4; i != 8; ++i) {
|
|
int idx = MaskVals[i];
|
|
if (idx < 0) {
|
|
MaskV.push_back(-1);
|
|
InOrder.set(i);
|
|
} else if ((idx / 4) == BestHiQuad) {
|
|
MaskV.push_back((idx & 3) + 4);
|
|
InOrder.set(i);
|
|
} else {
|
|
MaskV.push_back(-1);
|
|
}
|
|
}
|
|
NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
|
|
&MaskV[0]);
|
|
|
|
if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
|
|
NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
|
|
NewV.getOperand(0),
|
|
X86::getShufflePSHUFHWImmediate(NewV.getNode()),
|
|
DAG);
|
|
}
|
|
|
|
// In case BestHi & BestLo were both -1, which means each quadword has a word
|
|
// from each of the four input quadwords, calculate the InOrder bitvector now
|
|
// before falling through to the insert/extract cleanup.
|
|
if (BestLoQuad == -1 && BestHiQuad == -1) {
|
|
NewV = V1;
|
|
for (int i = 0; i != 8; ++i)
|
|
if (MaskVals[i] < 0 || MaskVals[i] == i)
|
|
InOrder.set(i);
|
|
}
|
|
|
|
// The other elements are put in the right place using pextrw and pinsrw.
|
|
for (unsigned i = 0; i != 8; ++i) {
|
|
if (InOrder[i])
|
|
continue;
|
|
int EltIdx = MaskVals[i];
|
|
if (EltIdx < 0)
|
|
continue;
|
|
SDValue ExtOp = (EltIdx < 8)
|
|
? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
|
|
DAG.getIntPtrConstant(EltIdx))
|
|
: DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
|
|
DAG.getIntPtrConstant(EltIdx - 8));
|
|
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
|
|
DAG.getIntPtrConstant(i));
|
|
}
|
|
return NewV;
|
|
}
|
|
|
|
// v16i8 shuffles - Prefer shuffles in the following order:
|
|
// 1. [ssse3] 1 x pshufb
|
|
// 2. [ssse3] 2 x pshufb + 1 x por
|
|
// 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
|
|
static
|
|
SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
|
|
SelectionDAG &DAG,
|
|
const X86TargetLowering &TLI) {
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
DebugLoc dl = SVOp->getDebugLoc();
|
|
SmallVector<int, 16> MaskVals;
|
|
SVOp->getMask(MaskVals);
|
|
|
|
// If we have SSSE3, case 1 is generated when all result bytes come from
|
|
// one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
|
|
// present, fall back to case 3.
|
|
// FIXME: kill V2Only once shuffles are canonizalized by getNode.
|
|
bool V1Only = true;
|
|
bool V2Only = true;
|
|
for (unsigned i = 0; i < 16; ++i) {
|
|
int EltIdx = MaskVals[i];
|
|
if (EltIdx < 0)
|
|
continue;
|
|
if (EltIdx < 16)
|
|
V2Only = false;
|
|
else
|
|
V1Only = false;
|
|
}
|
|
|
|
// If SSSE3, use 1 pshufb instruction per vector with elements in the result.
|
|
if (TLI.getSubtarget()->hasSSSE3()) {
|
|
SmallVector<SDValue,16> pshufbMask;
|
|
|
|
// If all result elements are from one input vector, then only translate
|
|
// undef mask values to 0x80 (zero out result) in the pshufb mask.
|
|
//
|
|
// Otherwise, we have elements from both input vectors, and must zero out
|
|
// elements that come from V2 in the first mask, and V1 in the second mask
|
|
// so that we can OR them together.
|
|
bool TwoInputs = !(V1Only || V2Only);
|
|
for (unsigned i = 0; i != 16; ++i) {
|
|
int EltIdx = MaskVals[i];
|
|
if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
|
|
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
|
|
continue;
|
|
}
|
|
pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
|
|
}
|
|
// If all the elements are from V2, assign it to V1 and return after
|
|
// building the first pshufb.
|
|
if (V2Only)
|
|
V1 = V2;
|
|
V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl,
|
|
MVT::v16i8, &pshufbMask[0], 16));
|
|
if (!TwoInputs)
|
|
return V1;
|
|
|
|
// Calculate the shuffle mask for the second input, shuffle it, and
|
|
// OR it with the first shuffled input.
|
|
pshufbMask.clear();
|
|
for (unsigned i = 0; i != 16; ++i) {
|
|
int EltIdx = MaskVals[i];
|
|
if (EltIdx < 16) {
|
|
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
|
|
continue;
|
|
}
|
|
pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
|
|
}
|
|
V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl,
|
|
MVT::v16i8, &pshufbMask[0], 16));
|
|
return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
|
|
}
|
|
|
|
// No SSSE3 - Calculate in place words and then fix all out of place words
|
|
// With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
|
|
// the 16 different words that comprise the two doublequadword input vectors.
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
|
|
SDValue NewV = V2Only ? V2 : V1;
|
|
for (int i = 0; i != 8; ++i) {
|
|
int Elt0 = MaskVals[i*2];
|
|
int Elt1 = MaskVals[i*2+1];
|
|
|
|
// This word of the result is all undef, skip it.
|
|
if (Elt0 < 0 && Elt1 < 0)
|
|
continue;
|
|
|
|
// This word of the result is already in the correct place, skip it.
|
|
if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
|
|
continue;
|
|
if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
|
|
continue;
|
|
|
|
SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
|
|
SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
|
|
SDValue InsElt;
|
|
|
|
// If Elt0 and Elt1 are defined, are consecutive, and can be load
|
|
// using a single extract together, load it and store it.
|
|
if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
|
|
InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
|
|
DAG.getIntPtrConstant(Elt1 / 2));
|
|
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
|
|
DAG.getIntPtrConstant(i));
|
|
continue;
|
|
}
|
|
|
|
// If Elt1 is defined, extract it from the appropriate source. If the
|
|
// source byte is not also odd, shift the extracted word left 8 bits
|
|
// otherwise clear the bottom 8 bits if we need to do an or.
|
|
if (Elt1 >= 0) {
|
|
InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
|
|
DAG.getIntPtrConstant(Elt1 / 2));
|
|
if ((Elt1 & 1) == 0)
|
|
InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
|
|
DAG.getConstant(8,
|
|
TLI.getShiftAmountTy(InsElt.getValueType())));
|
|
else if (Elt0 >= 0)
|
|
InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
|
|
DAG.getConstant(0xFF00, MVT::i16));
|
|
}
|
|
// If Elt0 is defined, extract it from the appropriate source. If the
|
|
// source byte is not also even, shift the extracted word right 8 bits. If
|
|
// Elt1 was also defined, OR the extracted values together before
|
|
// inserting them in the result.
|
|
if (Elt0 >= 0) {
|
|
SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
|
|
Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
|
|
if ((Elt0 & 1) != 0)
|
|
InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
|
|
DAG.getConstant(8,
|
|
TLI.getShiftAmountTy(InsElt0.getValueType())));
|
|
else if (Elt1 >= 0)
|
|
InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
|
|
DAG.getConstant(0x00FF, MVT::i16));
|
|
InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
|
|
: InsElt0;
|
|
}
|
|
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
|
|
DAG.getIntPtrConstant(i));
|
|
}
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
|
|
}
|
|
|
|
/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
|
|
/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
|
|
/// done when every pair / quad of shuffle mask elements point to elements in
|
|
/// the right sequence. e.g.
|
|
/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
|
|
static
|
|
SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
|
|
SelectionDAG &DAG, DebugLoc dl) {
|
|
EVT VT = SVOp->getValueType(0);
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
unsigned NewWidth = (NumElems == 4) ? 2 : 4;
|
|
EVT NewVT;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: assert(false && "Unexpected!");
|
|
case MVT::v4f32: NewVT = MVT::v2f64; break;
|
|
case MVT::v4i32: NewVT = MVT::v2i64; break;
|
|
case MVT::v8i16: NewVT = MVT::v4i32; break;
|
|
case MVT::v16i8: NewVT = MVT::v4i32; break;
|
|
}
|
|
|
|
int Scale = NumElems / NewWidth;
|
|
SmallVector<int, 8> MaskVec;
|
|
for (unsigned i = 0; i < NumElems; i += Scale) {
|
|
int StartIdx = -1;
|
|
for (int j = 0; j < Scale; ++j) {
|
|
int EltIdx = SVOp->getMaskElt(i+j);
|
|
if (EltIdx < 0)
|
|
continue;
|
|
if (StartIdx == -1)
|
|
StartIdx = EltIdx - (EltIdx % Scale);
|
|
if (EltIdx != StartIdx + j)
|
|
return SDValue();
|
|
}
|
|
if (StartIdx == -1)
|
|
MaskVec.push_back(-1);
|
|
else
|
|
MaskVec.push_back(StartIdx / Scale);
|
|
}
|
|
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
|
|
return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
|
|
}
|
|
|
|
/// getVZextMovL - Return a zero-extending vector move low node.
|
|
///
|
|
static SDValue getVZextMovL(EVT VT, EVT OpVT,
|
|
SDValue SrcOp, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget, DebugLoc dl) {
|
|
if (VT == MVT::v2f64 || VT == MVT::v4f32) {
|
|
LoadSDNode *LD = NULL;
|
|
if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
|
|
LD = dyn_cast<LoadSDNode>(SrcOp);
|
|
if (!LD) {
|
|
// movssrr and movsdrr do not clear top bits. Try to use movd, movq
|
|
// instead.
|
|
MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
|
|
if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
|
|
SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
|
|
SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
|
|
SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
|
|
// PR2108
|
|
OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
|
|
OpVT,
|
|
SrcOp.getOperand(0)
|
|
.getOperand(0))));
|
|
}
|
|
}
|
|
}
|
|
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
|
|
DAG.getNode(ISD::BITCAST, dl,
|
|
OpVT, SrcOp)));
|
|
}
|
|
|
|
/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
|
|
/// shuffles.
|
|
static SDValue
|
|
LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
DebugLoc dl = SVOp->getDebugLoc();
|
|
EVT VT = SVOp->getValueType(0);
|
|
|
|
SmallVector<std::pair<int, int>, 8> Locs;
|
|
Locs.resize(4);
|
|
SmallVector<int, 8> Mask1(4U, -1);
|
|
SmallVector<int, 8> PermMask;
|
|
SVOp->getMask(PermMask);
|
|
|
|
unsigned NumHi = 0;
|
|
unsigned NumLo = 0;
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
int Idx = PermMask[i];
|
|
if (Idx < 0) {
|
|
Locs[i] = std::make_pair(-1, -1);
|
|
} else {
|
|
assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
|
|
if (Idx < 4) {
|
|
Locs[i] = std::make_pair(0, NumLo);
|
|
Mask1[NumLo] = Idx;
|
|
NumLo++;
|
|
} else {
|
|
Locs[i] = std::make_pair(1, NumHi);
|
|
if (2+NumHi < 4)
|
|
Mask1[2+NumHi] = Idx;
|
|
NumHi++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NumLo <= 2 && NumHi <= 2) {
|
|
// If no more than two elements come from either vector. This can be
|
|
// implemented with two shuffles. First shuffle gather the elements.
|
|
// The second shuffle, which takes the first shuffle as both of its
|
|
// vector operands, put the elements into the right order.
|
|
V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
|
|
|
|
SmallVector<int, 8> Mask2(4U, -1);
|
|
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (Locs[i].first == -1)
|
|
continue;
|
|
else {
|
|
unsigned Idx = (i < 2) ? 0 : 4;
|
|
Idx += Locs[i].first * 2 + Locs[i].second;
|
|
Mask2[i] = Idx;
|
|
}
|
|
}
|
|
|
|
return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
|
|
} else if (NumLo == 3 || NumHi == 3) {
|
|
// Otherwise, we must have three elements from one vector, call it X, and
|
|
// one element from the other, call it Y. First, use a shufps to build an
|
|
// intermediate vector with the one element from Y and the element from X
|
|
// that will be in the same half in the final destination (the indexes don't
|
|
// matter). Then, use a shufps to build the final vector, taking the half
|
|
// containing the element from Y from the intermediate, and the other half
|
|
// from X.
|
|
if (NumHi == 3) {
|
|
// Normalize it so the 3 elements come from V1.
|
|
CommuteVectorShuffleMask(PermMask, VT);
|
|
std::swap(V1, V2);
|
|
}
|
|
|
|
// Find the element from V2.
|
|
unsigned HiIndex;
|
|
for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
|
|
int Val = PermMask[HiIndex];
|
|
if (Val < 0)
|
|
continue;
|
|
if (Val >= 4)
|
|
break;
|
|
}
|
|
|
|
Mask1[0] = PermMask[HiIndex];
|
|
Mask1[1] = -1;
|
|
Mask1[2] = PermMask[HiIndex^1];
|
|
Mask1[3] = -1;
|
|
V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
|
|
|
|
if (HiIndex >= 2) {
|
|
Mask1[0] = PermMask[0];
|
|
Mask1[1] = PermMask[1];
|
|
Mask1[2] = HiIndex & 1 ? 6 : 4;
|
|
Mask1[3] = HiIndex & 1 ? 4 : 6;
|
|
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
|
|
} else {
|
|
Mask1[0] = HiIndex & 1 ? 2 : 0;
|
|
Mask1[1] = HiIndex & 1 ? 0 : 2;
|
|
Mask1[2] = PermMask[2];
|
|
Mask1[3] = PermMask[3];
|
|
if (Mask1[2] >= 0)
|
|
Mask1[2] += 4;
|
|
if (Mask1[3] >= 0)
|
|
Mask1[3] += 4;
|
|
return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
|
|
}
|
|
}
|
|
|
|
// Break it into (shuffle shuffle_hi, shuffle_lo).
|
|
Locs.clear();
|
|
Locs.resize(4);
|
|
SmallVector<int,8> LoMask(4U, -1);
|
|
SmallVector<int,8> HiMask(4U, -1);
|
|
|
|
SmallVector<int,8> *MaskPtr = &LoMask;
|
|
unsigned MaskIdx = 0;
|
|
unsigned LoIdx = 0;
|
|
unsigned HiIdx = 2;
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (i == 2) {
|
|
MaskPtr = &HiMask;
|
|
MaskIdx = 1;
|
|
LoIdx = 0;
|
|
HiIdx = 2;
|
|
}
|
|
int Idx = PermMask[i];
|
|
if (Idx < 0) {
|
|
Locs[i] = std::make_pair(-1, -1);
|
|
} else if (Idx < 4) {
|
|
Locs[i] = std::make_pair(MaskIdx, LoIdx);
|
|
(*MaskPtr)[LoIdx] = Idx;
|
|
LoIdx++;
|
|
} else {
|
|
Locs[i] = std::make_pair(MaskIdx, HiIdx);
|
|
(*MaskPtr)[HiIdx] = Idx;
|
|
HiIdx++;
|
|
}
|
|
}
|
|
|
|
SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
|
|
SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
|
|
SmallVector<int, 8> MaskOps;
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (Locs[i].first == -1) {
|
|
MaskOps.push_back(-1);
|
|
} else {
|
|
unsigned Idx = Locs[i].first * 4 + Locs[i].second;
|
|
MaskOps.push_back(Idx);
|
|
}
|
|
}
|
|
return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
|
|
}
|
|
|
|
static bool MayFoldVectorLoad(SDValue V) {
|
|
if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
|
|
V = V.getOperand(0);
|
|
if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
|
|
V = V.getOperand(0);
|
|
if (MayFoldLoad(V))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// FIXME: the version above should always be used. Since there's
|
|
// a bug where several vector shuffles can't be folded because the
|
|
// DAG is not updated during lowering and a node claims to have two
|
|
// uses while it only has one, use this version, and let isel match
|
|
// another instruction if the load really happens to have more than
|
|
// one use. Remove this version after this bug get fixed.
|
|
// rdar://8434668, PR8156
|
|
static bool RelaxedMayFoldVectorLoad(SDValue V) {
|
|
if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
|
|
V = V.getOperand(0);
|
|
if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
|
|
V = V.getOperand(0);
|
|
if (ISD::isNormalLoad(V.getNode()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
|
|
/// a vector extract, and if both can be later optimized into a single load.
|
|
/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
|
|
/// here because otherwise a target specific shuffle node is going to be
|
|
/// emitted for this shuffle, and the optimization not done.
|
|
/// FIXME: This is probably not the best approach, but fix the problem
|
|
/// until the right path is decided.
|
|
static
|
|
bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
EVT VT = V.getValueType();
|
|
ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
|
|
|
|
// Be sure that the vector shuffle is present in a pattern like this:
|
|
// (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
|
|
if (!V.hasOneUse())
|
|
return false;
|
|
|
|
SDNode *N = *V.getNode()->use_begin();
|
|
if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return false;
|
|
|
|
SDValue EltNo = N->getOperand(1);
|
|
if (!isa<ConstantSDNode>(EltNo))
|
|
return false;
|
|
|
|
// If the bit convert changed the number of elements, it is unsafe
|
|
// to examine the mask.
|
|
bool HasShuffleIntoBitcast = false;
|
|
if (V.getOpcode() == ISD::BITCAST) {
|
|
EVT SrcVT = V.getOperand(0).getValueType();
|
|
if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
|
|
return false;
|
|
V = V.getOperand(0);
|
|
HasShuffleIntoBitcast = true;
|
|
}
|
|
|
|
// Select the input vector, guarding against out of range extract vector.
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
|
|
int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
|
|
V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
|
|
|
|
// Skip one more bit_convert if necessary
|
|
if (V.getOpcode() == ISD::BITCAST)
|
|
V = V.getOperand(0);
|
|
|
|
if (ISD::isNormalLoad(V.getNode())) {
|
|
// Is the original load suitable?
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(V);
|
|
|
|
// FIXME: avoid the multi-use bug that is preventing lots of
|
|
// of foldings to be detected, this is still wrong of course, but
|
|
// give the temporary desired behavior, and if it happens that
|
|
// the load has real more uses, during isel it will not fold, and
|
|
// will generate poor code.
|
|
if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
|
|
return false;
|
|
|
|
if (!HasShuffleIntoBitcast)
|
|
return true;
|
|
|
|
// If there's a bitcast before the shuffle, check if the load type and
|
|
// alignment is valid.
|
|
unsigned Align = LN0->getAlignment();
|
|
unsigned NewAlign =
|
|
TLI.getTargetData()->getABITypeAlignment(
|
|
VT.getTypeForEVT(*DAG.getContext()));
|
|
|
|
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static
|
|
SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Canonizalize to v2f64.
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
|
|
V1, DAG));
|
|
}
|
|
|
|
static
|
|
SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
|
|
bool HasSSE2) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
EVT VT = Op.getValueType();
|
|
|
|
assert(VT != MVT::v2i64 && "unsupported shuffle type");
|
|
|
|
if (HasSSE2 && VT == MVT::v2f64)
|
|
return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
|
|
|
|
// v4f32 or v4i32
|
|
return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
|
|
}
|
|
|
|
static
|
|
SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
EVT VT = Op.getValueType();
|
|
|
|
assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
|
|
"unsupported shuffle type");
|
|
|
|
if (V2.getOpcode() == ISD::UNDEF)
|
|
V2 = V1;
|
|
|
|
// v4i32 or v4f32
|
|
return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
|
|
}
|
|
|
|
static
|
|
SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
EVT VT = Op.getValueType();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
// Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
|
|
// operand of these instructions is only memory, so check if there's a
|
|
// potencial load folding here, otherwise use SHUFPS or MOVSD to match the
|
|
// same masks.
|
|
bool CanFoldLoad = false;
|
|
|
|
// Trivial case, when V2 comes from a load.
|
|
if (MayFoldVectorLoad(V2))
|
|
CanFoldLoad = true;
|
|
|
|
// When V1 is a load, it can be folded later into a store in isel, example:
|
|
// (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
|
|
// turns into:
|
|
// (MOVLPSmr addr:$src1, VR128:$src2)
|
|
// So, recognize this potential and also use MOVLPS or MOVLPD
|
|
if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
|
|
CanFoldLoad = true;
|
|
|
|
// Both of them can't be memory operations though.
|
|
if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
|
|
CanFoldLoad = false;
|
|
|
|
if (CanFoldLoad) {
|
|
if (HasSSE2 && NumElems == 2)
|
|
return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
|
|
|
|
if (NumElems == 4)
|
|
return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
|
|
}
|
|
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
// movl and movlp will both match v2i64, but v2i64 is never matched by
|
|
// movl earlier because we make it strict to avoid messing with the movlp load
|
|
// folding logic (see the code above getMOVLP call). Match it here then,
|
|
// this is horrible, but will stay like this until we move all shuffle
|
|
// matching to x86 specific nodes. Note that for the 1st condition all
|
|
// types are matched with movsd.
|
|
if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
|
|
return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
|
|
else if (HasSSE2)
|
|
return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
|
|
|
|
|
|
assert(VT != MVT::v4i32 && "unsupported shuffle type");
|
|
|
|
// Invert the operand order and use SHUFPS to match it.
|
|
return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
|
|
X86::getShuffleSHUFImmediate(SVOp), DAG);
|
|
}
|
|
|
|
static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) {
|
|
switch(VT.getSimpleVT().SimpleTy) {
|
|
case MVT::v4i32: return X86ISD::PUNPCKLDQ;
|
|
case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
|
|
case MVT::v4f32:
|
|
return Subtarget->hasAVX() ? X86ISD::VUNPCKLPS : X86ISD::UNPCKLPS;
|
|
case MVT::v2f64:
|
|
return Subtarget->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
|
|
case MVT::v8f32: return X86ISD::VUNPCKLPSY;
|
|
case MVT::v4f64: return X86ISD::VUNPCKLPDY;
|
|
case MVT::v16i8: return X86ISD::PUNPCKLBW;
|
|
case MVT::v8i16: return X86ISD::PUNPCKLWD;
|
|
default:
|
|
llvm_unreachable("Unknown type for unpckl");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline unsigned getUNPCKHOpcode(EVT VT) {
|
|
switch(VT.getSimpleVT().SimpleTy) {
|
|
case MVT::v4i32: return X86ISD::PUNPCKHDQ;
|
|
case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
|
|
case MVT::v4f32: return X86ISD::UNPCKHPS;
|
|
case MVT::v2f64: return X86ISD::UNPCKHPD;
|
|
case MVT::v16i8: return X86ISD::PUNPCKHBW;
|
|
case MVT::v8i16: return X86ISD::PUNPCKHWD;
|
|
default:
|
|
llvm_unreachable("Unknown type for unpckh");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
|
|
const TargetLowering &TLI,
|
|
const X86Subtarget *Subtarget) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
|
|
if (isZeroShuffle(SVOp))
|
|
return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
|
|
|
|
// Handle splat operations
|
|
if (SVOp->isSplat()) {
|
|
// Special case, this is the only place now where it's
|
|
// allowed to return a vector_shuffle operation without
|
|
// using a target specific node, because *hopefully* it
|
|
// will be optimized away by the dag combiner.
|
|
if (VT.getVectorNumElements() <= 4 &&
|
|
CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
|
|
return Op;
|
|
|
|
// Handle splats by matching through known masks
|
|
if (VT.getVectorNumElements() <= 4)
|
|
return SDValue();
|
|
|
|
// Canonicalize all of the remaining to v4f32.
|
|
return PromoteSplat(SVOp, DAG);
|
|
}
|
|
|
|
// If the shuffle can be profitably rewritten as a narrower shuffle, then
|
|
// do it!
|
|
if (VT == MVT::v8i16 || VT == MVT::v16i8) {
|
|
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
|
|
if (NewOp.getNode())
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
|
|
} else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
|
|
// FIXME: Figure out a cleaner way to do this.
|
|
// Try to make use of movq to zero out the top part.
|
|
if (ISD::isBuildVectorAllZeros(V2.getNode())) {
|
|
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
|
|
if (NewOp.getNode()) {
|
|
if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
|
|
return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
|
|
DAG, Subtarget, dl);
|
|
}
|
|
} else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
|
|
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
|
|
if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
|
|
return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
|
|
DAG, Subtarget, dl);
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
bool isMMX = VT.getSizeInBits() == 64;
|
|
bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
|
|
bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
|
|
bool V1IsSplat = false;
|
|
bool V2IsSplat = false;
|
|
bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
|
|
bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
|
|
bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
|
|
|
|
// Shuffle operations on MMX not supported.
|
|
if (isMMX)
|
|
return Op;
|
|
|
|
// Vector shuffle lowering takes 3 steps:
|
|
//
|
|
// 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
|
|
// narrowing and commutation of operands should be handled.
|
|
// 2) Matching of shuffles with known shuffle masks to x86 target specific
|
|
// shuffle nodes.
|
|
// 3) Rewriting of unmatched masks into new generic shuffle operations,
|
|
// so the shuffle can be broken into other shuffles and the legalizer can
|
|
// try the lowering again.
|
|
//
|
|
// The general ideia is that no vector_shuffle operation should be left to
|
|
// be matched during isel, all of them must be converted to a target specific
|
|
// node here.
|
|
|
|
// Normalize the input vectors. Here splats, zeroed vectors, profitable
|
|
// narrowing and commutation of operands should be handled. The actual code
|
|
// doesn't include all of those, work in progress...
|
|
SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
|
|
// NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
|
|
// unpckh_undef). Only use pshufd if speed is more important than size.
|
|
if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
|
|
if (VT != MVT::v2i64 && VT != MVT::v2f64)
|
|
return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG);
|
|
if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
|
|
if (VT != MVT::v2i64 && VT != MVT::v2f64)
|
|
return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
|
|
|
|
if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
|
|
RelaxedMayFoldVectorLoad(V1))
|
|
return getMOVDDup(Op, dl, V1, DAG);
|
|
|
|
if (X86::isMOVHLPS_v_undef_Mask(SVOp))
|
|
return getMOVHighToLow(Op, dl, DAG);
|
|
|
|
// Use to match splats
|
|
if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
|
|
(VT == MVT::v2f64 || VT == MVT::v2i64))
|
|
return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
|
|
|
|
if (X86::isPSHUFDMask(SVOp)) {
|
|
// The actual implementation will match the mask in the if above and then
|
|
// during isel it can match several different instructions, not only pshufd
|
|
// as its name says, sad but true, emulate the behavior for now...
|
|
if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
|
|
return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
|
|
|
|
unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
|
|
|
|
if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
|
|
return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
|
|
|
|
if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
|
|
return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
|
|
TargetMask, DAG);
|
|
|
|
if (VT == MVT::v4f32)
|
|
return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
|
|
TargetMask, DAG);
|
|
}
|
|
|
|
// Check if this can be converted into a logical shift.
|
|
bool isLeft = false;
|
|
unsigned ShAmt = 0;
|
|
SDValue ShVal;
|
|
bool isShift = getSubtarget()->hasSSE2() &&
|
|
isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
|
|
if (isShift && ShVal.hasOneUse()) {
|
|
// If the shifted value has multiple uses, it may be cheaper to use
|
|
// v_set0 + movlhps or movhlps, etc.
|
|
EVT EltVT = VT.getVectorElementType();
|
|
ShAmt *= EltVT.getSizeInBits();
|
|
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
|
|
}
|
|
|
|
if (X86::isMOVLMask(SVOp)) {
|
|
if (V1IsUndef)
|
|
return V2;
|
|
if (ISD::isBuildVectorAllZeros(V1.getNode()))
|
|
return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
|
|
if (!X86::isMOVLPMask(SVOp)) {
|
|
if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
|
|
return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
|
|
|
|
if (VT == MVT::v4i32 || VT == MVT::v4f32)
|
|
return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
|
|
}
|
|
}
|
|
|
|
// FIXME: fold these into legal mask.
|
|
if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
|
|
return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
|
|
|
|
if (X86::isMOVHLPSMask(SVOp))
|
|
return getMOVHighToLow(Op, dl, DAG);
|
|
|
|
if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
|
|
return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
|
|
|
|
if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
|
|
return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
|
|
|
|
if (X86::isMOVLPMask(SVOp))
|
|
return getMOVLP(Op, dl, DAG, HasSSE2);
|
|
|
|
if (ShouldXformToMOVHLPS(SVOp) ||
|
|
ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
|
|
return CommuteVectorShuffle(SVOp, DAG);
|
|
|
|
if (isShift) {
|
|
// No better options. Use a vshl / vsrl.
|
|
EVT EltVT = VT.getVectorElementType();
|
|
ShAmt *= EltVT.getSizeInBits();
|
|
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
|
|
}
|
|
|
|
bool Commuted = false;
|
|
// FIXME: This should also accept a bitcast of a splat? Be careful, not
|
|
// 1,1,1,1 -> v8i16 though.
|
|
V1IsSplat = isSplatVector(V1.getNode());
|
|
V2IsSplat = isSplatVector(V2.getNode());
|
|
|
|
// Canonicalize the splat or undef, if present, to be on the RHS.
|
|
if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
|
|
Op = CommuteVectorShuffle(SVOp, DAG);
|
|
SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
V1 = SVOp->getOperand(0);
|
|
V2 = SVOp->getOperand(1);
|
|
std::swap(V1IsSplat, V2IsSplat);
|
|
std::swap(V1IsUndef, V2IsUndef);
|
|
Commuted = true;
|
|
}
|
|
|
|
if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
|
|
// Shuffling low element of v1 into undef, just return v1.
|
|
if (V2IsUndef)
|
|
return V1;
|
|
// If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
|
|
// the instruction selector will not match, so get a canonical MOVL with
|
|
// swapped operands to undo the commute.
|
|
return getMOVL(DAG, dl, VT, V2, V1);
|
|
}
|
|
|
|
if (X86::isUNPCKLMask(SVOp))
|
|
return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
|
|
dl, VT, V1, V2, DAG);
|
|
|
|
if (X86::isUNPCKHMask(SVOp))
|
|
return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
|
|
|
|
if (V2IsSplat) {
|
|
// Normalize mask so all entries that point to V2 points to its first
|
|
// element then try to match unpck{h|l} again. If match, return a
|
|
// new vector_shuffle with the corrected mask.
|
|
SDValue NewMask = NormalizeMask(SVOp, DAG);
|
|
ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
|
|
if (NSVOp != SVOp) {
|
|
if (X86::isUNPCKLMask(NSVOp, true)) {
|
|
return NewMask;
|
|
} else if (X86::isUNPCKHMask(NSVOp, true)) {
|
|
return NewMask;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Commuted) {
|
|
// Commute is back and try unpck* again.
|
|
// FIXME: this seems wrong.
|
|
SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
|
|
ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
|
|
|
|
if (X86::isUNPCKLMask(NewSVOp))
|
|
return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
|
|
dl, VT, V2, V1, DAG);
|
|
|
|
if (X86::isUNPCKHMask(NewSVOp))
|
|
return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
|
|
}
|
|
|
|
// Normalize the node to match x86 shuffle ops if needed
|
|
if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
|
|
return CommuteVectorShuffle(SVOp, DAG);
|
|
|
|
// The checks below are all present in isShuffleMaskLegal, but they are
|
|
// inlined here right now to enable us to directly emit target specific
|
|
// nodes, and remove one by one until they don't return Op anymore.
|
|
SmallVector<int, 16> M;
|
|
SVOp->getMask(M);
|
|
|
|
if (isPALIGNRMask(M, VT, HasSSSE3))
|
|
return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
|
|
X86::getShufflePALIGNRImmediate(SVOp),
|
|
DAG);
|
|
|
|
if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
|
|
SVOp->getSplatIndex() == 0 && V2IsUndef) {
|
|
if (VT == MVT::v2f64) {
|
|
X86ISD::NodeType Opcode =
|
|
getSubtarget()->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
|
|
return getTargetShuffleNode(Opcode, dl, VT, V1, V1, DAG);
|
|
}
|
|
if (VT == MVT::v2i64)
|
|
return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
|
|
}
|
|
|
|
if (isPSHUFHWMask(M, VT))
|
|
return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
|
|
X86::getShufflePSHUFHWImmediate(SVOp),
|
|
DAG);
|
|
|
|
if (isPSHUFLWMask(M, VT))
|
|
return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
|
|
X86::getShufflePSHUFLWImmediate(SVOp),
|
|
DAG);
|
|
|
|
if (isSHUFPMask(M, VT)) {
|
|
unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
|
|
if (VT == MVT::v4f32 || VT == MVT::v4i32)
|
|
return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
|
|
TargetMask, DAG);
|
|
if (VT == MVT::v2f64 || VT == MVT::v2i64)
|
|
return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
|
|
TargetMask, DAG);
|
|
}
|
|
|
|
if (X86::isUNPCKL_v_undef_Mask(SVOp))
|
|
if (VT != MVT::v2i64 && VT != MVT::v2f64)
|
|
return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
|
|
dl, VT, V1, V1, DAG);
|
|
if (X86::isUNPCKH_v_undef_Mask(SVOp))
|
|
if (VT != MVT::v2i64 && VT != MVT::v2f64)
|
|
return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
|
|
|
|
// Handle v8i16 specifically since SSE can do byte extraction and insertion.
|
|
if (VT == MVT::v8i16) {
|
|
SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
}
|
|
|
|
if (VT == MVT::v16i8) {
|
|
SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
}
|
|
|
|
// Handle all 4 wide cases with a number of shuffles.
|
|
if (NumElems == 4)
|
|
return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
if (VT.getSizeInBits() == 8) {
|
|
SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
|
|
DAG.getValueType(VT));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
|
|
} else if (VT.getSizeInBits() == 16) {
|
|
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
// If Idx is 0, it's cheaper to do a move instead of a pextrw.
|
|
if (Idx == 0)
|
|
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
|
|
DAG.getNode(ISD::BITCAST, dl,
|
|
MVT::v4i32,
|
|
Op.getOperand(0)),
|
|
Op.getOperand(1)));
|
|
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
|
|
DAG.getValueType(VT));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
|
|
} else if (VT == MVT::f32) {
|
|
// EXTRACTPS outputs to a GPR32 register which will require a movd to copy
|
|
// the result back to FR32 register. It's only worth matching if the
|
|
// result has a single use which is a store or a bitcast to i32. And in
|
|
// the case of a store, it's not worth it if the index is a constant 0,
|
|
// because a MOVSSmr can be used instead, which is smaller and faster.
|
|
if (!Op.hasOneUse())
|
|
return SDValue();
|
|
SDNode *User = *Op.getNode()->use_begin();
|
|
if ((User->getOpcode() != ISD::STORE ||
|
|
(isa<ConstantSDNode>(Op.getOperand(1)) &&
|
|
cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
|
|
(User->getOpcode() != ISD::BITCAST ||
|
|
User->getValueType(0) != MVT::i32))
|
|
return SDValue();
|
|
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
|
|
Op.getOperand(0)),
|
|
Op.getOperand(1));
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
|
|
} else if (VT == MVT::i32) {
|
|
// ExtractPS works with constant index.
|
|
if (isa<ConstantSDNode>(Op.getOperand(1)))
|
|
return Op;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (!isa<ConstantSDNode>(Op.getOperand(1)))
|
|
return SDValue();
|
|
|
|
SDValue Vec = Op.getOperand(0);
|
|
EVT VecVT = Vec.getValueType();
|
|
|
|
// If this is a 256-bit vector result, first extract the 128-bit
|
|
// vector and then extract from the 128-bit vector.
|
|
if (VecVT.getSizeInBits() > 128) {
|
|
DebugLoc dl = Op.getNode()->getDebugLoc();
|
|
unsigned NumElems = VecVT.getVectorNumElements();
|
|
SDValue Idx = Op.getOperand(1);
|
|
|
|
if (!isa<ConstantSDNode>(Idx))
|
|
return SDValue();
|
|
|
|
unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
|
|
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
|
|
// Get the 128-bit vector.
|
|
bool Upper = IdxVal >= ExtractNumElems;
|
|
Vec = Extract128BitVector(Vec, Idx, DAG, dl);
|
|
|
|
// Extract from it.
|
|
SDValue ScaledIdx = Idx;
|
|
if (Upper)
|
|
ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
|
|
DAG.getConstant(ExtractNumElems,
|
|
Idx.getValueType()));
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
|
|
ScaledIdx);
|
|
}
|
|
|
|
assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
|
|
|
|
if (Subtarget->hasSSE41()) {
|
|
SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
|
|
if (Res.getNode())
|
|
return Res;
|
|
}
|
|
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
// TODO: handle v16i8.
|
|
if (VT.getSizeInBits() == 16) {
|
|
SDValue Vec = Op.getOperand(0);
|
|
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
if (Idx == 0)
|
|
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
|
|
DAG.getNode(ISD::BITCAST, dl,
|
|
MVT::v4i32, Vec),
|
|
Op.getOperand(1)));
|
|
// Transform it so it match pextrw which produces a 32-bit result.
|
|
EVT EltVT = MVT::i32;
|
|
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
|
|
DAG.getValueType(VT));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
|
|
} else if (VT.getSizeInBits() == 32) {
|
|
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
if (Idx == 0)
|
|
return Op;
|
|
|
|
// SHUFPS the element to the lowest double word, then movss.
|
|
int Mask[4] = { Idx, -1, -1, -1 };
|
|
EVT VVT = Op.getOperand(0).getValueType();
|
|
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
|
|
DAG.getUNDEF(VVT), Mask);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
|
|
DAG.getIntPtrConstant(0));
|
|
} else if (VT.getSizeInBits() == 64) {
|
|
// FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
|
|
// FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
|
|
// to match extract_elt for f64.
|
|
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
if (Idx == 0)
|
|
return Op;
|
|
|
|
// UNPCKHPD the element to the lowest double word, then movsd.
|
|
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
|
|
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
|
|
int Mask[2] = { 1, -1 };
|
|
EVT VVT = Op.getOperand(0).getValueType();
|
|
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
|
|
DAG.getUNDEF(VVT), Mask);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue N1 = Op.getOperand(1);
|
|
SDValue N2 = Op.getOperand(2);
|
|
|
|
if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
|
|
isa<ConstantSDNode>(N2)) {
|
|
unsigned Opc;
|
|
if (VT == MVT::v8i16)
|
|
Opc = X86ISD::PINSRW;
|
|
else if (VT == MVT::v16i8)
|
|
Opc = X86ISD::PINSRB;
|
|
else
|
|
Opc = X86ISD::PINSRB;
|
|
|
|
// Transform it so it match pinsr{b,w} which expects a GR32 as its second
|
|
// argument.
|
|
if (N1.getValueType() != MVT::i32)
|
|
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
|
|
if (N2.getValueType() != MVT::i32)
|
|
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
|
|
return DAG.getNode(Opc, dl, VT, N0, N1, N2);
|
|
} else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
|
|
// Bits [7:6] of the constant are the source select. This will always be
|
|
// zero here. The DAG Combiner may combine an extract_elt index into these
|
|
// bits. For example (insert (extract, 3), 2) could be matched by putting
|
|
// the '3' into bits [7:6] of X86ISD::INSERTPS.
|
|
// Bits [5:4] of the constant are the destination select. This is the
|
|
// value of the incoming immediate.
|
|
// Bits [3:0] of the constant are the zero mask. The DAG Combiner may
|
|
// combine either bitwise AND or insert of float 0.0 to set these bits.
|
|
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
|
|
// Create this as a scalar to vector..
|
|
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
|
|
return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
|
|
} else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
|
|
// PINSR* works with constant index.
|
|
return Op;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue N1 = Op.getOperand(1);
|
|
SDValue N2 = Op.getOperand(2);
|
|
|
|
// If this is a 256-bit vector result, first insert into a 128-bit
|
|
// vector and then insert into the 256-bit vector.
|
|
if (VT.getSizeInBits() > 128) {
|
|
if (!isa<ConstantSDNode>(N2))
|
|
return SDValue();
|
|
|
|
// Get the 128-bit vector.
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
|
|
bool Upper = IdxVal >= NumElems / 2;
|
|
|
|
SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
|
|
|
|
// Insert into it.
|
|
SDValue ScaledN2 = N2;
|
|
if (Upper)
|
|
ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
|
|
DAG.getConstant(NumElems /
|
|
(VT.getSizeInBits() / 128),
|
|
N2.getValueType()));
|
|
Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
|
|
N1, ScaledN2);
|
|
|
|
// Insert the 128-bit vector
|
|
// FIXME: Why UNDEF?
|
|
return Insert128BitVector(N0, Op, N2, DAG, dl);
|
|
}
|
|
|
|
if (Subtarget->hasSSE41())
|
|
return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
|
|
|
|
if (EltVT == MVT::i8)
|
|
return SDValue();
|
|
|
|
if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
|
|
// Transform it so it match pinsrw which expects a 16-bit value in a GR32
|
|
// as its second argument.
|
|
if (N1.getValueType() != MVT::i32)
|
|
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
|
|
if (N2.getValueType() != MVT::i32)
|
|
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
|
|
return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
|
|
LLVMContext *Context = DAG.getContext();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
EVT OpVT = Op.getValueType();
|
|
|
|
// If this is a 256-bit vector result, first insert into a 128-bit
|
|
// vector and then insert into the 256-bit vector.
|
|
if (OpVT.getSizeInBits() > 128) {
|
|
// Insert into a 128-bit vector.
|
|
EVT VT128 = EVT::getVectorVT(*Context,
|
|
OpVT.getVectorElementType(),
|
|
OpVT.getVectorNumElements() / 2);
|
|
|
|
Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
|
|
|
|
// Insert the 128-bit vector.
|
|
return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
|
|
DAG.getConstant(0, MVT::i32),
|
|
DAG, dl);
|
|
}
|
|
|
|
if (Op.getValueType() == MVT::v1i64 &&
|
|
Op.getOperand(0).getValueType() == MVT::i64)
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
|
|
|
|
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
|
|
assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
|
|
"Expected an SSE type!");
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
|
|
}
|
|
|
|
// Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
|
|
// a simple subregister reference or explicit instructions to grab
|
|
// upper bits of a vector.
|
|
SDValue
|
|
X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
|
|
if (Subtarget->hasAVX()) {
|
|
DebugLoc dl = Op.getNode()->getDebugLoc();
|
|
SDValue Vec = Op.getNode()->getOperand(0);
|
|
SDValue Idx = Op.getNode()->getOperand(1);
|
|
|
|
if (Op.getNode()->getValueType(0).getSizeInBits() == 128
|
|
&& Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
|
|
return Extract128BitVector(Vec, Idx, DAG, dl);
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
|
|
// simple superregister reference or explicit instructions to insert
|
|
// the upper bits of a vector.
|
|
SDValue
|
|
X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
|
|
if (Subtarget->hasAVX()) {
|
|
DebugLoc dl = Op.getNode()->getDebugLoc();
|
|
SDValue Vec = Op.getNode()->getOperand(0);
|
|
SDValue SubVec = Op.getNode()->getOperand(1);
|
|
SDValue Idx = Op.getNode()->getOperand(2);
|
|
|
|
if (Op.getNode()->getValueType(0).getSizeInBits() == 256
|
|
&& SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
|
|
return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
|
|
// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
|
|
// one of the above mentioned nodes. It has to be wrapped because otherwise
|
|
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
|
|
// be used to form addressing mode. These wrapped nodes will be selected
|
|
// into MOV32ri.
|
|
SDValue
|
|
X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
|
|
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
|
|
// global base reg.
|
|
unsigned char OpFlag = 0;
|
|
unsigned WrapperKind = X86ISD::Wrapper;
|
|
CodeModel::Model M = getTargetMachine().getCodeModel();
|
|
|
|
if (Subtarget->isPICStyleRIPRel() &&
|
|
(M == CodeModel::Small || M == CodeModel::Kernel))
|
|
WrapperKind = X86ISD::WrapperRIP;
|
|
else if (Subtarget->isPICStyleGOT())
|
|
OpFlag = X86II::MO_GOTOFF;
|
|
else if (Subtarget->isPICStyleStubPIC())
|
|
OpFlag = X86II::MO_PIC_BASE_OFFSET;
|
|
|
|
SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
|
|
CP->getAlignment(),
|
|
CP->getOffset(), OpFlag);
|
|
DebugLoc DL = CP->getDebugLoc();
|
|
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (OpFlag) {
|
|
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg,
|
|
DebugLoc(), getPointerTy()),
|
|
Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
|
|
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
|
|
// global base reg.
|
|
unsigned char OpFlag = 0;
|
|
unsigned WrapperKind = X86ISD::Wrapper;
|
|
CodeModel::Model M = getTargetMachine().getCodeModel();
|
|
|
|
if (Subtarget->isPICStyleRIPRel() &&
|
|
(M == CodeModel::Small || M == CodeModel::Kernel))
|
|
WrapperKind = X86ISD::WrapperRIP;
|
|
else if (Subtarget->isPICStyleGOT())
|
|
OpFlag = X86II::MO_GOTOFF;
|
|
else if (Subtarget->isPICStyleStubPIC())
|
|
OpFlag = X86II::MO_PIC_BASE_OFFSET;
|
|
|
|
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
|
|
OpFlag);
|
|
DebugLoc DL = JT->getDebugLoc();
|
|
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
|
|
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (OpFlag)
|
|
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg,
|
|
DebugLoc(), getPointerTy()),
|
|
Result);
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
|
|
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
|
|
|
|
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
|
|
// global base reg.
|
|
unsigned char OpFlag = 0;
|
|
unsigned WrapperKind = X86ISD::Wrapper;
|
|
CodeModel::Model M = getTargetMachine().getCodeModel();
|
|
|
|
if (Subtarget->isPICStyleRIPRel() &&
|
|
(M == CodeModel::Small || M == CodeModel::Kernel))
|
|
WrapperKind = X86ISD::WrapperRIP;
|
|
else if (Subtarget->isPICStyleGOT())
|
|
OpFlag = X86II::MO_GOTOFF;
|
|
else if (Subtarget->isPICStyleStubPIC())
|
|
OpFlag = X86II::MO_PIC_BASE_OFFSET;
|
|
|
|
SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
|
|
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
|
|
|
|
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
|
|
!Subtarget->is64Bit()) {
|
|
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg,
|
|
DebugLoc(), getPointerTy()),
|
|
Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
// Create the TargetBlockAddressAddress node.
|
|
unsigned char OpFlags =
|
|
Subtarget->ClassifyBlockAddressReference();
|
|
CodeModel::Model M = getTargetMachine().getCodeModel();
|
|
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
|
|
/*isTarget=*/true, OpFlags);
|
|
|
|
if (Subtarget->isPICStyleRIPRel() &&
|
|
(M == CodeModel::Small || M == CodeModel::Kernel))
|
|
Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
|
|
else
|
|
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
|
|
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (isGlobalRelativeToPICBase(OpFlags)) {
|
|
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
|
|
Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
|
|
int64_t Offset,
|
|
SelectionDAG &DAG) const {
|
|
// Create the TargetGlobalAddress node, folding in the constant
|
|
// offset if it is legal.
|
|
unsigned char OpFlags =
|
|
Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
|
|
CodeModel::Model M = getTargetMachine().getCodeModel();
|
|
SDValue Result;
|
|
if (OpFlags == X86II::MO_NO_FLAG &&
|
|
X86::isOffsetSuitableForCodeModel(Offset, M)) {
|
|
// A direct static reference to a global.
|
|
Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
|
|
Offset = 0;
|
|
} else {
|
|
Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
|
|
}
|
|
|
|
if (Subtarget->isPICStyleRIPRel() &&
|
|
(M == CodeModel::Small || M == CodeModel::Kernel))
|
|
Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
|
|
else
|
|
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
|
|
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (isGlobalRelativeToPICBase(OpFlags)) {
|
|
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
|
|
Result);
|
|
}
|
|
|
|
// For globals that require a load from a stub to get the address, emit the
|
|
// load.
|
|
if (isGlobalStubReference(OpFlags))
|
|
Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
|
|
MachinePointerInfo::getGOT(), false, false, 0);
|
|
|
|
// If there was a non-zero offset that we didn't fold, create an explicit
|
|
// addition for it.
|
|
if (Offset != 0)
|
|
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
|
|
DAG.getConstant(Offset, getPointerTy()));
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
|
|
return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
|
|
}
|
|
|
|
static SDValue
|
|
GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
|
|
SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
|
|
unsigned char OperandFlags) {
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
DebugLoc dl = GA->getDebugLoc();
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
|
|
GA->getValueType(0),
|
|
GA->getOffset(),
|
|
OperandFlags);
|
|
if (InFlag) {
|
|
SDValue Ops[] = { Chain, TGA, *InFlag };
|
|
Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
|
|
} else {
|
|
SDValue Ops[] = { Chain, TGA };
|
|
Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
|
|
}
|
|
|
|
// TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
|
|
MFI->setAdjustsStack(true);
|
|
|
|
SDValue Flag = Chain.getValue(1);
|
|
return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
|
|
static SDValue
|
|
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
|
|
const EVT PtrVT) {
|
|
SDValue InFlag;
|
|
DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
|
|
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
|
|
DAG.getNode(X86ISD::GlobalBaseReg,
|
|
DebugLoc(), PtrVT), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
|
|
static SDValue
|
|
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
|
|
const EVT PtrVT) {
|
|
return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
|
|
X86::RAX, X86II::MO_TLSGD);
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
|
|
// "local exec" model.
|
|
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
|
|
const EVT PtrVT, TLSModel::Model model,
|
|
bool is64Bit) {
|
|
DebugLoc dl = GA->getDebugLoc();
|
|
|
|
// Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
|
|
Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
|
|
is64Bit ? 257 : 256));
|
|
|
|
SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
|
|
DAG.getIntPtrConstant(0),
|
|
MachinePointerInfo(Ptr), false, false, 0);
|
|
|
|
unsigned char OperandFlags = 0;
|
|
// Most TLS accesses are not RIP relative, even on x86-64. One exception is
|
|
// initialexec.
|
|
unsigned WrapperKind = X86ISD::Wrapper;
|
|
if (model == TLSModel::LocalExec) {
|
|
OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
|
|
} else if (is64Bit) {
|
|
assert(model == TLSModel::InitialExec);
|
|
OperandFlags = X86II::MO_GOTTPOFF;
|
|
WrapperKind = X86ISD::WrapperRIP;
|
|
} else {
|
|
assert(model == TLSModel::InitialExec);
|
|
OperandFlags = X86II::MO_INDNTPOFF;
|
|
}
|
|
|
|
// emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
|
|
// exec)
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
|
|
GA->getValueType(0),
|
|
GA->getOffset(), OperandFlags);
|
|
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
|
|
|
|
if (model == TLSModel::InitialExec)
|
|
Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
|
|
MachinePointerInfo::getGOT(), false, false, 0);
|
|
|
|
// The address of the thread local variable is the add of the thread
|
|
// pointer with the offset of the variable.
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
|
|
if (Subtarget->isTargetELF()) {
|
|
// TODO: implement the "local dynamic" model
|
|
// TODO: implement the "initial exec"model for pic executables
|
|
|
|
// If GV is an alias then use the aliasee for determining
|
|
// thread-localness.
|
|
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
|
|
GV = GA->resolveAliasedGlobal(false);
|
|
|
|
TLSModel::Model model
|
|
= getTLSModel(GV, getTargetMachine().getRelocationModel());
|
|
|
|
switch (model) {
|
|
case TLSModel::GeneralDynamic:
|
|
case TLSModel::LocalDynamic: // not implemented
|
|
if (Subtarget->is64Bit())
|
|
return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
|
|
return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
|
|
|
|
case TLSModel::InitialExec:
|
|
case TLSModel::LocalExec:
|
|
return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
|
|
Subtarget->is64Bit());
|
|
}
|
|
} else if (Subtarget->isTargetDarwin()) {
|
|
// Darwin only has one model of TLS. Lower to that.
|
|
unsigned char OpFlag = 0;
|
|
unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
|
|
X86ISD::WrapperRIP : X86ISD::Wrapper;
|
|
|
|
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
|
|
// global base reg.
|
|
bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
|
|
!Subtarget->is64Bit();
|
|
if (PIC32)
|
|
OpFlag = X86II::MO_TLVP_PIC_BASE;
|
|
else
|
|
OpFlag = X86II::MO_TLVP;
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
|
|
GA->getValueType(0),
|
|
GA->getOffset(), OpFlag);
|
|
SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
|
|
|
|
// With PIC32, the address is actually $g + Offset.
|
|
if (PIC32)
|
|
Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg,
|
|
DebugLoc(), getPointerTy()),
|
|
Offset);
|
|
|
|
// Lowering the machine isd will make sure everything is in the right
|
|
// location.
|
|
SDValue Chain = DAG.getEntryNode();
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Args[] = { Chain, Offset };
|
|
Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
|
|
|
|
// TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setAdjustsStack(true);
|
|
|
|
// And our return value (tls address) is in the standard call return value
|
|
// location.
|
|
unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
|
|
return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
|
|
}
|
|
|
|
assert(false &&
|
|
"TLS not implemented for this target.");
|
|
|
|
llvm_unreachable("Unreachable");
|
|
return SDValue();
|
|
}
|
|
|
|
|
|
/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
|
|
/// take a 2 x i32 value to shift plus a shift amount.
|
|
SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
|
|
DAG.getConstant(VTBits - 1, MVT::i8))
|
|
: DAG.getConstant(0, VT);
|
|
|
|
SDValue Tmp2, Tmp3;
|
|
if (Op.getOpcode() == ISD::SHL_PARTS) {
|
|
Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
|
|
Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
|
|
} else {
|
|
Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
|
|
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
|
|
}
|
|
|
|
SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
|
|
DAG.getConstant(VTBits, MVT::i8));
|
|
SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
|
|
AndNode, DAG.getConstant(0, MVT::i8));
|
|
|
|
SDValue Hi, Lo;
|
|
SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
|
|
SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
|
|
SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
|
|
|
|
if (Op.getOpcode() == ISD::SHL_PARTS) {
|
|
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
|
|
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
|
|
} else {
|
|
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
|
|
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
|
|
}
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT SrcVT = Op.getOperand(0).getValueType();
|
|
|
|
if (SrcVT.isVector())
|
|
return SDValue();
|
|
|
|
assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
|
|
"Unknown SINT_TO_FP to lower!");
|
|
|
|
// These are really Legal; return the operand so the caller accepts it as
|
|
// Legal.
|
|
if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
|
|
return Op;
|
|
if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
|
|
Subtarget->is64Bit()) {
|
|
return Op;
|
|
}
|
|
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
unsigned Size = SrcVT.getSizeInBits()/8;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
|
|
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
|
|
StackSlot,
|
|
MachinePointerInfo::getFixedStack(SSFI),
|
|
false, false, 0);
|
|
return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
|
|
}
|
|
|
|
SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
|
|
SDValue StackSlot,
|
|
SelectionDAG &DAG) const {
|
|
// Build the FILD
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
SDVTList Tys;
|
|
bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
|
|
if (useSSE)
|
|
Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
|
|
else
|
|
Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
|
|
|
|
unsigned ByteSize = SrcVT.getSizeInBits()/8;
|
|
|
|
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
|
|
MachineMemOperand *MMO;
|
|
if (FI) {
|
|
int SSFI = FI->getIndex();
|
|
MMO =
|
|
DAG.getMachineFunction()
|
|
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOLoad, ByteSize, ByteSize);
|
|
} else {
|
|
MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
|
|
StackSlot = StackSlot.getOperand(1);
|
|
}
|
|
SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
|
|
SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
|
|
X86ISD::FILD, DL,
|
|
Tys, Ops, array_lengthof(Ops),
|
|
SrcVT, MMO);
|
|
|
|
if (useSSE) {
|
|
Chain = Result.getValue(1);
|
|
SDValue InFlag = Result.getValue(2);
|
|
|
|
// FIXME: Currently the FST is flagged to the FILD_FLAG. This
|
|
// shouldn't be necessary except that RFP cannot be live across
|
|
// multiple blocks. When stackifier is fixed, they can be uncoupled.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
|
|
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
Tys = DAG.getVTList(MVT::Other);
|
|
SDValue Ops[] = {
|
|
Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
|
|
};
|
|
MachineMemOperand *MMO =
|
|
DAG.getMachineFunction()
|
|
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOStore, SSFISize, SSFISize);
|
|
|
|
Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
|
|
Ops, array_lengthof(Ops),
|
|
Op.getValueType(), MMO);
|
|
Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
|
|
MachinePointerInfo::getFixedStack(SSFI),
|
|
false, false, 0);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
|
|
SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// This algorithm is not obvious. Here it is in C code, more or less:
|
|
/*
|
|
double uint64_to_double( uint32_t hi, uint32_t lo ) {
|
|
static const __m128i exp = { 0x4330000045300000ULL, 0 };
|
|
static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
|
|
|
|
// Copy ints to xmm registers.
|
|
__m128i xh = _mm_cvtsi32_si128( hi );
|
|
__m128i xl = _mm_cvtsi32_si128( lo );
|
|
|
|
// Combine into low half of a single xmm register.
|
|
__m128i x = _mm_unpacklo_epi32( xh, xl );
|
|
__m128d d;
|
|
double sd;
|
|
|
|
// Merge in appropriate exponents to give the integer bits the right
|
|
// magnitude.
|
|
x = _mm_unpacklo_epi32( x, exp );
|
|
|
|
// Subtract away the biases to deal with the IEEE-754 double precision
|
|
// implicit 1.
|
|
d = _mm_sub_pd( (__m128d) x, bias );
|
|
|
|
// All conversions up to here are exact. The correctly rounded result is
|
|
// calculated using the current rounding mode using the following
|
|
// horizontal add.
|
|
d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
|
|
_mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
|
|
// store doesn't really need to be here (except
|
|
// maybe to zero the other double)
|
|
return sd;
|
|
}
|
|
*/
|
|
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
LLVMContext *Context = DAG.getContext();
|
|
|
|
// Build some magic constants.
|
|
std::vector<Constant*> CV0;
|
|
CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
|
|
CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
|
|
CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
|
|
CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
|
|
Constant *C0 = ConstantVector::get(CV0);
|
|
SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
|
|
|
|
std::vector<Constant*> CV1;
|
|
CV1.push_back(
|
|
ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
|
|
CV1.push_back(
|
|
ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
|
|
Constant *C1 = ConstantVector::get(CV1);
|
|
SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
|
|
|
|
SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
|
|
DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
|
|
Op.getOperand(0),
|
|
DAG.getIntPtrConstant(1)));
|
|
SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
|
|
DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
|
|
Op.getOperand(0),
|
|
DAG.getIntPtrConstant(0)));
|
|
SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
|
|
SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 16);
|
|
SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
|
|
SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
|
|
SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 16);
|
|
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
|
|
|
|
// Add the halves; easiest way is to swap them into another reg first.
|
|
int ShufMask[2] = { 1, -1 };
|
|
SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
|
|
DAG.getUNDEF(MVT::v2f64), ShufMask);
|
|
SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
|
|
SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
// FP constant to bias correct the final result.
|
|
SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
|
|
MVT::f64);
|
|
|
|
// Load the 32-bit value into an XMM register.
|
|
SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
|
|
DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
|
|
Op.getOperand(0),
|
|
DAG.getIntPtrConstant(0)));
|
|
|
|
Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
|
|
DAG.getIntPtrConstant(0));
|
|
|
|
// Or the load with the bias.
|
|
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
|
|
MVT::v2f64, Load)),
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
|
|
MVT::v2f64, Bias)));
|
|
Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
|
|
DAG.getIntPtrConstant(0));
|
|
|
|
// Subtract the bias.
|
|
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
|
|
|
|
// Handle final rounding.
|
|
EVT DestVT = Op.getValueType();
|
|
|
|
if (DestVT.bitsLT(MVT::f64)) {
|
|
return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
|
|
DAG.getIntPtrConstant(0));
|
|
} else if (DestVT.bitsGT(MVT::f64)) {
|
|
return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
|
|
}
|
|
|
|
// Handle final rounding.
|
|
return Sub;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue N0 = Op.getOperand(0);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
|
|
// optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
|
|
// the optimization here.
|
|
if (DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
|
|
|
|
EVT SrcVT = N0.getValueType();
|
|
EVT DstVT = Op.getValueType();
|
|
if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
|
|
return LowerUINT_TO_FP_i64(Op, DAG);
|
|
else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
|
|
return LowerUINT_TO_FP_i32(Op, DAG);
|
|
|
|
// Make a 64-bit buffer, and use it to build an FILD.
|
|
SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
|
|
if (SrcVT == MVT::i32) {
|
|
SDValue WordOff = DAG.getConstant(4, getPointerTy());
|
|
SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
|
|
getPointerTy(), StackSlot, WordOff);
|
|
SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
|
|
StackSlot, MachinePointerInfo(),
|
|
false, false, 0);
|
|
SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
|
|
OffsetSlot, MachinePointerInfo(),
|
|
false, false, 0);
|
|
SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
|
|
return Fild;
|
|
}
|
|
|
|
assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
|
|
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
|
|
StackSlot, MachinePointerInfo(),
|
|
false, false, 0);
|
|
// For i64 source, we need to add the appropriate power of 2 if the input
|
|
// was negative. This is the same as the optimization in
|
|
// DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
|
|
// we must be careful to do the computation in x87 extended precision, not
|
|
// in SSE. (The generic code can't know it's OK to do this, or how to.)
|
|
int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
|
|
MachineMemOperand *MMO =
|
|
DAG.getMachineFunction()
|
|
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOLoad, 8, 8);
|
|
|
|
SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
|
|
SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
|
|
SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
|
|
MVT::i64, MMO);
|
|
|
|
APInt FF(32, 0x5F800000ULL);
|
|
|
|
// Check whether the sign bit is set.
|
|
SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
|
|
Op.getOperand(0), DAG.getConstant(0, MVT::i64),
|
|
ISD::SETLT);
|
|
|
|
// Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
|
|
SDValue FudgePtr = DAG.getConstantPool(
|
|
ConstantInt::get(*DAG.getContext(), FF.zext(64)),
|
|
getPointerTy());
|
|
|
|
// Get a pointer to FF if the sign bit was set, or to 0 otherwise.
|
|
SDValue Zero = DAG.getIntPtrConstant(0);
|
|
SDValue Four = DAG.getIntPtrConstant(4);
|
|
SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
|
|
Zero, Four);
|
|
FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
|
|
|
|
// Load the value out, extending it from f32 to f80.
|
|
// FIXME: Avoid the extend by constructing the right constant pool?
|
|
SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
|
|
FudgePtr, MachinePointerInfo::getConstantPool(),
|
|
MVT::f32, false, false, 4);
|
|
// Extend everything to 80 bits to force it to be done on x87.
|
|
SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
|
|
return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
std::pair<SDValue,SDValue> X86TargetLowering::
|
|
FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
|
|
EVT DstTy = Op.getValueType();
|
|
|
|
if (!IsSigned) {
|
|
assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
|
|
DstTy = MVT::i64;
|
|
}
|
|
|
|
assert(DstTy.getSimpleVT() <= MVT::i64 &&
|
|
DstTy.getSimpleVT() >= MVT::i16 &&
|
|
"Unknown FP_TO_SINT to lower!");
|
|
|
|
// These are really Legal.
|
|
if (DstTy == MVT::i32 &&
|
|
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
|
|
return std::make_pair(SDValue(), SDValue());
|
|
if (Subtarget->is64Bit() &&
|
|
DstTy == MVT::i64 &&
|
|
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
|
|
return std::make_pair(SDValue(), SDValue());
|
|
|
|
// We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
|
|
// stack slot.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
unsigned MemSize = DstTy.getSizeInBits()/8;
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
|
|
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
|
|
|
|
|
|
unsigned Opc;
|
|
switch (DstTy.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
|
|
case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
|
|
case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
|
|
case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
|
|
}
|
|
|
|
SDValue Chain = DAG.getEntryNode();
|
|
SDValue Value = Op.getOperand(0);
|
|
EVT TheVT = Op.getOperand(0).getValueType();
|
|
if (isScalarFPTypeInSSEReg(TheVT)) {
|
|
assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
|
|
Chain = DAG.getStore(Chain, DL, Value, StackSlot,
|
|
MachinePointerInfo::getFixedStack(SSFI),
|
|
false, false, 0);
|
|
SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
|
|
SDValue Ops[] = {
|
|
Chain, StackSlot, DAG.getValueType(TheVT)
|
|
};
|
|
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOLoad, MemSize, MemSize);
|
|
Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
|
|
DstTy, MMO);
|
|
Chain = Value.getValue(1);
|
|
SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
|
|
StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
}
|
|
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOStore, MemSize, MemSize);
|
|
|
|
// Build the FP_TO_INT*_IN_MEM
|
|
SDValue Ops[] = { Chain, Value, StackSlot };
|
|
SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
|
|
Ops, 3, DstTy, MMO);
|
|
|
|
return std::make_pair(FIST, StackSlot);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (Op.getValueType().isVector())
|
|
return SDValue();
|
|
|
|
std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
|
|
SDValue FIST = Vals.first, StackSlot = Vals.second;
|
|
// If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
|
|
if (FIST.getNode() == 0) return Op;
|
|
|
|
// Load the result.
|
|
return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
|
|
FIST, StackSlot, MachinePointerInfo(), false, false, 0);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
|
|
SDValue FIST = Vals.first, StackSlot = Vals.second;
|
|
assert(FIST.getNode() && "Unexpected failure");
|
|
|
|
// Load the result.
|
|
return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
|
|
FIST, StackSlot, MachinePointerInfo(), false, false, 0);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFABS(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
LLVMContext *Context = DAG.getContext();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
EVT VT = Op.getValueType();
|
|
EVT EltVT = VT;
|
|
if (VT.isVector())
|
|
EltVT = VT.getVectorElementType();
|
|
std::vector<Constant*> CV;
|
|
if (EltVT == MVT::f64) {
|
|
Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
|
|
CV.push_back(C);
|
|
CV.push_back(C);
|
|
} else {
|
|
Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
|
|
CV.push_back(C);
|
|
CV.push_back(C);
|
|
CV.push_back(C);
|
|
CV.push_back(C);
|
|
}
|
|
Constant *C = ConstantVector::get(CV);
|
|
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
|
|
SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 16);
|
|
return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
|
|
LLVMContext *Context = DAG.getContext();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
EVT VT = Op.getValueType();
|
|
EVT EltVT = VT;
|
|
if (VT.isVector())
|
|
EltVT = VT.getVectorElementType();
|
|
std::vector<Constant*> CV;
|
|
if (EltVT == MVT::f64) {
|
|
Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
|
|
CV.push_back(C);
|
|
CV.push_back(C);
|
|
} else {
|
|
Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
|
|
CV.push_back(C);
|
|
CV.push_back(C);
|
|
CV.push_back(C);
|
|
CV.push_back(C);
|
|
}
|
|
Constant *C = ConstantVector::get(CV);
|
|
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
|
|
SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 16);
|
|
if (VT.isVector()) {
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getNode(ISD::XOR, dl, MVT::v2i64,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
|
|
Op.getOperand(0)),
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
|
|
} else {
|
|
return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
|
|
}
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
|
|
LLVMContext *Context = DAG.getContext();
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
EVT VT = Op.getValueType();
|
|
EVT SrcVT = Op1.getValueType();
|
|
|
|
// If second operand is smaller, extend it first.
|
|
if (SrcVT.bitsLT(VT)) {
|
|
Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
|
|
SrcVT = VT;
|
|
}
|
|
// And if it is bigger, shrink it first.
|
|
if (SrcVT.bitsGT(VT)) {
|
|
Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
|
|
SrcVT = VT;
|
|
}
|
|
|
|
// At this point the operands and the result should have the same
|
|
// type, and that won't be f80 since that is not custom lowered.
|
|
|
|
// First get the sign bit of second operand.
|
|
std::vector<Constant*> CV;
|
|
if (SrcVT == MVT::f64) {
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
|
|
} else {
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
|
|
}
|
|
Constant *C = ConstantVector::get(CV);
|
|
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
|
|
SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 16);
|
|
SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
|
|
|
|
// Shift sign bit right or left if the two operands have different types.
|
|
if (SrcVT.bitsGT(VT)) {
|
|
// Op0 is MVT::f32, Op1 is MVT::f64.
|
|
SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
|
|
SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
|
|
DAG.getConstant(32, MVT::i32));
|
|
SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
|
|
SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
// Clear first operand sign bit.
|
|
CV.clear();
|
|
if (VT == MVT::f64) {
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
|
|
} else {
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
|
|
}
|
|
C = ConstantVector::get(CV);
|
|
CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
|
|
SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 16);
|
|
SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
|
|
|
|
// Or the value with the sign bit.
|
|
return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue N0 = Op.getOperand(0);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
|
|
SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
|
|
DAG.getConstant(1, VT));
|
|
return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
|
|
}
|
|
|
|
/// Emit nodes that will be selected as "test Op0,Op0", or something
|
|
/// equivalent.
|
|
SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
|
|
SelectionDAG &DAG) const {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// CF and OF aren't always set the way we want. Determine which
|
|
// of these we need.
|
|
bool NeedCF = false;
|
|
bool NeedOF = false;
|
|
switch (X86CC) {
|
|
default: break;
|
|
case X86::COND_A: case X86::COND_AE:
|
|
case X86::COND_B: case X86::COND_BE:
|
|
NeedCF = true;
|
|
break;
|
|
case X86::COND_G: case X86::COND_GE:
|
|
case X86::COND_L: case X86::COND_LE:
|
|
case X86::COND_O: case X86::COND_NO:
|
|
NeedOF = true;
|
|
break;
|
|
}
|
|
|
|
// See if we can use the EFLAGS value from the operand instead of
|
|
// doing a separate TEST. TEST always sets OF and CF to 0, so unless
|
|
// we prove that the arithmetic won't overflow, we can't use OF or CF.
|
|
if (Op.getResNo() != 0 || NeedOF || NeedCF)
|
|
// Emit a CMP with 0, which is the TEST pattern.
|
|
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
|
|
DAG.getConstant(0, Op.getValueType()));
|
|
|
|
unsigned Opcode = 0;
|
|
unsigned NumOperands = 0;
|
|
switch (Op.getNode()->getOpcode()) {
|
|
case ISD::ADD:
|
|
// Due to an isel shortcoming, be conservative if this add is likely to be
|
|
// selected as part of a load-modify-store instruction. When the root node
|
|
// in a match is a store, isel doesn't know how to remap non-chain non-flag
|
|
// uses of other nodes in the match, such as the ADD in this case. This
|
|
// leads to the ADD being left around and reselected, with the result being
|
|
// two adds in the output. Alas, even if none our users are stores, that
|
|
// doesn't prove we're O.K. Ergo, if we have any parents that aren't
|
|
// CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
|
|
// climbing the DAG back to the root, and it doesn't seem to be worth the
|
|
// effort.
|
|
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
|
|
UE = Op.getNode()->use_end(); UI != UE; ++UI)
|
|
if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
|
|
goto default_case;
|
|
|
|
if (ConstantSDNode *C =
|
|
dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
|
|
// An add of one will be selected as an INC.
|
|
if (C->getAPIntValue() == 1) {
|
|
Opcode = X86ISD::INC;
|
|
NumOperands = 1;
|
|
break;
|
|
}
|
|
|
|
// An add of negative one (subtract of one) will be selected as a DEC.
|
|
if (C->getAPIntValue().isAllOnesValue()) {
|
|
Opcode = X86ISD::DEC;
|
|
NumOperands = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Otherwise use a regular EFLAGS-setting add.
|
|
Opcode = X86ISD::ADD;
|
|
NumOperands = 2;
|
|
break;
|
|
case ISD::AND: {
|
|
// If the primary and result isn't used, don't bother using X86ISD::AND,
|
|
// because a TEST instruction will be better.
|
|
bool NonFlagUse = false;
|
|
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
|
|
UE = Op.getNode()->use_end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
unsigned UOpNo = UI.getOperandNo();
|
|
if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
|
|
// Look pass truncate.
|
|
UOpNo = User->use_begin().getOperandNo();
|
|
User = *User->use_begin();
|
|
}
|
|
|
|
if (User->getOpcode() != ISD::BRCOND &&
|
|
User->getOpcode() != ISD::SETCC &&
|
|
(User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
|
|
NonFlagUse = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!NonFlagUse)
|
|
break;
|
|
}
|
|
// FALL THROUGH
|
|
case ISD::SUB:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
// Due to the ISEL shortcoming noted above, be conservative if this op is
|
|
// likely to be selected as part of a load-modify-store instruction.
|
|
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
|
|
UE = Op.getNode()->use_end(); UI != UE; ++UI)
|
|
if (UI->getOpcode() == ISD::STORE)
|
|
goto default_case;
|
|
|
|
// Otherwise use a regular EFLAGS-setting instruction.
|
|
switch (Op.getNode()->getOpcode()) {
|
|
default: llvm_unreachable("unexpected operator!");
|
|
case ISD::SUB: Opcode = X86ISD::SUB; break;
|
|
case ISD::OR: Opcode = X86ISD::OR; break;
|
|
case ISD::XOR: Opcode = X86ISD::XOR; break;
|
|
case ISD::AND: Opcode = X86ISD::AND; break;
|
|
}
|
|
|
|
NumOperands = 2;
|
|
break;
|
|
case X86ISD::ADD:
|
|
case X86ISD::SUB:
|
|
case X86ISD::INC:
|
|
case X86ISD::DEC:
|
|
case X86ISD::OR:
|
|
case X86ISD::XOR:
|
|
case X86ISD::AND:
|
|
return SDValue(Op.getNode(), 1);
|
|
default:
|
|
default_case:
|
|
break;
|
|
}
|
|
|
|
if (Opcode == 0)
|
|
// Emit a CMP with 0, which is the TEST pattern.
|
|
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
|
|
DAG.getConstant(0, Op.getValueType()));
|
|
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
|
|
SmallVector<SDValue, 4> Ops;
|
|
for (unsigned i = 0; i != NumOperands; ++i)
|
|
Ops.push_back(Op.getOperand(i));
|
|
|
|
SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
|
|
DAG.ReplaceAllUsesWith(Op, New);
|
|
return SDValue(New.getNode(), 1);
|
|
}
|
|
|
|
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
|
|
/// equivalent.
|
|
SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
|
|
SelectionDAG &DAG) const {
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
|
|
if (C->getAPIntValue() == 0)
|
|
return EmitTest(Op0, X86CC, DAG);
|
|
|
|
DebugLoc dl = Op0.getDebugLoc();
|
|
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
|
|
}
|
|
|
|
/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
|
|
/// if it's possible.
|
|
SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
|
|
DebugLoc dl, SelectionDAG &DAG) const {
|
|
SDValue Op0 = And.getOperand(0);
|
|
SDValue Op1 = And.getOperand(1);
|
|
if (Op0.getOpcode() == ISD::TRUNCATE)
|
|
Op0 = Op0.getOperand(0);
|
|
if (Op1.getOpcode() == ISD::TRUNCATE)
|
|
Op1 = Op1.getOperand(0);
|
|
|
|
SDValue LHS, RHS;
|
|
if (Op1.getOpcode() == ISD::SHL)
|
|
std::swap(Op0, Op1);
|
|
if (Op0.getOpcode() == ISD::SHL) {
|
|
if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
|
|
if (And00C->getZExtValue() == 1) {
|
|
// If we looked past a truncate, check that it's only truncating away
|
|
// known zeros.
|
|
unsigned BitWidth = Op0.getValueSizeInBits();
|
|
unsigned AndBitWidth = And.getValueSizeInBits();
|
|
if (BitWidth > AndBitWidth) {
|
|
APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
|
|
DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
|
|
if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
|
|
return SDValue();
|
|
}
|
|
LHS = Op1;
|
|
RHS = Op0.getOperand(1);
|
|
}
|
|
} else if (Op1.getOpcode() == ISD::Constant) {
|
|
ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
|
|
SDValue AndLHS = Op0;
|
|
if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
|
|
LHS = AndLHS.getOperand(0);
|
|
RHS = AndLHS.getOperand(1);
|
|
}
|
|
}
|
|
|
|
if (LHS.getNode()) {
|
|
// If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
|
|
// instruction. Since the shift amount is in-range-or-undefined, we know
|
|
// that doing a bittest on the i32 value is ok. We extend to i32 because
|
|
// the encoding for the i16 version is larger than the i32 version.
|
|
// Also promote i16 to i32 for performance / code size reason.
|
|
if (LHS.getValueType() == MVT::i8 ||
|
|
LHS.getValueType() == MVT::i16)
|
|
LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
|
|
|
|
// If the operand types disagree, extend the shift amount to match. Since
|
|
// BT ignores high bits (like shifts) we can use anyextend.
|
|
if (LHS.getValueType() != RHS.getValueType())
|
|
RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
|
|
|
|
SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
|
|
unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
|
|
return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(Cond, MVT::i8), BT);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
|
|
// Optimize to BT if possible.
|
|
// Lower (X & (1 << N)) == 0 to BT(X, N).
|
|
// Lower ((X >>u N) & 1) != 0 to BT(X, N).
|
|
// Lower ((X >>s N) & 1) != 0 to BT(X, N).
|
|
if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
|
|
Op1.getOpcode() == ISD::Constant &&
|
|
cast<ConstantSDNode>(Op1)->isNullValue() &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
|
|
if (NewSetCC.getNode())
|
|
return NewSetCC;
|
|
}
|
|
|
|
// Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
|
|
// these.
|
|
if (Op1.getOpcode() == ISD::Constant &&
|
|
(cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
|
|
cast<ConstantSDNode>(Op1)->isNullValue()) &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
|
|
// If the input is a setcc, then reuse the input setcc or use a new one with
|
|
// the inverted condition.
|
|
if (Op0.getOpcode() == X86ISD::SETCC) {
|
|
X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
|
|
bool Invert = (CC == ISD::SETNE) ^
|
|
cast<ConstantSDNode>(Op1)->isNullValue();
|
|
if (!Invert) return Op0;
|
|
|
|
CCode = X86::GetOppositeBranchCondition(CCode);
|
|
return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
|
|
}
|
|
}
|
|
|
|
bool isFP = Op1.getValueType().isFloatingPoint();
|
|
unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
|
|
if (X86CC == X86::COND_INVALID)
|
|
return SDValue();
|
|
|
|
SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
|
|
return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(X86CC, MVT::i8), EFLAGS);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Cond;
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue CC = Op.getOperand(2);
|
|
EVT VT = Op.getValueType();
|
|
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
if (isFP) {
|
|
unsigned SSECC = 8;
|
|
EVT VT0 = Op0.getValueType();
|
|
assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
|
|
unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
|
|
bool Swap = false;
|
|
|
|
switch (SetCCOpcode) {
|
|
default: break;
|
|
case ISD::SETOEQ:
|
|
case ISD::SETEQ: SSECC = 0; break;
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: Swap = true; // Fallthrough
|
|
case ISD::SETLT:
|
|
case ISD::SETOLT: SSECC = 1; break;
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE: Swap = true; // Fallthrough
|
|
case ISD::SETLE:
|
|
case ISD::SETOLE: SSECC = 2; break;
|
|
case ISD::SETUO: SSECC = 3; break;
|
|
case ISD::SETUNE:
|
|
case ISD::SETNE: SSECC = 4; break;
|
|
case ISD::SETULE: Swap = true;
|
|
case ISD::SETUGE: SSECC = 5; break;
|
|
case ISD::SETULT: Swap = true;
|
|
case ISD::SETUGT: SSECC = 6; break;
|
|
case ISD::SETO: SSECC = 7; break;
|
|
}
|
|
if (Swap)
|
|
std::swap(Op0, Op1);
|
|
|
|
// In the two special cases we can't handle, emit two comparisons.
|
|
if (SSECC == 8) {
|
|
if (SetCCOpcode == ISD::SETUEQ) {
|
|
SDValue UNORD, EQ;
|
|
UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
|
|
EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
|
|
return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
|
|
}
|
|
else if (SetCCOpcode == ISD::SETONE) {
|
|
SDValue ORD, NEQ;
|
|
ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
|
|
NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
|
|
return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
|
|
}
|
|
llvm_unreachable("Illegal FP comparison");
|
|
}
|
|
// Handle all other FP comparisons here.
|
|
return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
|
|
}
|
|
|
|
// We are handling one of the integer comparisons here. Since SSE only has
|
|
// GT and EQ comparisons for integer, swapping operands and multiple
|
|
// operations may be required for some comparisons.
|
|
unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
|
|
bool Swap = false, Invert = false, FlipSigns = false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: break;
|
|
case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
|
|
case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
|
|
case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
|
|
case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
|
|
}
|
|
|
|
switch (SetCCOpcode) {
|
|
default: break;
|
|
case ISD::SETNE: Invert = true;
|
|
case ISD::SETEQ: Opc = EQOpc; break;
|
|
case ISD::SETLT: Swap = true;
|
|
case ISD::SETGT: Opc = GTOpc; break;
|
|
case ISD::SETGE: Swap = true;
|
|
case ISD::SETLE: Opc = GTOpc; Invert = true; break;
|
|
case ISD::SETULT: Swap = true;
|
|
case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
|
|
case ISD::SETUGE: Swap = true;
|
|
case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
|
|
}
|
|
if (Swap)
|
|
std::swap(Op0, Op1);
|
|
|
|
// Since SSE has no unsigned integer comparisons, we need to flip the sign
|
|
// bits of the inputs before performing those operations.
|
|
if (FlipSigns) {
|
|
EVT EltVT = VT.getVectorElementType();
|
|
SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
|
|
EltVT);
|
|
std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
|
|
SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
|
|
SignBits.size());
|
|
Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
|
|
Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
|
|
}
|
|
|
|
SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
|
|
|
|
// If the logical-not of the result is required, perform that now.
|
|
if (Invert)
|
|
Result = DAG.getNOT(dl, Result, VT);
|
|
|
|
return Result;
|
|
}
|
|
|
|
// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
|
|
static bool isX86LogicalCmp(SDValue Op) {
|
|
unsigned Opc = Op.getNode()->getOpcode();
|
|
if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
|
|
return true;
|
|
if (Op.getResNo() == 1 &&
|
|
(Opc == X86ISD::ADD ||
|
|
Opc == X86ISD::SUB ||
|
|
Opc == X86ISD::ADC ||
|
|
Opc == X86ISD::SBB ||
|
|
Opc == X86ISD::SMUL ||
|
|
Opc == X86ISD::UMUL ||
|
|
Opc == X86ISD::INC ||
|
|
Opc == X86ISD::DEC ||
|
|
Opc == X86ISD::OR ||
|
|
Opc == X86ISD::XOR ||
|
|
Opc == X86ISD::AND))
|
|
return true;
|
|
|
|
if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isZero(SDValue V) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
|
|
return C && C->isNullValue();
|
|
}
|
|
|
|
static bool isAllOnes(SDValue V) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
|
|
return C && C->isAllOnesValue();
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
bool addTest = true;
|
|
SDValue Cond = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue Op2 = Op.getOperand(2);
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
SDValue CC;
|
|
|
|
if (Cond.getOpcode() == ISD::SETCC) {
|
|
SDValue NewCond = LowerSETCC(Cond, DAG);
|
|
if (NewCond.getNode())
|
|
Cond = NewCond;
|
|
}
|
|
|
|
// (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
|
|
// (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
|
|
// (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
|
|
// (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
|
|
if (Cond.getOpcode() == X86ISD::SETCC &&
|
|
Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
|
|
isZero(Cond.getOperand(1).getOperand(1))) {
|
|
SDValue Cmp = Cond.getOperand(1);
|
|
|
|
unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
|
|
|
|
if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
|
|
(CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
|
|
SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
|
|
|
|
SDValue CmpOp0 = Cmp.getOperand(0);
|
|
Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
|
|
CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
|
|
|
|
SDValue Res = // Res = 0 or -1.
|
|
DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
|
|
DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
|
|
|
|
if (isAllOnes(Op1) != (CondCode == X86::COND_E))
|
|
Res = DAG.getNOT(DL, Res, Res.getValueType());
|
|
|
|
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
|
|
if (N2C == 0 || !N2C->isNullValue())
|
|
Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
|
|
return Res;
|
|
}
|
|
}
|
|
|
|
// Look past (and (setcc_carry (cmp ...)), 1).
|
|
if (Cond.getOpcode() == ISD::AND &&
|
|
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
|
|
if (C && C->getAPIntValue() == 1)
|
|
Cond = Cond.getOperand(0);
|
|
}
|
|
|
|
// If condition flag is set by a X86ISD::CMP, then use it as the condition
|
|
// setting operand in place of the X86ISD::SETCC.
|
|
if (Cond.getOpcode() == X86ISD::SETCC ||
|
|
Cond.getOpcode() == X86ISD::SETCC_CARRY) {
|
|
CC = Cond.getOperand(0);
|
|
|
|
SDValue Cmp = Cond.getOperand(1);
|
|
unsigned Opc = Cmp.getOpcode();
|
|
EVT VT = Op.getValueType();
|
|
|
|
bool IllegalFPCMov = false;
|
|
if (VT.isFloatingPoint() && !VT.isVector() &&
|
|
!isScalarFPTypeInSSEReg(VT)) // FPStack?
|
|
IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
|
|
|
|
if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
|
|
Opc == X86ISD::BT) { // FIXME
|
|
Cond = Cmp;
|
|
addTest = false;
|
|
}
|
|
}
|
|
|
|
if (addTest) {
|
|
// Look pass the truncate.
|
|
if (Cond.getOpcode() == ISD::TRUNCATE)
|
|
Cond = Cond.getOperand(0);
|
|
|
|
// We know the result of AND is compared against zero. Try to match
|
|
// it to BT.
|
|
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
|
|
SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
|
|
if (NewSetCC.getNode()) {
|
|
CC = NewSetCC.getOperand(0);
|
|
Cond = NewSetCC.getOperand(1);
|
|
addTest = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (addTest) {
|
|
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
|
|
Cond = EmitTest(Cond, X86::COND_NE, DAG);
|
|
}
|
|
|
|
// a < b ? -1 : 0 -> RES = ~setcc_carry
|
|
// a < b ? 0 : -1 -> RES = setcc_carry
|
|
// a >= b ? -1 : 0 -> RES = setcc_carry
|
|
// a >= b ? 0 : -1 -> RES = ~setcc_carry
|
|
if (Cond.getOpcode() == X86ISD::CMP) {
|
|
unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
|
|
|
|
if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
|
|
(isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
|
|
SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
|
|
DAG.getConstant(X86::COND_B, MVT::i8), Cond);
|
|
if (isAllOnes(Op1) != (CondCode == X86::COND_B))
|
|
return DAG.getNOT(DL, Res, Res.getValueType());
|
|
return Res;
|
|
}
|
|
}
|
|
|
|
// X86ISD::CMOV means set the result (which is operand 1) to the RHS if
|
|
// condition is true.
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
|
|
SDValue Ops[] = { Op2, Op1, CC, Cond };
|
|
return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
|
|
}
|
|
|
|
// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
|
|
// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
|
|
// from the AND / OR.
|
|
static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
|
|
Opc = Op.getOpcode();
|
|
if (Opc != ISD::OR && Opc != ISD::AND)
|
|
return false;
|
|
return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
|
|
Op.getOperand(0).hasOneUse() &&
|
|
Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
|
|
Op.getOperand(1).hasOneUse());
|
|
}
|
|
|
|
// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
|
|
// 1 and that the SETCC node has a single use.
|
|
static bool isXor1OfSetCC(SDValue Op) {
|
|
if (Op.getOpcode() != ISD::XOR)
|
|
return false;
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (N1C && N1C->getAPIntValue() == 1) {
|
|
return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
|
|
Op.getOperand(0).hasOneUse();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
|
|
bool addTest = true;
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Cond = Op.getOperand(1);
|
|
SDValue Dest = Op.getOperand(2);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue CC;
|
|
|
|
if (Cond.getOpcode() == ISD::SETCC) {
|
|
SDValue NewCond = LowerSETCC(Cond, DAG);
|
|
if (NewCond.getNode())
|
|
Cond = NewCond;
|
|
}
|
|
#if 0
|
|
// FIXME: LowerXALUO doesn't handle these!!
|
|
else if (Cond.getOpcode() == X86ISD::ADD ||
|
|
Cond.getOpcode() == X86ISD::SUB ||
|
|
Cond.getOpcode() == X86ISD::SMUL ||
|
|
Cond.getOpcode() == X86ISD::UMUL)
|
|
Cond = LowerXALUO(Cond, DAG);
|
|
#endif
|
|
|
|
// Look pass (and (setcc_carry (cmp ...)), 1).
|
|
if (Cond.getOpcode() == ISD::AND &&
|
|
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
|
|
if (C && C->getAPIntValue() == 1)
|
|
Cond = Cond.getOperand(0);
|
|
}
|
|
|
|
// If condition flag is set by a X86ISD::CMP, then use it as the condition
|
|
// setting operand in place of the X86ISD::SETCC.
|
|
if (Cond.getOpcode() == X86ISD::SETCC ||
|
|
Cond.getOpcode() == X86ISD::SETCC_CARRY) {
|
|
CC = Cond.getOperand(0);
|
|
|
|
SDValue Cmp = Cond.getOperand(1);
|
|
unsigned Opc = Cmp.getOpcode();
|
|
// FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
|
|
if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
|
|
Cond = Cmp;
|
|
addTest = false;
|
|
} else {
|
|
switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
|
|
default: break;
|
|
case X86::COND_O:
|
|
case X86::COND_B:
|
|
// These can only come from an arithmetic instruction with overflow,
|
|
// e.g. SADDO, UADDO.
|
|
Cond = Cond.getNode()->getOperand(1);
|
|
addTest = false;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
unsigned CondOpc;
|
|
if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
|
|
SDValue Cmp = Cond.getOperand(0).getOperand(1);
|
|
if (CondOpc == ISD::OR) {
|
|
// Also, recognize the pattern generated by an FCMP_UNE. We can emit
|
|
// two branches instead of an explicit OR instruction with a
|
|
// separate test.
|
|
if (Cmp == Cond.getOperand(1).getOperand(1) &&
|
|
isX86LogicalCmp(Cmp)) {
|
|
CC = Cond.getOperand(0).getOperand(0);
|
|
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
|
|
Chain, Dest, CC, Cmp);
|
|
CC = Cond.getOperand(1).getOperand(0);
|
|
Cond = Cmp;
|
|
addTest = false;
|
|
}
|
|
} else { // ISD::AND
|
|
// Also, recognize the pattern generated by an FCMP_OEQ. We can emit
|
|
// two branches instead of an explicit AND instruction with a
|
|
// separate test. However, we only do this if this block doesn't
|
|
// have a fall-through edge, because this requires an explicit
|
|
// jmp when the condition is false.
|
|
if (Cmp == Cond.getOperand(1).getOperand(1) &&
|
|
isX86LogicalCmp(Cmp) &&
|
|
Op.getNode()->hasOneUse()) {
|
|
X86::CondCode CCode =
|
|
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
|
|
CCode = X86::GetOppositeBranchCondition(CCode);
|
|
CC = DAG.getConstant(CCode, MVT::i8);
|
|
SDNode *User = *Op.getNode()->use_begin();
|
|
// Look for an unconditional branch following this conditional branch.
|
|
// We need this because we need to reverse the successors in order
|
|
// to implement FCMP_OEQ.
|
|
if (User->getOpcode() == ISD::BR) {
|
|
SDValue FalseBB = User->getOperand(1);
|
|
SDNode *NewBR =
|
|
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
|
|
assert(NewBR == User);
|
|
(void)NewBR;
|
|
Dest = FalseBB;
|
|
|
|
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
|
|
Chain, Dest, CC, Cmp);
|
|
X86::CondCode CCode =
|
|
(X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
|
|
CCode = X86::GetOppositeBranchCondition(CCode);
|
|
CC = DAG.getConstant(CCode, MVT::i8);
|
|
Cond = Cmp;
|
|
addTest = false;
|
|
}
|
|
}
|
|
}
|
|
} else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
|
|
// Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
|
|
// It should be transformed during dag combiner except when the condition
|
|
// is set by a arithmetics with overflow node.
|
|
X86::CondCode CCode =
|
|
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
|
|
CCode = X86::GetOppositeBranchCondition(CCode);
|
|
CC = DAG.getConstant(CCode, MVT::i8);
|
|
Cond = Cond.getOperand(0).getOperand(1);
|
|
addTest = false;
|
|
}
|
|
}
|
|
|
|
if (addTest) {
|
|
// Look pass the truncate.
|
|
if (Cond.getOpcode() == ISD::TRUNCATE)
|
|
Cond = Cond.getOperand(0);
|
|
|
|
// We know the result of AND is compared against zero. Try to match
|
|
// it to BT.
|
|
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
|
|
SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
|
|
if (NewSetCC.getNode()) {
|
|
CC = NewSetCC.getOperand(0);
|
|
Cond = NewSetCC.getOperand(1);
|
|
addTest = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (addTest) {
|
|
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
|
|
Cond = EmitTest(Cond, X86::COND_NE, DAG);
|
|
}
|
|
return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
|
|
Chain, Dest, CC, Cond);
|
|
}
|
|
|
|
|
|
// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
|
|
// Calls to _alloca is needed to probe the stack when allocating more than 4k
|
|
// bytes in one go. Touching the stack at 4K increments is necessary to ensure
|
|
// that the guard pages used by the OS virtual memory manager are allocated in
|
|
// correct sequence.
|
|
SDValue
|
|
X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
|
|
"This should be used only on Windows targets");
|
|
assert(!Subtarget->isTargetEnvMacho());
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// Get the inputs.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
// FIXME: Ensure alignment here
|
|
|
|
SDValue Flag;
|
|
|
|
EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
|
|
unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
|
|
Flag = Chain.getValue(1);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
|
|
Flag = Chain.getValue(1);
|
|
|
|
Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
|
|
|
|
SDValue Ops1[2] = { Chain.getValue(0), Chain };
|
|
return DAG.getMergeValues(Ops1, 2, dl);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
|
|
if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
getPointerTy());
|
|
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
|
|
MachinePointerInfo(SV), false, false, 0);
|
|
}
|
|
|
|
// __va_list_tag:
|
|
// gp_offset (0 - 6 * 8)
|
|
// fp_offset (48 - 48 + 8 * 16)
|
|
// overflow_arg_area (point to parameters coming in memory).
|
|
// reg_save_area
|
|
SmallVector<SDValue, 8> MemOps;
|
|
SDValue FIN = Op.getOperand(1);
|
|
// Store gp_offset
|
|
SDValue Store = DAG.getStore(Op.getOperand(0), DL,
|
|
DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
|
|
MVT::i32),
|
|
FIN, MachinePointerInfo(SV), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
|
|
// Store fp_offset
|
|
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
FIN, DAG.getIntPtrConstant(4));
|
|
Store = DAG.getStore(Op.getOperand(0), DL,
|
|
DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
|
|
MVT::i32),
|
|
FIN, MachinePointerInfo(SV, 4), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
|
|
// Store ptr to overflow_arg_area
|
|
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
FIN, DAG.getIntPtrConstant(4));
|
|
SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
getPointerTy());
|
|
Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
|
|
MachinePointerInfo(SV, 8),
|
|
false, false, 0);
|
|
MemOps.push_back(Store);
|
|
|
|
// Store ptr to reg_save_area.
|
|
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
FIN, DAG.getIntPtrConstant(8));
|
|
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
|
|
getPointerTy());
|
|
Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
|
|
MachinePointerInfo(SV, 16), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
|
|
&MemOps[0], MemOps.size());
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Subtarget->is64Bit() &&
|
|
"LowerVAARG only handles 64-bit va_arg!");
|
|
assert((Subtarget->isTargetLinux() ||
|
|
Subtarget->isTargetDarwin()) &&
|
|
"Unhandled target in LowerVAARG");
|
|
assert(Op.getNode()->getNumOperands() == 4);
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue SrcPtr = Op.getOperand(1);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
unsigned Align = Op.getConstantOperandVal(3);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
EVT ArgVT = Op.getNode()->getValueType(0);
|
|
const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
|
|
uint8_t ArgMode;
|
|
|
|
// Decide which area this value should be read from.
|
|
// TODO: Implement the AMD64 ABI in its entirety. This simple
|
|
// selection mechanism works only for the basic types.
|
|
if (ArgVT == MVT::f80) {
|
|
llvm_unreachable("va_arg for f80 not yet implemented");
|
|
} else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
|
|
ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
|
|
} else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
|
|
ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
|
|
} else {
|
|
llvm_unreachable("Unhandled argument type in LowerVAARG");
|
|
}
|
|
|
|
if (ArgMode == 2) {
|
|
// Sanity Check: Make sure using fp_offset makes sense.
|
|
assert(!UseSoftFloat &&
|
|
!(DAG.getMachineFunction()
|
|
.getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
|
|
Subtarget->hasXMM());
|
|
}
|
|
|
|
// Insert VAARG_64 node into the DAG
|
|
// VAARG_64 returns two values: Variable Argument Address, Chain
|
|
SmallVector<SDValue, 11> InstOps;
|
|
InstOps.push_back(Chain);
|
|
InstOps.push_back(SrcPtr);
|
|
InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
|
|
InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
|
|
InstOps.push_back(DAG.getConstant(Align, MVT::i32));
|
|
SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
|
|
SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
|
|
VTs, &InstOps[0], InstOps.size(),
|
|
MVT::i64,
|
|
MachinePointerInfo(SV),
|
|
/*Align=*/0,
|
|
/*Volatile=*/false,
|
|
/*ReadMem=*/true,
|
|
/*WriteMem=*/true);
|
|
Chain = VAARG.getValue(1);
|
|
|
|
// Load the next argument and return it
|
|
return DAG.getLoad(ArgVT, dl,
|
|
Chain,
|
|
VAARG,
|
|
MachinePointerInfo(),
|
|
false, false, 0);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
|
|
// X86-64 va_list is a struct { i32, i32, i8*, i8* }.
|
|
assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue DstPtr = Op.getOperand(1);
|
|
SDValue SrcPtr = Op.getOperand(2);
|
|
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
|
|
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
|
|
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
|
|
DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
|
|
false,
|
|
MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
switch (IntNo) {
|
|
default: return SDValue(); // Don't custom lower most intrinsics.
|
|
// Comparison intrinsics.
|
|
case Intrinsic::x86_sse_comieq_ss:
|
|
case Intrinsic::x86_sse_comilt_ss:
|
|
case Intrinsic::x86_sse_comile_ss:
|
|
case Intrinsic::x86_sse_comigt_ss:
|
|
case Intrinsic::x86_sse_comige_ss:
|
|
case Intrinsic::x86_sse_comineq_ss:
|
|
case Intrinsic::x86_sse_ucomieq_ss:
|
|
case Intrinsic::x86_sse_ucomilt_ss:
|
|
case Intrinsic::x86_sse_ucomile_ss:
|
|
case Intrinsic::x86_sse_ucomigt_ss:
|
|
case Intrinsic::x86_sse_ucomige_ss:
|
|
case Intrinsic::x86_sse_ucomineq_ss:
|
|
case Intrinsic::x86_sse2_comieq_sd:
|
|
case Intrinsic::x86_sse2_comilt_sd:
|
|
case Intrinsic::x86_sse2_comile_sd:
|
|
case Intrinsic::x86_sse2_comigt_sd:
|
|
case Intrinsic::x86_sse2_comige_sd:
|
|
case Intrinsic::x86_sse2_comineq_sd:
|
|
case Intrinsic::x86_sse2_ucomieq_sd:
|
|
case Intrinsic::x86_sse2_ucomilt_sd:
|
|
case Intrinsic::x86_sse2_ucomile_sd:
|
|
case Intrinsic::x86_sse2_ucomigt_sd:
|
|
case Intrinsic::x86_sse2_ucomige_sd:
|
|
case Intrinsic::x86_sse2_ucomineq_sd: {
|
|
unsigned Opc = 0;
|
|
ISD::CondCode CC = ISD::SETCC_INVALID;
|
|
switch (IntNo) {
|
|
default: break;
|
|
case Intrinsic::x86_sse_comieq_ss:
|
|
case Intrinsic::x86_sse2_comieq_sd:
|
|
Opc = X86ISD::COMI;
|
|
CC = ISD::SETEQ;
|
|
break;
|
|
case Intrinsic::x86_sse_comilt_ss:
|
|
case Intrinsic::x86_sse2_comilt_sd:
|
|
Opc = X86ISD::COMI;
|
|
CC = ISD::SETLT;
|
|
break;
|
|
case Intrinsic::x86_sse_comile_ss:
|
|
case Intrinsic::x86_sse2_comile_sd:
|
|
Opc = X86ISD::COMI;
|
|
CC = ISD::SETLE;
|
|
break;
|
|
case Intrinsic::x86_sse_comigt_ss:
|
|
case Intrinsic::x86_sse2_comigt_sd:
|
|
Opc = X86ISD::COMI;
|
|
CC = ISD::SETGT;
|
|
break;
|
|
case Intrinsic::x86_sse_comige_ss:
|
|
case Intrinsic::x86_sse2_comige_sd:
|
|
Opc = X86ISD::COMI;
|
|
CC = ISD::SETGE;
|
|
break;
|
|
case Intrinsic::x86_sse_comineq_ss:
|
|
case Intrinsic::x86_sse2_comineq_sd:
|
|
Opc = X86ISD::COMI;
|
|
CC = ISD::SETNE;
|
|
break;
|
|
case Intrinsic::x86_sse_ucomieq_ss:
|
|
case Intrinsic::x86_sse2_ucomieq_sd:
|
|
Opc = X86ISD::UCOMI;
|
|
CC = ISD::SETEQ;
|
|
break;
|
|
case Intrinsic::x86_sse_ucomilt_ss:
|
|
case Intrinsic::x86_sse2_ucomilt_sd:
|
|
Opc = X86ISD::UCOMI;
|
|
CC = ISD::SETLT;
|
|
break;
|
|
case Intrinsic::x86_sse_ucomile_ss:
|
|
case Intrinsic::x86_sse2_ucomile_sd:
|
|
Opc = X86ISD::UCOMI;
|
|
CC = ISD::SETLE;
|
|
break;
|
|
case Intrinsic::x86_sse_ucomigt_ss:
|
|
case Intrinsic::x86_sse2_ucomigt_sd:
|
|
Opc = X86ISD::UCOMI;
|
|
CC = ISD::SETGT;
|
|
break;
|
|
case Intrinsic::x86_sse_ucomige_ss:
|
|
case Intrinsic::x86_sse2_ucomige_sd:
|
|
Opc = X86ISD::UCOMI;
|
|
CC = ISD::SETGE;
|
|
break;
|
|
case Intrinsic::x86_sse_ucomineq_ss:
|
|
case Intrinsic::x86_sse2_ucomineq_sd:
|
|
Opc = X86ISD::UCOMI;
|
|
CC = ISD::SETNE;
|
|
break;
|
|
}
|
|
|
|
SDValue LHS = Op.getOperand(1);
|
|
SDValue RHS = Op.getOperand(2);
|
|
unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
|
|
assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
|
|
SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
|
|
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(X86CC, MVT::i8), Cond);
|
|
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
|
|
}
|
|
// ptest and testp intrinsics. The intrinsic these come from are designed to
|
|
// return an integer value, not just an instruction so lower it to the ptest
|
|
// or testp pattern and a setcc for the result.
|
|
case Intrinsic::x86_sse41_ptestz:
|
|
case Intrinsic::x86_sse41_ptestc:
|
|
case Intrinsic::x86_sse41_ptestnzc:
|
|
case Intrinsic::x86_avx_ptestz_256:
|
|
case Intrinsic::x86_avx_ptestc_256:
|
|
case Intrinsic::x86_avx_ptestnzc_256:
|
|
case Intrinsic::x86_avx_vtestz_ps:
|
|
case Intrinsic::x86_avx_vtestc_ps:
|
|
case Intrinsic::x86_avx_vtestnzc_ps:
|
|
case Intrinsic::x86_avx_vtestz_pd:
|
|
case Intrinsic::x86_avx_vtestc_pd:
|
|
case Intrinsic::x86_avx_vtestnzc_pd:
|
|
case Intrinsic::x86_avx_vtestz_ps_256:
|
|
case Intrinsic::x86_avx_vtestc_ps_256:
|
|
case Intrinsic::x86_avx_vtestnzc_ps_256:
|
|
case Intrinsic::x86_avx_vtestz_pd_256:
|
|
case Intrinsic::x86_avx_vtestc_pd_256:
|
|
case Intrinsic::x86_avx_vtestnzc_pd_256: {
|
|
bool IsTestPacked = false;
|
|
unsigned X86CC = 0;
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
|
|
case Intrinsic::x86_avx_vtestz_ps:
|
|
case Intrinsic::x86_avx_vtestz_pd:
|
|
case Intrinsic::x86_avx_vtestz_ps_256:
|
|
case Intrinsic::x86_avx_vtestz_pd_256:
|
|
IsTestPacked = true; // Fallthrough
|
|
case Intrinsic::x86_sse41_ptestz:
|
|
case Intrinsic::x86_avx_ptestz_256:
|
|
// ZF = 1
|
|
X86CC = X86::COND_E;
|
|
break;
|
|
case Intrinsic::x86_avx_vtestc_ps:
|
|
case Intrinsic::x86_avx_vtestc_pd:
|
|
case Intrinsic::x86_avx_vtestc_ps_256:
|
|
case Intrinsic::x86_avx_vtestc_pd_256:
|
|
IsTestPacked = true; // Fallthrough
|
|
case Intrinsic::x86_sse41_ptestc:
|
|
case Intrinsic::x86_avx_ptestc_256:
|
|
// CF = 1
|
|
X86CC = X86::COND_B;
|
|
break;
|
|
case Intrinsic::x86_avx_vtestnzc_ps:
|
|
case Intrinsic::x86_avx_vtestnzc_pd:
|
|
case Intrinsic::x86_avx_vtestnzc_ps_256:
|
|
case Intrinsic::x86_avx_vtestnzc_pd_256:
|
|
IsTestPacked = true; // Fallthrough
|
|
case Intrinsic::x86_sse41_ptestnzc:
|
|
case Intrinsic::x86_avx_ptestnzc_256:
|
|
// ZF and CF = 0
|
|
X86CC = X86::COND_A;
|
|
break;
|
|
}
|
|
|
|
SDValue LHS = Op.getOperand(1);
|
|
SDValue RHS = Op.getOperand(2);
|
|
unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
|
|
SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
|
|
SDValue CC = DAG.getConstant(X86CC, MVT::i8);
|
|
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
|
|
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
|
|
}
|
|
|
|
// Fix vector shift instructions where the last operand is a non-immediate
|
|
// i32 value.
|
|
case Intrinsic::x86_sse2_pslli_w:
|
|
case Intrinsic::x86_sse2_pslli_d:
|
|
case Intrinsic::x86_sse2_pslli_q:
|
|
case Intrinsic::x86_sse2_psrli_w:
|
|
case Intrinsic::x86_sse2_psrli_d:
|
|
case Intrinsic::x86_sse2_psrli_q:
|
|
case Intrinsic::x86_sse2_psrai_w:
|
|
case Intrinsic::x86_sse2_psrai_d:
|
|
case Intrinsic::x86_mmx_pslli_w:
|
|
case Intrinsic::x86_mmx_pslli_d:
|
|
case Intrinsic::x86_mmx_pslli_q:
|
|
case Intrinsic::x86_mmx_psrli_w:
|
|
case Intrinsic::x86_mmx_psrli_d:
|
|
case Intrinsic::x86_mmx_psrli_q:
|
|
case Intrinsic::x86_mmx_psrai_w:
|
|
case Intrinsic::x86_mmx_psrai_d: {
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
if (isa<ConstantSDNode>(ShAmt))
|
|
return SDValue();
|
|
|
|
unsigned NewIntNo = 0;
|
|
EVT ShAmtVT = MVT::v4i32;
|
|
switch (IntNo) {
|
|
case Intrinsic::x86_sse2_pslli_w:
|
|
NewIntNo = Intrinsic::x86_sse2_psll_w;
|
|
break;
|
|
case Intrinsic::x86_sse2_pslli_d:
|
|
NewIntNo = Intrinsic::x86_sse2_psll_d;
|
|
break;
|
|
case Intrinsic::x86_sse2_pslli_q:
|
|
NewIntNo = Intrinsic::x86_sse2_psll_q;
|
|
break;
|
|
case Intrinsic::x86_sse2_psrli_w:
|
|
NewIntNo = Intrinsic::x86_sse2_psrl_w;
|
|
break;
|
|
case Intrinsic::x86_sse2_psrli_d:
|
|
NewIntNo = Intrinsic::x86_sse2_psrl_d;
|
|
break;
|
|
case Intrinsic::x86_sse2_psrli_q:
|
|
NewIntNo = Intrinsic::x86_sse2_psrl_q;
|
|
break;
|
|
case Intrinsic::x86_sse2_psrai_w:
|
|
NewIntNo = Intrinsic::x86_sse2_psra_w;
|
|
break;
|
|
case Intrinsic::x86_sse2_psrai_d:
|
|
NewIntNo = Intrinsic::x86_sse2_psra_d;
|
|
break;
|
|
default: {
|
|
ShAmtVT = MVT::v2i32;
|
|
switch (IntNo) {
|
|
case Intrinsic::x86_mmx_pslli_w:
|
|
NewIntNo = Intrinsic::x86_mmx_psll_w;
|
|
break;
|
|
case Intrinsic::x86_mmx_pslli_d:
|
|
NewIntNo = Intrinsic::x86_mmx_psll_d;
|
|
break;
|
|
case Intrinsic::x86_mmx_pslli_q:
|
|
NewIntNo = Intrinsic::x86_mmx_psll_q;
|
|
break;
|
|
case Intrinsic::x86_mmx_psrli_w:
|
|
NewIntNo = Intrinsic::x86_mmx_psrl_w;
|
|
break;
|
|
case Intrinsic::x86_mmx_psrli_d:
|
|
NewIntNo = Intrinsic::x86_mmx_psrl_d;
|
|
break;
|
|
case Intrinsic::x86_mmx_psrli_q:
|
|
NewIntNo = Intrinsic::x86_mmx_psrl_q;
|
|
break;
|
|
case Intrinsic::x86_mmx_psrai_w:
|
|
NewIntNo = Intrinsic::x86_mmx_psra_w;
|
|
break;
|
|
case Intrinsic::x86_mmx_psrai_d:
|
|
NewIntNo = Intrinsic::x86_mmx_psra_d;
|
|
break;
|
|
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The vector shift intrinsics with scalars uses 32b shift amounts but
|
|
// the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
|
|
// to be zero.
|
|
SDValue ShOps[4];
|
|
ShOps[0] = ShAmt;
|
|
ShOps[1] = DAG.getConstant(0, MVT::i32);
|
|
if (ShAmtVT == MVT::v4i32) {
|
|
ShOps[2] = DAG.getUNDEF(MVT::i32);
|
|
ShOps[3] = DAG.getUNDEF(MVT::i32);
|
|
ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
|
|
} else {
|
|
ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
|
|
// FIXME this must be lowered to get rid of the invalid type.
|
|
}
|
|
|
|
EVT VT = Op.getValueType();
|
|
ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(NewIntNo, MVT::i32),
|
|
Op.getOperand(1), ShAmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setReturnAddressIsTaken(true);
|
|
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
if (Depth > 0) {
|
|
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
|
|
SDValue Offset =
|
|
DAG.getConstant(TD->getPointerSize(),
|
|
Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
|
|
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, dl, getPointerTy(),
|
|
FrameAddr, Offset),
|
|
MachinePointerInfo(), false, false, 0);
|
|
}
|
|
|
|
// Just load the return address.
|
|
SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
|
|
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
|
|
RetAddrFI, MachinePointerInfo(), false, false, 0);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setFrameAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
|
|
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
|
|
while (Depth--)
|
|
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
|
|
MachinePointerInfo(),
|
|
false, false, 0);
|
|
return FrameAddr;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
return DAG.getIntPtrConstant(2*TD->getPointerSize());
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Offset = Op.getOperand(1);
|
|
SDValue Handler = Op.getOperand(2);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
|
|
Subtarget->is64Bit() ? X86::RBP : X86::EBP,
|
|
getPointerTy());
|
|
unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
|
|
|
|
SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
|
|
DAG.getIntPtrConstant(TD->getPointerSize()));
|
|
StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
|
|
Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
|
|
false, false, 0);
|
|
Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
|
|
MF.getRegInfo().addLiveOut(StoreAddrReg);
|
|
|
|
return DAG.getNode(X86ISD::EH_RETURN, dl,
|
|
MVT::Other,
|
|
Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Root = Op.getOperand(0);
|
|
SDValue Trmp = Op.getOperand(1); // trampoline
|
|
SDValue FPtr = Op.getOperand(2); // nested function
|
|
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
SDValue OutChains[6];
|
|
|
|
// Large code-model.
|
|
const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
|
|
const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
|
|
|
|
const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
|
|
const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
|
|
|
|
const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
|
|
|
|
// Load the pointer to the nested function into R11.
|
|
unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
|
|
SDValue Addr = Trmp;
|
|
OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
|
|
Addr, MachinePointerInfo(TrmpAddr),
|
|
false, false, 0);
|
|
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(2, MVT::i64));
|
|
OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
|
|
MachinePointerInfo(TrmpAddr, 2),
|
|
false, false, 2);
|
|
|
|
// Load the 'nest' parameter value into R10.
|
|
// R10 is specified in X86CallingConv.td
|
|
OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(10, MVT::i64));
|
|
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
|
|
Addr, MachinePointerInfo(TrmpAddr, 10),
|
|
false, false, 0);
|
|
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(12, MVT::i64));
|
|
OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
|
|
MachinePointerInfo(TrmpAddr, 12),
|
|
false, false, 2);
|
|
|
|
// Jump to the nested function.
|
|
OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(20, MVT::i64));
|
|
OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
|
|
Addr, MachinePointerInfo(TrmpAddr, 20),
|
|
false, false, 0);
|
|
|
|
unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(22, MVT::i64));
|
|
OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
|
|
MachinePointerInfo(TrmpAddr, 22),
|
|
false, false, 0);
|
|
|
|
SDValue Ops[] =
|
|
{ Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
} else {
|
|
const Function *Func =
|
|
cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
|
|
CallingConv::ID CC = Func->getCallingConv();
|
|
unsigned NestReg;
|
|
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unsupported calling convention");
|
|
case CallingConv::C:
|
|
case CallingConv::X86_StdCall: {
|
|
// Pass 'nest' parameter in ECX.
|
|
// Must be kept in sync with X86CallingConv.td
|
|
NestReg = X86::ECX;
|
|
|
|
// Check that ECX wasn't needed by an 'inreg' parameter.
|
|
const FunctionType *FTy = Func->getFunctionType();
|
|
const AttrListPtr &Attrs = Func->getAttributes();
|
|
|
|
if (!Attrs.isEmpty() && !Func->isVarArg()) {
|
|
unsigned InRegCount = 0;
|
|
unsigned Idx = 1;
|
|
|
|
for (FunctionType::param_iterator I = FTy->param_begin(),
|
|
E = FTy->param_end(); I != E; ++I, ++Idx)
|
|
if (Attrs.paramHasAttr(Idx, Attribute::InReg))
|
|
// FIXME: should only count parameters that are lowered to integers.
|
|
InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
|
|
|
|
if (InRegCount > 2) {
|
|
report_fatal_error("Nest register in use - reduce number of inreg"
|
|
" parameters!");
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case CallingConv::X86_FastCall:
|
|
case CallingConv::X86_ThisCall:
|
|
case CallingConv::Fast:
|
|
// Pass 'nest' parameter in EAX.
|
|
// Must be kept in sync with X86CallingConv.td
|
|
NestReg = X86::EAX;
|
|
break;
|
|
}
|
|
|
|
SDValue OutChains[4];
|
|
SDValue Addr, Disp;
|
|
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
|
|
DAG.getConstant(10, MVT::i32));
|
|
Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
|
|
|
|
// This is storing the opcode for MOV32ri.
|
|
const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
|
|
const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
|
|
OutChains[0] = DAG.getStore(Root, dl,
|
|
DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
|
|
Trmp, MachinePointerInfo(TrmpAddr),
|
|
false, false, 0);
|
|
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
|
|
DAG.getConstant(1, MVT::i32));
|
|
OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
|
|
MachinePointerInfo(TrmpAddr, 1),
|
|
false, false, 1);
|
|
|
|
const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
|
|
DAG.getConstant(5, MVT::i32));
|
|
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
|
|
MachinePointerInfo(TrmpAddr, 5),
|
|
false, false, 1);
|
|
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
|
|
DAG.getConstant(6, MVT::i32));
|
|
OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
|
|
MachinePointerInfo(TrmpAddr, 6),
|
|
false, false, 1);
|
|
|
|
SDValue Ops[] =
|
|
{ Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
}
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
/*
|
|
The rounding mode is in bits 11:10 of FPSR, and has the following
|
|
settings:
|
|
00 Round to nearest
|
|
01 Round to -inf
|
|
10 Round to +inf
|
|
11 Round to 0
|
|
|
|
FLT_ROUNDS, on the other hand, expects the following:
|
|
-1 Undefined
|
|
0 Round to 0
|
|
1 Round to nearest
|
|
2 Round to +inf
|
|
3 Round to -inf
|
|
|
|
To perform the conversion, we do:
|
|
(((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
|
|
*/
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const TargetFrameLowering &TFI = *TM.getFrameLowering();
|
|
unsigned StackAlignment = TFI.getStackAlignment();
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
|
|
// Save FP Control Word to stack slot
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
|
|
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
|
|
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOStore, 2, 2);
|
|
|
|
SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
|
|
SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
|
|
DAG.getVTList(MVT::Other),
|
|
Ops, 2, MVT::i16, MMO);
|
|
|
|
// Load FP Control Word from stack slot
|
|
SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
|
|
MachinePointerInfo(), false, false, 0);
|
|
|
|
// Transform as necessary
|
|
SDValue CWD1 =
|
|
DAG.getNode(ISD::SRL, DL, MVT::i16,
|
|
DAG.getNode(ISD::AND, DL, MVT::i16,
|
|
CWD, DAG.getConstant(0x800, MVT::i16)),
|
|
DAG.getConstant(11, MVT::i8));
|
|
SDValue CWD2 =
|
|
DAG.getNode(ISD::SRL, DL, MVT::i16,
|
|
DAG.getNode(ISD::AND, DL, MVT::i16,
|
|
CWD, DAG.getConstant(0x400, MVT::i16)),
|
|
DAG.getConstant(9, MVT::i8));
|
|
|
|
SDValue RetVal =
|
|
DAG.getNode(ISD::AND, DL, MVT::i16,
|
|
DAG.getNode(ISD::ADD, DL, MVT::i16,
|
|
DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
|
|
DAG.getConstant(1, MVT::i16)),
|
|
DAG.getConstant(3, MVT::i16));
|
|
|
|
|
|
return DAG.getNode((VT.getSizeInBits() < 16 ?
|
|
ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
EVT OpVT = VT;
|
|
unsigned NumBits = VT.getSizeInBits();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
Op = Op.getOperand(0);
|
|
if (VT == MVT::i8) {
|
|
// Zero extend to i32 since there is not an i8 bsr.
|
|
OpVT = MVT::i32;
|
|
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
|
|
}
|
|
|
|
// Issue a bsr (scan bits in reverse) which also sets EFLAGS.
|
|
SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
|
|
Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
|
|
|
|
// If src is zero (i.e. bsr sets ZF), returns NumBits.
|
|
SDValue Ops[] = {
|
|
Op,
|
|
DAG.getConstant(NumBits+NumBits-1, OpVT),
|
|
DAG.getConstant(X86::COND_E, MVT::i8),
|
|
Op.getValue(1)
|
|
};
|
|
Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
|
|
|
|
// Finally xor with NumBits-1.
|
|
Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
|
|
|
|
if (VT == MVT::i8)
|
|
Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
|
|
return Op;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
EVT OpVT = VT;
|
|
unsigned NumBits = VT.getSizeInBits();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
Op = Op.getOperand(0);
|
|
if (VT == MVT::i8) {
|
|
OpVT = MVT::i32;
|
|
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
|
|
}
|
|
|
|
// Issue a bsf (scan bits forward) which also sets EFLAGS.
|
|
SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
|
|
Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
|
|
|
|
// If src is zero (i.e. bsf sets ZF), returns NumBits.
|
|
SDValue Ops[] = {
|
|
Op,
|
|
DAG.getConstant(NumBits, OpVT),
|
|
DAG.getConstant(X86::COND_E, MVT::i8),
|
|
Op.getValue(1)
|
|
};
|
|
Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
|
|
|
|
if (VT == MVT::i8)
|
|
Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
|
|
return Op;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
|
|
// ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
|
|
// ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
|
|
// ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
|
|
// ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
|
|
//
|
|
// AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
|
|
// AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
|
|
// return AloBlo + AloBhi + AhiBlo;
|
|
|
|
SDValue A = Op.getOperand(0);
|
|
SDValue B = Op.getOperand(1);
|
|
|
|
SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
|
|
A, DAG.getConstant(32, MVT::i32));
|
|
SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
|
|
B, DAG.getConstant(32, MVT::i32));
|
|
SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
|
|
A, B);
|
|
SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
|
|
A, Bhi);
|
|
SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
|
|
Ahi, B);
|
|
AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
|
|
AloBhi, DAG.getConstant(32, MVT::i32));
|
|
AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
|
|
AhiBlo, DAG.getConstant(32, MVT::i32));
|
|
SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
|
|
Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
|
|
return Res;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue R = Op.getOperand(0);
|
|
SDValue Amt = Op.getOperand(1);
|
|
|
|
LLVMContext *Context = DAG.getContext();
|
|
|
|
// Must have SSE2.
|
|
if (!Subtarget->hasSSE2()) return SDValue();
|
|
|
|
// Optimize shl/srl/sra with constant shift amount.
|
|
if (isSplatVector(Amt.getNode())) {
|
|
SDValue SclrAmt = Amt->getOperand(0);
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
|
|
uint64_t ShiftAmt = C->getZExtValue();
|
|
|
|
if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
|
|
R, DAG.getConstant(ShiftAmt, MVT::i32));
|
|
|
|
if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
|
|
R, DAG.getConstant(ShiftAmt, MVT::i32));
|
|
|
|
if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
|
|
R, DAG.getConstant(ShiftAmt, MVT::i32));
|
|
|
|
if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
|
|
R, DAG.getConstant(ShiftAmt, MVT::i32));
|
|
|
|
if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
|
|
R, DAG.getConstant(ShiftAmt, MVT::i32));
|
|
|
|
if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
|
|
R, DAG.getConstant(ShiftAmt, MVT::i32));
|
|
|
|
if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
|
|
R, DAG.getConstant(ShiftAmt, MVT::i32));
|
|
|
|
if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
|
|
R, DAG.getConstant(ShiftAmt, MVT::i32));
|
|
}
|
|
}
|
|
|
|
// Lower SHL with variable shift amount.
|
|
// Cannot lower SHL without SSE4.1 or later.
|
|
if (!Subtarget->hasSSE41()) return SDValue();
|
|
|
|
if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
|
|
Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
|
|
Op.getOperand(1), DAG.getConstant(23, MVT::i32));
|
|
|
|
ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
|
|
|
|
std::vector<Constant*> CV(4, CI);
|
|
Constant *C = ConstantVector::get(CV);
|
|
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
|
|
SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 16);
|
|
|
|
Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
|
|
Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
|
|
Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
|
|
return DAG.getNode(ISD::MUL, dl, VT, Op, R);
|
|
}
|
|
if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
|
|
// a = a << 5;
|
|
Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
|
|
Op.getOperand(1), DAG.getConstant(5, MVT::i32));
|
|
|
|
ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
|
|
ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
|
|
|
|
std::vector<Constant*> CVM1(16, CM1);
|
|
std::vector<Constant*> CVM2(16, CM2);
|
|
Constant *C = ConstantVector::get(CVM1);
|
|
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
|
|
SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 16);
|
|
|
|
// r = pblendv(r, psllw(r & (char16)15, 4), a);
|
|
M = DAG.getNode(ISD::AND, dl, VT, R, M);
|
|
M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
|
|
DAG.getConstant(4, MVT::i32));
|
|
R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
|
|
// a += a
|
|
Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
|
|
|
|
C = ConstantVector::get(CVM2);
|
|
CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
|
|
M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 16);
|
|
|
|
// r = pblendv(r, psllw(r & (char16)63, 2), a);
|
|
M = DAG.getNode(ISD::AND, dl, VT, R, M);
|
|
M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
|
|
DAG.getConstant(2, MVT::i32));
|
|
R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
|
|
// a += a
|
|
Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
|
|
|
|
// return pblendv(r, r+r, a);
|
|
R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
|
|
R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
|
|
return R;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
|
|
// Lower the "add/sub/mul with overflow" instruction into a regular ins plus
|
|
// a "setcc" instruction that checks the overflow flag. The "brcond" lowering
|
|
// looks for this combo and may remove the "setcc" instruction if the "setcc"
|
|
// has only one use.
|
|
SDNode *N = Op.getNode();
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
unsigned BaseOp = 0;
|
|
unsigned Cond = 0;
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Unknown ovf instruction!");
|
|
case ISD::SADDO:
|
|
// A subtract of one will be selected as a INC. Note that INC doesn't
|
|
// set CF, so we can't do this for UADDO.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
|
|
if (C->isOne()) {
|
|
BaseOp = X86ISD::INC;
|
|
Cond = X86::COND_O;
|
|
break;
|
|
}
|
|
BaseOp = X86ISD::ADD;
|
|
Cond = X86::COND_O;
|
|
break;
|
|
case ISD::UADDO:
|
|
BaseOp = X86ISD::ADD;
|
|
Cond = X86::COND_B;
|
|
break;
|
|
case ISD::SSUBO:
|
|
// A subtract of one will be selected as a DEC. Note that DEC doesn't
|
|
// set CF, so we can't do this for USUBO.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
|
|
if (C->isOne()) {
|
|
BaseOp = X86ISD::DEC;
|
|
Cond = X86::COND_O;
|
|
break;
|
|
}
|
|
BaseOp = X86ISD::SUB;
|
|
Cond = X86::COND_O;
|
|
break;
|
|
case ISD::USUBO:
|
|
BaseOp = X86ISD::SUB;
|
|
Cond = X86::COND_B;
|
|
break;
|
|
case ISD::SMULO:
|
|
BaseOp = X86ISD::SMUL;
|
|
Cond = X86::COND_O;
|
|
break;
|
|
case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
|
|
SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
|
|
MVT::i32);
|
|
SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
|
|
|
|
SDValue SetCC =
|
|
DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
|
|
DAG.getConstant(X86::COND_O, MVT::i32),
|
|
SDValue(Sum.getNode(), 2));
|
|
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
|
|
return Sum;
|
|
}
|
|
}
|
|
|
|
// Also sets EFLAGS.
|
|
SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
|
|
SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
|
|
|
|
SDValue SetCC =
|
|
DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
|
|
DAG.getConstant(Cond, MVT::i32),
|
|
SDValue(Sum.getNode(), 1));
|
|
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
|
|
return Sum;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
if (!Subtarget->hasSSE2()) {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Zero = DAG.getConstant(0,
|
|
Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
|
|
SDValue Ops[] = {
|
|
DAG.getRegister(X86::ESP, MVT::i32), // Base
|
|
DAG.getTargetConstant(1, MVT::i8), // Scale
|
|
DAG.getRegister(0, MVT::i32), // Index
|
|
DAG.getTargetConstant(0, MVT::i32), // Disp
|
|
DAG.getRegister(0, MVT::i32), // Segment.
|
|
Zero,
|
|
Chain
|
|
};
|
|
SDNode *Res =
|
|
DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
|
|
array_lengthof(Ops));
|
|
return SDValue(Res, 0);
|
|
}
|
|
|
|
unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
|
|
if (!isDev)
|
|
return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
|
|
|
|
unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
|
|
unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
|
|
unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
|
|
|
|
// def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
|
|
if (!Op1 && !Op2 && !Op3 && Op4)
|
|
return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
|
|
|
|
// def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
|
|
if (Op1 && !Op2 && !Op3 && !Op4)
|
|
return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
|
|
|
|
// def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
|
|
// (MFENCE)>;
|
|
return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT T = Op.getValueType();
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
unsigned Reg = 0;
|
|
unsigned size = 0;
|
|
switch(T.getSimpleVT().SimpleTy) {
|
|
default:
|
|
assert(false && "Invalid value type!");
|
|
case MVT::i8: Reg = X86::AL; size = 1; break;
|
|
case MVT::i16: Reg = X86::AX; size = 2; break;
|
|
case MVT::i32: Reg = X86::EAX; size = 4; break;
|
|
case MVT::i64:
|
|
assert(Subtarget->is64Bit() && "Node not type legal!");
|
|
Reg = X86::RAX; size = 8;
|
|
break;
|
|
}
|
|
SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
|
|
Op.getOperand(2), SDValue());
|
|
SDValue Ops[] = { cpIn.getValue(0),
|
|
Op.getOperand(1),
|
|
Op.getOperand(3),
|
|
DAG.getTargetConstant(size, MVT::i8),
|
|
cpIn.getValue(1) };
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
|
|
SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
|
|
Ops, 5, T, MMO);
|
|
SDValue cpOut =
|
|
DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
|
|
return cpOut;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->is64Bit() && "Result not type legalized?");
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue TheChain = Op.getOperand(0);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
|
|
SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
|
|
SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
|
|
rax.getValue(2));
|
|
SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
|
|
DAG.getConstant(32, MVT::i8));
|
|
SDValue Ops[] = {
|
|
DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
|
|
rdx.getValue(1)
|
|
};
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT SrcVT = Op.getOperand(0).getValueType();
|
|
EVT DstVT = Op.getValueType();
|
|
assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
|
|
Subtarget->hasMMX() && "Unexpected custom BITCAST");
|
|
assert((DstVT == MVT::i64 ||
|
|
(DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
|
|
"Unexpected custom BITCAST");
|
|
// i64 <=> MMX conversions are Legal.
|
|
if (SrcVT==MVT::i64 && DstVT.isVector())
|
|
return Op;
|
|
if (DstVT==MVT::i64 && SrcVT.isVector())
|
|
return Op;
|
|
// MMX <=> MMX conversions are Legal.
|
|
if (SrcVT.isVector() && DstVT.isVector())
|
|
return Op;
|
|
// All other conversions need to be expanded.
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
|
|
SDNode *Node = Op.getNode();
|
|
DebugLoc dl = Node->getDebugLoc();
|
|
EVT T = Node->getValueType(0);
|
|
SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
|
|
DAG.getConstant(0, T), Node->getOperand(2));
|
|
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
|
|
cast<AtomicSDNode>(Node)->getMemoryVT(),
|
|
Node->getOperand(0),
|
|
Node->getOperand(1), negOp,
|
|
cast<AtomicSDNode>(Node)->getSrcValue(),
|
|
cast<AtomicSDNode>(Node)->getAlignment());
|
|
}
|
|
|
|
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getNode()->getValueType(0);
|
|
|
|
// Let legalize expand this if it isn't a legal type yet.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
|
|
|
|
unsigned Opc;
|
|
bool ExtraOp = false;
|
|
switch (Op.getOpcode()) {
|
|
default: assert(0 && "Invalid code");
|
|
case ISD::ADDC: Opc = X86ISD::ADD; break;
|
|
case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
|
|
case ISD::SUBC: Opc = X86ISD::SUB; break;
|
|
case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
|
|
}
|
|
|
|
if (!ExtraOp)
|
|
return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
|
|
Op.getOperand(1));
|
|
return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
|
|
/// LowerOperation - Provide custom lowering hooks for some operations.
|
|
///
|
|
SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Should not custom lower this!");
|
|
case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG);
|
|
case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
|
|
case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
|
|
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
|
|
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
|
|
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
|
|
case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
|
|
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
|
|
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
|
|
case ISD::SHL_PARTS:
|
|
case ISD::SRA_PARTS:
|
|
case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
|
|
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
|
|
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
|
|
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
|
|
case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
|
|
case ISD::FABS: return LowerFABS(Op, DAG);
|
|
case ISD::FNEG: return LowerFNEG(Op, DAG);
|
|
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
|
|
case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
|
|
case ISD::SETCC: return LowerSETCC(Op, DAG);
|
|
case ISD::VSETCC: return LowerVSETCC(Op, DAG);
|
|
case ISD::SELECT: return LowerSELECT(Op, DAG);
|
|
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
|
|
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
|
|
case ISD::VASTART: return LowerVASTART(Op, DAG);
|
|
case ISD::VAARG: return LowerVAARG(Op, DAG);
|
|
case ISD::VACOPY: return LowerVACOPY(Op, DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
|
|
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
|
|
case ISD::FRAME_TO_ARGS_OFFSET:
|
|
return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
|
|
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
|
|
case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
|
|
case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
|
|
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
|
|
case ISD::CTLZ: return LowerCTLZ(Op, DAG);
|
|
case ISD::CTTZ: return LowerCTTZ(Op, DAG);
|
|
case ISD::MUL: return LowerMUL_V2I64(Op, DAG);
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::SHL: return LowerShift(Op, DAG);
|
|
case ISD::SADDO:
|
|
case ISD::UADDO:
|
|
case ISD::SSUBO:
|
|
case ISD::USUBO:
|
|
case ISD::SMULO:
|
|
case ISD::UMULO: return LowerXALUO(Op, DAG);
|
|
case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
|
|
case ISD::BITCAST: return LowerBITCAST(Op, DAG);
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::SUBC:
|
|
case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
|
|
}
|
|
}
|
|
|
|
void X86TargetLowering::
|
|
ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG, unsigned NewOp) const {
|
|
EVT T = Node->getValueType(0);
|
|
DebugLoc dl = Node->getDebugLoc();
|
|
assert (T == MVT::i64 && "Only know how to expand i64 atomics");
|
|
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue In1 = Node->getOperand(1);
|
|
SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
|
|
Node->getOperand(2), DAG.getIntPtrConstant(0));
|
|
SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
|
|
Node->getOperand(2), DAG.getIntPtrConstant(1));
|
|
SDValue Ops[] = { Chain, In1, In2L, In2H };
|
|
SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
|
|
SDValue Result =
|
|
DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
|
|
cast<MemSDNode>(Node)->getMemOperand());
|
|
SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
|
|
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
|
|
Results.push_back(Result.getValue(2));
|
|
}
|
|
|
|
/// ReplaceNodeResults - Replace a node with an illegal result type
|
|
/// with a new node built out of custom code.
|
|
void X86TargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) const {
|
|
DebugLoc dl = N->getDebugLoc();
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
assert(false && "Do not know how to custom type legalize this operation!");
|
|
return;
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::SUBC:
|
|
case ISD::SUBE:
|
|
// We don't want to expand or promote these.
|
|
return;
|
|
case ISD::FP_TO_SINT: {
|
|
std::pair<SDValue,SDValue> Vals =
|
|
FP_TO_INTHelper(SDValue(N, 0), DAG, true);
|
|
SDValue FIST = Vals.first, StackSlot = Vals.second;
|
|
if (FIST.getNode() != 0) {
|
|
EVT VT = N->getValueType(0);
|
|
// Return a load from the stack slot.
|
|
Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
|
|
MachinePointerInfo(), false, false, 0));
|
|
}
|
|
return;
|
|
}
|
|
case ISD::READCYCLECOUNTER: {
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue TheChain = N->getOperand(0);
|
|
SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
|
|
SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
|
|
rd.getValue(1));
|
|
SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
|
|
eax.getValue(2));
|
|
// Use a buildpair to merge the two 32-bit values into a 64-bit one.
|
|
SDValue Ops[] = { eax, edx };
|
|
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
|
|
Results.push_back(edx.getValue(1));
|
|
return;
|
|
}
|
|
case ISD::ATOMIC_CMP_SWAP: {
|
|
EVT T = N->getValueType(0);
|
|
assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
|
|
SDValue cpInL, cpInH;
|
|
cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
|
|
DAG.getConstant(0, MVT::i32));
|
|
cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
|
|
DAG.getConstant(1, MVT::i32));
|
|
cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
|
|
cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
|
|
cpInL.getValue(1));
|
|
SDValue swapInL, swapInH;
|
|
swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
|
|
DAG.getConstant(0, MVT::i32));
|
|
swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
|
|
DAG.getConstant(1, MVT::i32));
|
|
swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
|
|
cpInH.getValue(1));
|
|
swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
|
|
swapInL.getValue(1));
|
|
SDValue Ops[] = { swapInH.getValue(0),
|
|
N->getOperand(1),
|
|
swapInH.getValue(1) };
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
|
|
SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
|
|
Ops, 3, T, MMO);
|
|
SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
|
|
MVT::i32, Result.getValue(1));
|
|
SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
|
|
MVT::i32, cpOutL.getValue(2));
|
|
SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
|
|
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
|
|
Results.push_back(cpOutH.getValue(1));
|
|
return;
|
|
}
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_SWAP:
|
|
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
|
|
return;
|
|
}
|
|
}
|
|
|
|
const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default: return NULL;
|
|
case X86ISD::BSF: return "X86ISD::BSF";
|
|
case X86ISD::BSR: return "X86ISD::BSR";
|
|
case X86ISD::SHLD: return "X86ISD::SHLD";
|
|
case X86ISD::SHRD: return "X86ISD::SHRD";
|
|
case X86ISD::FAND: return "X86ISD::FAND";
|
|
case X86ISD::FOR: return "X86ISD::FOR";
|
|
case X86ISD::FXOR: return "X86ISD::FXOR";
|
|
case X86ISD::FSRL: return "X86ISD::FSRL";
|
|
case X86ISD::FILD: return "X86ISD::FILD";
|
|
case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
|
|
case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
|
|
case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
|
|
case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
|
|
case X86ISD::FLD: return "X86ISD::FLD";
|
|
case X86ISD::FST: return "X86ISD::FST";
|
|
case X86ISD::CALL: return "X86ISD::CALL";
|
|
case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
|
|
case X86ISD::BT: return "X86ISD::BT";
|
|
case X86ISD::CMP: return "X86ISD::CMP";
|
|
case X86ISD::COMI: return "X86ISD::COMI";
|
|
case X86ISD::UCOMI: return "X86ISD::UCOMI";
|
|
case X86ISD::SETCC: return "X86ISD::SETCC";
|
|
case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
|
|
case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd";
|
|
case X86ISD::FSETCCss: return "X86ISD::FSETCCss";
|
|
case X86ISD::CMOV: return "X86ISD::CMOV";
|
|
case X86ISD::BRCOND: return "X86ISD::BRCOND";
|
|
case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
|
|
case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
|
|
case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
|
|
case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
|
|
case X86ISD::Wrapper: return "X86ISD::Wrapper";
|
|
case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
|
|
case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
|
|
case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
|
|
case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
|
|
case X86ISD::PINSRB: return "X86ISD::PINSRB";
|
|
case X86ISD::PINSRW: return "X86ISD::PINSRW";
|
|
case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
|
|
case X86ISD::PANDN: return "X86ISD::PANDN";
|
|
case X86ISD::PSIGNB: return "X86ISD::PSIGNB";
|
|
case X86ISD::PSIGNW: return "X86ISD::PSIGNW";
|
|
case X86ISD::PSIGND: return "X86ISD::PSIGND";
|
|
case X86ISD::PBLENDVB: return "X86ISD::PBLENDVB";
|
|
case X86ISD::FMAX: return "X86ISD::FMAX";
|
|
case X86ISD::FMIN: return "X86ISD::FMIN";
|
|
case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
|
|
case X86ISD::FRCP: return "X86ISD::FRCP";
|
|
case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
|
|
case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
|
|
case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
|
|
case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
|
|
case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
|
|
case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
|
|
case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
|
|
case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
|
|
case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
|
|
case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
|
|
case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
|
|
case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
|
|
case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
|
|
case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
|
|
case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
|
|
case X86ISD::VSHL: return "X86ISD::VSHL";
|
|
case X86ISD::VSRL: return "X86ISD::VSRL";
|
|
case X86ISD::CMPPD: return "X86ISD::CMPPD";
|
|
case X86ISD::CMPPS: return "X86ISD::CMPPS";
|
|
case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
|
|
case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
|
|
case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
|
|
case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
|
|
case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
|
|
case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
|
|
case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
|
|
case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
|
|
case X86ISD::ADD: return "X86ISD::ADD";
|
|
case X86ISD::SUB: return "X86ISD::SUB";
|
|
case X86ISD::ADC: return "X86ISD::ADC";
|
|
case X86ISD::SBB: return "X86ISD::SBB";
|
|
case X86ISD::SMUL: return "X86ISD::SMUL";
|
|
case X86ISD::UMUL: return "X86ISD::UMUL";
|
|
case X86ISD::INC: return "X86ISD::INC";
|
|
case X86ISD::DEC: return "X86ISD::DEC";
|
|
case X86ISD::OR: return "X86ISD::OR";
|
|
case X86ISD::XOR: return "X86ISD::XOR";
|
|
case X86ISD::AND: return "X86ISD::AND";
|
|
case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
|
|
case X86ISD::PTEST: return "X86ISD::PTEST";
|
|
case X86ISD::TESTP: return "X86ISD::TESTP";
|
|
case X86ISD::PALIGN: return "X86ISD::PALIGN";
|
|
case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
|
|
case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
|
|
case X86ISD::PSHUFHW_LD: return "X86ISD::PSHUFHW_LD";
|
|
case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
|
|
case X86ISD::PSHUFLW_LD: return "X86ISD::PSHUFLW_LD";
|
|
case X86ISD::SHUFPS: return "X86ISD::SHUFPS";
|
|
case X86ISD::SHUFPD: return "X86ISD::SHUFPD";
|
|
case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
|
|
case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
|
|
case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
|
|
case X86ISD::MOVHLPD: return "X86ISD::MOVHLPD";
|
|
case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
|
|
case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
|
|
case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
|
|
case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
|
|
case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
|
|
case X86ISD::MOVSHDUP_LD: return "X86ISD::MOVSHDUP_LD";
|
|
case X86ISD::MOVSLDUP_LD: return "X86ISD::MOVSLDUP_LD";
|
|
case X86ISD::MOVSD: return "X86ISD::MOVSD";
|
|
case X86ISD::MOVSS: return "X86ISD::MOVSS";
|
|
case X86ISD::UNPCKLPS: return "X86ISD::UNPCKLPS";
|
|
case X86ISD::UNPCKLPD: return "X86ISD::UNPCKLPD";
|
|
case X86ISD::VUNPCKLPS: return "X86ISD::VUNPCKLPS";
|
|
case X86ISD::VUNPCKLPD: return "X86ISD::VUNPCKLPD";
|
|
case X86ISD::VUNPCKLPSY: return "X86ISD::VUNPCKLPSY";
|
|
case X86ISD::VUNPCKLPDY: return "X86ISD::VUNPCKLPDY";
|
|
case X86ISD::UNPCKHPS: return "X86ISD::UNPCKHPS";
|
|
case X86ISD::UNPCKHPD: return "X86ISD::UNPCKHPD";
|
|
case X86ISD::PUNPCKLBW: return "X86ISD::PUNPCKLBW";
|
|
case X86ISD::PUNPCKLWD: return "X86ISD::PUNPCKLWD";
|
|
case X86ISD::PUNPCKLDQ: return "X86ISD::PUNPCKLDQ";
|
|
case X86ISD::PUNPCKLQDQ: return "X86ISD::PUNPCKLQDQ";
|
|
case X86ISD::PUNPCKHBW: return "X86ISD::PUNPCKHBW";
|
|
case X86ISD::PUNPCKHWD: return "X86ISD::PUNPCKHWD";
|
|
case X86ISD::PUNPCKHDQ: return "X86ISD::PUNPCKHDQ";
|
|
case X86ISD::PUNPCKHQDQ: return "X86ISD::PUNPCKHQDQ";
|
|
case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
|
|
case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
|
|
case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
|
|
}
|
|
}
|
|
|
|
// isLegalAddressingMode - Return true if the addressing mode represented
|
|
// by AM is legal for this target, for a load/store of the specified type.
|
|
bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
const Type *Ty) const {
|
|
// X86 supports extremely general addressing modes.
|
|
CodeModel::Model M = getTargetMachine().getCodeModel();
|
|
Reloc::Model R = getTargetMachine().getRelocationModel();
|
|
|
|
// X86 allows a sign-extended 32-bit immediate field as a displacement.
|
|
if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
|
|
return false;
|
|
|
|
if (AM.BaseGV) {
|
|
unsigned GVFlags =
|
|
Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
|
|
|
|
// If a reference to this global requires an extra load, we can't fold it.
|
|
if (isGlobalStubReference(GVFlags))
|
|
return false;
|
|
|
|
// If BaseGV requires a register for the PIC base, we cannot also have a
|
|
// BaseReg specified.
|
|
if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
|
|
return false;
|
|
|
|
// If lower 4G is not available, then we must use rip-relative addressing.
|
|
if ((M != CodeModel::Small || R != Reloc::Static) &&
|
|
Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
|
|
return false;
|
|
}
|
|
|
|
switch (AM.Scale) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
// These scales always work.
|
|
break;
|
|
case 3:
|
|
case 5:
|
|
case 9:
|
|
// These scales are formed with basereg+scalereg. Only accept if there is
|
|
// no basereg yet.
|
|
if (AM.HasBaseReg)
|
|
return false;
|
|
break;
|
|
default: // Other stuff never works.
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
|
|
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
|
|
if (NumBits1 <= NumBits2)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
|
|
if (!VT1.isInteger() || !VT2.isInteger())
|
|
return false;
|
|
unsigned NumBits1 = VT1.getSizeInBits();
|
|
unsigned NumBits2 = VT2.getSizeInBits();
|
|
if (NumBits1 <= NumBits2)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
|
|
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
|
|
return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
|
|
}
|
|
|
|
bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
|
|
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
|
|
return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
|
|
}
|
|
|
|
bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
|
|
// i16 instructions are longer (0x66 prefix) and potentially slower.
|
|
return !(VT1 == MVT::i32 && VT2 == MVT::i16);
|
|
}
|
|
|
|
/// isShuffleMaskLegal - Targets can use this to indicate that they only
|
|
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
|
|
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
|
|
/// are assumed to be legal.
|
|
bool
|
|
X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
|
|
EVT VT) const {
|
|
// Very little shuffling can be done for 64-bit vectors right now.
|
|
if (VT.getSizeInBits() == 64)
|
|
return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
|
|
|
|
// FIXME: pshufb, blends, shifts.
|
|
return (VT.getVectorNumElements() == 2 ||
|
|
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
|
|
isMOVLMask(M, VT) ||
|
|
isSHUFPMask(M, VT) ||
|
|
isPSHUFDMask(M, VT) ||
|
|
isPSHUFHWMask(M, VT) ||
|
|
isPSHUFLWMask(M, VT) ||
|
|
isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
|
|
isUNPCKLMask(M, VT) ||
|
|
isUNPCKHMask(M, VT) ||
|
|
isUNPCKL_v_undef_Mask(M, VT) ||
|
|
isUNPCKH_v_undef_Mask(M, VT));
|
|
}
|
|
|
|
bool
|
|
X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
|
|
EVT VT) const {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
// FIXME: This collection of masks seems suspect.
|
|
if (NumElts == 2)
|
|
return true;
|
|
if (NumElts == 4 && VT.getSizeInBits() == 128) {
|
|
return (isMOVLMask(Mask, VT) ||
|
|
isCommutedMOVLMask(Mask, VT, true) ||
|
|
isSHUFPMask(Mask, VT) ||
|
|
isCommutedSHUFPMask(Mask, VT));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 Scheduler Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// private utility function
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
|
|
MachineBasicBlock *MBB,
|
|
unsigned regOpc,
|
|
unsigned immOpc,
|
|
unsigned LoadOpc,
|
|
unsigned CXchgOpc,
|
|
unsigned notOpc,
|
|
unsigned EAXreg,
|
|
TargetRegisterClass *RC,
|
|
bool invSrc) const {
|
|
// For the atomic bitwise operator, we generate
|
|
// thisMBB:
|
|
// newMBB:
|
|
// ld t1 = [bitinstr.addr]
|
|
// op t2 = t1, [bitinstr.val]
|
|
// mov EAX = t1
|
|
// lcs dest = [bitinstr.addr], t2 [EAX is implicit]
|
|
// bz newMBB
|
|
// fallthrough -->nextMBB
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
|
|
MachineFunction::iterator MBBIter = MBB;
|
|
++MBBIter;
|
|
|
|
/// First build the CFG
|
|
MachineFunction *F = MBB->getParent();
|
|
MachineBasicBlock *thisMBB = MBB;
|
|
MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(MBBIter, newMBB);
|
|
F->insert(MBBIter, nextMBB);
|
|
|
|
// Transfer the remainder of thisMBB and its successor edges to nextMBB.
|
|
nextMBB->splice(nextMBB->begin(), thisMBB,
|
|
llvm::next(MachineBasicBlock::iterator(bInstr)),
|
|
thisMBB->end());
|
|
nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
|
|
|
|
// Update thisMBB to fall through to newMBB
|
|
thisMBB->addSuccessor(newMBB);
|
|
|
|
// newMBB jumps to itself and fall through to nextMBB
|
|
newMBB->addSuccessor(nextMBB);
|
|
newMBB->addSuccessor(newMBB);
|
|
|
|
// Insert instructions into newMBB based on incoming instruction
|
|
assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
|
|
"unexpected number of operands");
|
|
DebugLoc dl = bInstr->getDebugLoc();
|
|
MachineOperand& destOper = bInstr->getOperand(0);
|
|
MachineOperand* argOpers[2 + X86::AddrNumOperands];
|
|
int numArgs = bInstr->getNumOperands() - 1;
|
|
for (int i=0; i < numArgs; ++i)
|
|
argOpers[i] = &bInstr->getOperand(i+1);
|
|
|
|
// x86 address has 4 operands: base, index, scale, and displacement
|
|
int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
|
|
int valArgIndx = lastAddrIndx + 1;
|
|
|
|
unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
|
|
MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
|
|
for (int i=0; i <= lastAddrIndx; ++i)
|
|
(*MIB).addOperand(*argOpers[i]);
|
|
|
|
unsigned tt = F->getRegInfo().createVirtualRegister(RC);
|
|
if (invSrc) {
|
|
MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
|
|
}
|
|
else
|
|
tt = t1;
|
|
|
|
unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
|
|
assert((argOpers[valArgIndx]->isReg() ||
|
|
argOpers[valArgIndx]->isImm()) &&
|
|
"invalid operand");
|
|
if (argOpers[valArgIndx]->isReg())
|
|
MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
|
|
else
|
|
MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
|
|
MIB.addReg(tt);
|
|
(*MIB).addOperand(*argOpers[valArgIndx]);
|
|
|
|
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
|
|
MIB.addReg(t1);
|
|
|
|
MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
|
|
for (int i=0; i <= lastAddrIndx; ++i)
|
|
(*MIB).addOperand(*argOpers[i]);
|
|
MIB.addReg(t2);
|
|
assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
|
|
(*MIB).setMemRefs(bInstr->memoperands_begin(),
|
|
bInstr->memoperands_end());
|
|
|
|
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
|
|
MIB.addReg(EAXreg);
|
|
|
|
// insert branch
|
|
BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
|
|
|
|
bInstr->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return nextMBB;
|
|
}
|
|
|
|
// private utility function: 64 bit atomics on 32 bit host.
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
|
|
MachineBasicBlock *MBB,
|
|
unsigned regOpcL,
|
|
unsigned regOpcH,
|
|
unsigned immOpcL,
|
|
unsigned immOpcH,
|
|
bool invSrc) const {
|
|
// For the atomic bitwise operator, we generate
|
|
// thisMBB (instructions are in pairs, except cmpxchg8b)
|
|
// ld t1,t2 = [bitinstr.addr]
|
|
// newMBB:
|
|
// out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
|
|
// op t5, t6 <- out1, out2, [bitinstr.val]
|
|
// (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
|
|
// mov ECX, EBX <- t5, t6
|
|
// mov EAX, EDX <- t1, t2
|
|
// cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
|
|
// mov t3, t4 <- EAX, EDX
|
|
// bz newMBB
|
|
// result in out1, out2
|
|
// fallthrough -->nextMBB
|
|
|
|
const TargetRegisterClass *RC = X86::GR32RegisterClass;
|
|
const unsigned LoadOpc = X86::MOV32rm;
|
|
const unsigned NotOpc = X86::NOT32r;
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
|
|
MachineFunction::iterator MBBIter = MBB;
|
|
++MBBIter;
|
|
|
|
/// First build the CFG
|
|
MachineFunction *F = MBB->getParent();
|
|
MachineBasicBlock *thisMBB = MBB;
|
|
MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(MBBIter, newMBB);
|
|
F->insert(MBBIter, nextMBB);
|
|
|
|
// Transfer the remainder of thisMBB and its successor edges to nextMBB.
|
|
nextMBB->splice(nextMBB->begin(), thisMBB,
|
|
llvm::next(MachineBasicBlock::iterator(bInstr)),
|
|
thisMBB->end());
|
|
nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
|
|
|
|
// Update thisMBB to fall through to newMBB
|
|
thisMBB->addSuccessor(newMBB);
|
|
|
|
// newMBB jumps to itself and fall through to nextMBB
|
|
newMBB->addSuccessor(nextMBB);
|
|
newMBB->addSuccessor(newMBB);
|
|
|
|
DebugLoc dl = bInstr->getDebugLoc();
|
|
// Insert instructions into newMBB based on incoming instruction
|
|
// There are 8 "real" operands plus 9 implicit def/uses, ignored here.
|
|
assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
|
|
"unexpected number of operands");
|
|
MachineOperand& dest1Oper = bInstr->getOperand(0);
|
|
MachineOperand& dest2Oper = bInstr->getOperand(1);
|
|
MachineOperand* argOpers[2 + X86::AddrNumOperands];
|
|
for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
|
|
argOpers[i] = &bInstr->getOperand(i+2);
|
|
|
|
// We use some of the operands multiple times, so conservatively just
|
|
// clear any kill flags that might be present.
|
|
if (argOpers[i]->isReg() && argOpers[i]->isUse())
|
|
argOpers[i]->setIsKill(false);
|
|
}
|
|
|
|
// x86 address has 5 operands: base, index, scale, displacement, and segment.
|
|
int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
|
|
|
|
unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
|
|
MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
|
|
for (int i=0; i <= lastAddrIndx; ++i)
|
|
(*MIB).addOperand(*argOpers[i]);
|
|
unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
|
|
MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
|
|
// add 4 to displacement.
|
|
for (int i=0; i <= lastAddrIndx-2; ++i)
|
|
(*MIB).addOperand(*argOpers[i]);
|
|
MachineOperand newOp3 = *(argOpers[3]);
|
|
if (newOp3.isImm())
|
|
newOp3.setImm(newOp3.getImm()+4);
|
|
else
|
|
newOp3.setOffset(newOp3.getOffset()+4);
|
|
(*MIB).addOperand(newOp3);
|
|
(*MIB).addOperand(*argOpers[lastAddrIndx]);
|
|
|
|
// t3/4 are defined later, at the bottom of the loop
|
|
unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
|
|
unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
|
|
BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
|
|
.addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
|
|
BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
|
|
.addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
|
|
|
|
// The subsequent operations should be using the destination registers of
|
|
//the PHI instructions.
|
|
if (invSrc) {
|
|
t1 = F->getRegInfo().createVirtualRegister(RC);
|
|
t2 = F->getRegInfo().createVirtualRegister(RC);
|
|
MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
|
|
MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
|
|
} else {
|
|
t1 = dest1Oper.getReg();
|
|
t2 = dest2Oper.getReg();
|
|
}
|
|
|
|
int valArgIndx = lastAddrIndx + 1;
|
|
assert((argOpers[valArgIndx]->isReg() ||
|
|
argOpers[valArgIndx]->isImm()) &&
|
|
"invalid operand");
|
|
unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
|
|
unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
|
|
if (argOpers[valArgIndx]->isReg())
|
|
MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
|
|
else
|
|
MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
|
|
if (regOpcL != X86::MOV32rr)
|
|
MIB.addReg(t1);
|
|
(*MIB).addOperand(*argOpers[valArgIndx]);
|
|
assert(argOpers[valArgIndx + 1]->isReg() ==
|
|
argOpers[valArgIndx]->isReg());
|
|
assert(argOpers[valArgIndx + 1]->isImm() ==
|
|
argOpers[valArgIndx]->isImm());
|
|
if (argOpers[valArgIndx + 1]->isReg())
|
|
MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
|
|
else
|
|
MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
|
|
if (regOpcH != X86::MOV32rr)
|
|
MIB.addReg(t2);
|
|
(*MIB).addOperand(*argOpers[valArgIndx + 1]);
|
|
|
|
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
|
|
MIB.addReg(t1);
|
|
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
|
|
MIB.addReg(t2);
|
|
|
|
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
|
|
MIB.addReg(t5);
|
|
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
|
|
MIB.addReg(t6);
|
|
|
|
MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
|
|
for (int i=0; i <= lastAddrIndx; ++i)
|
|
(*MIB).addOperand(*argOpers[i]);
|
|
|
|
assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
|
|
(*MIB).setMemRefs(bInstr->memoperands_begin(),
|
|
bInstr->memoperands_end());
|
|
|
|
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
|
|
MIB.addReg(X86::EAX);
|
|
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
|
|
MIB.addReg(X86::EDX);
|
|
|
|
// insert branch
|
|
BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
|
|
|
|
bInstr->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return nextMBB;
|
|
}
|
|
|
|
// private utility function
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
|
|
MachineBasicBlock *MBB,
|
|
unsigned cmovOpc) const {
|
|
// For the atomic min/max operator, we generate
|
|
// thisMBB:
|
|
// newMBB:
|
|
// ld t1 = [min/max.addr]
|
|
// mov t2 = [min/max.val]
|
|
// cmp t1, t2
|
|
// cmov[cond] t2 = t1
|
|
// mov EAX = t1
|
|
// lcs dest = [bitinstr.addr], t2 [EAX is implicit]
|
|
// bz newMBB
|
|
// fallthrough -->nextMBB
|
|
//
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
|
|
MachineFunction::iterator MBBIter = MBB;
|
|
++MBBIter;
|
|
|
|
/// First build the CFG
|
|
MachineFunction *F = MBB->getParent();
|
|
MachineBasicBlock *thisMBB = MBB;
|
|
MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(MBBIter, newMBB);
|
|
F->insert(MBBIter, nextMBB);
|
|
|
|
// Transfer the remainder of thisMBB and its successor edges to nextMBB.
|
|
nextMBB->splice(nextMBB->begin(), thisMBB,
|
|
llvm::next(MachineBasicBlock::iterator(mInstr)),
|
|
thisMBB->end());
|
|
nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
|
|
|
|
// Update thisMBB to fall through to newMBB
|
|
thisMBB->addSuccessor(newMBB);
|
|
|
|
// newMBB jumps to newMBB and fall through to nextMBB
|
|
newMBB->addSuccessor(nextMBB);
|
|
newMBB->addSuccessor(newMBB);
|
|
|
|
DebugLoc dl = mInstr->getDebugLoc();
|
|
// Insert instructions into newMBB based on incoming instruction
|
|
assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
|
|
"unexpected number of operands");
|
|
MachineOperand& destOper = mInstr->getOperand(0);
|
|
MachineOperand* argOpers[2 + X86::AddrNumOperands];
|
|
int numArgs = mInstr->getNumOperands() - 1;
|
|
for (int i=0; i < numArgs; ++i)
|
|
argOpers[i] = &mInstr->getOperand(i+1);
|
|
|
|
// x86 address has 4 operands: base, index, scale, and displacement
|
|
int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
|
|
int valArgIndx = lastAddrIndx + 1;
|
|
|
|
unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
|
|
MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
|
|
for (int i=0; i <= lastAddrIndx; ++i)
|
|
(*MIB).addOperand(*argOpers[i]);
|
|
|
|
// We only support register and immediate values
|
|
assert((argOpers[valArgIndx]->isReg() ||
|
|
argOpers[valArgIndx]->isImm()) &&
|
|
"invalid operand");
|
|
|
|
unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
|
|
if (argOpers[valArgIndx]->isReg())
|
|
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
|
|
else
|
|
MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
|
|
(*MIB).addOperand(*argOpers[valArgIndx]);
|
|
|
|
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
|
|
MIB.addReg(t1);
|
|
|
|
MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
|
|
MIB.addReg(t1);
|
|
MIB.addReg(t2);
|
|
|
|
// Generate movc
|
|
unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
|
|
MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
|
|
MIB.addReg(t2);
|
|
MIB.addReg(t1);
|
|
|
|
// Cmp and exchange if none has modified the memory location
|
|
MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
|
|
for (int i=0; i <= lastAddrIndx; ++i)
|
|
(*MIB).addOperand(*argOpers[i]);
|
|
MIB.addReg(t3);
|
|
assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
|
|
(*MIB).setMemRefs(mInstr->memoperands_begin(),
|
|
mInstr->memoperands_end());
|
|
|
|
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
|
|
MIB.addReg(X86::EAX);
|
|
|
|
// insert branch
|
|
BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
|
|
|
|
mInstr->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return nextMBB;
|
|
}
|
|
|
|
// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
|
|
// or XMM0_V32I8 in AVX all of this code can be replaced with that
|
|
// in the .td file.
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
|
|
unsigned numArgs, bool memArg) const {
|
|
assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
|
|
"Target must have SSE4.2 or AVX features enabled");
|
|
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
unsigned Opc;
|
|
if (!Subtarget->hasAVX()) {
|
|
if (memArg)
|
|
Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
|
|
else
|
|
Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
|
|
} else {
|
|
if (memArg)
|
|
Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
|
|
else
|
|
Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
|
|
}
|
|
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
|
|
for (unsigned i = 0; i < numArgs; ++i) {
|
|
MachineOperand &Op = MI->getOperand(i+1);
|
|
if (!(Op.isReg() && Op.isImplicit()))
|
|
MIB.addOperand(Op);
|
|
}
|
|
BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
|
|
.addReg(X86::XMM0);
|
|
|
|
MI->eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
|
|
// Address into RAX/EAX, other two args into ECX, EDX.
|
|
unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
|
|
unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
|
|
for (int i = 0; i < X86::AddrNumOperands; ++i)
|
|
MIB.addOperand(MI->getOperand(i));
|
|
|
|
unsigned ValOps = X86::AddrNumOperands;
|
|
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
|
|
.addReg(MI->getOperand(ValOps).getReg());
|
|
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
|
|
.addReg(MI->getOperand(ValOps+1).getReg());
|
|
|
|
// The instruction doesn't actually take any operands though.
|
|
BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
|
|
|
|
MI->eraseFromParent(); // The pseudo is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
|
|
// First arg in ECX, the second in EAX.
|
|
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
|
|
.addReg(MI->getOperand(0).getReg());
|
|
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
|
|
.addReg(MI->getOperand(1).getReg());
|
|
|
|
// The instruction doesn't actually take any operands though.
|
|
BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
|
|
|
|
MI->eraseFromParent(); // The pseudo is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitVAARG64WithCustomInserter(
|
|
MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
// Emit va_arg instruction on X86-64.
|
|
|
|
// Operands to this pseudo-instruction:
|
|
// 0 ) Output : destination address (reg)
|
|
// 1-5) Input : va_list address (addr, i64mem)
|
|
// 6 ) ArgSize : Size (in bytes) of vararg type
|
|
// 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
|
|
// 8 ) Align : Alignment of type
|
|
// 9 ) EFLAGS (implicit-def)
|
|
|
|
assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
|
|
assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
|
|
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
MachineOperand &Base = MI->getOperand(1);
|
|
MachineOperand &Scale = MI->getOperand(2);
|
|
MachineOperand &Index = MI->getOperand(3);
|
|
MachineOperand &Disp = MI->getOperand(4);
|
|
MachineOperand &Segment = MI->getOperand(5);
|
|
unsigned ArgSize = MI->getOperand(6).getImm();
|
|
unsigned ArgMode = MI->getOperand(7).getImm();
|
|
unsigned Align = MI->getOperand(8).getImm();
|
|
|
|
// Memory Reference
|
|
assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
|
|
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
|
|
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
|
|
|
|
// Machine Information
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
|
|
const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
// struct va_list {
|
|
// i32 gp_offset
|
|
// i32 fp_offset
|
|
// i64 overflow_area (address)
|
|
// i64 reg_save_area (address)
|
|
// }
|
|
// sizeof(va_list) = 24
|
|
// alignment(va_list) = 8
|
|
|
|
unsigned TotalNumIntRegs = 6;
|
|
unsigned TotalNumXMMRegs = 8;
|
|
bool UseGPOffset = (ArgMode == 1);
|
|
bool UseFPOffset = (ArgMode == 2);
|
|
unsigned MaxOffset = TotalNumIntRegs * 8 +
|
|
(UseFPOffset ? TotalNumXMMRegs * 16 : 0);
|
|
|
|
/* Align ArgSize to a multiple of 8 */
|
|
unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
|
|
bool NeedsAlign = (Align > 8);
|
|
|
|
MachineBasicBlock *thisMBB = MBB;
|
|
MachineBasicBlock *overflowMBB;
|
|
MachineBasicBlock *offsetMBB;
|
|
MachineBasicBlock *endMBB;
|
|
|
|
unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
|
|
unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
|
|
unsigned OffsetReg = 0;
|
|
|
|
if (!UseGPOffset && !UseFPOffset) {
|
|
// If we only pull from the overflow region, we don't create a branch.
|
|
// We don't need to alter control flow.
|
|
OffsetDestReg = 0; // unused
|
|
OverflowDestReg = DestReg;
|
|
|
|
offsetMBB = NULL;
|
|
overflowMBB = thisMBB;
|
|
endMBB = thisMBB;
|
|
} else {
|
|
// First emit code to check if gp_offset (or fp_offset) is below the bound.
|
|
// If so, pull the argument from reg_save_area. (branch to offsetMBB)
|
|
// If not, pull from overflow_area. (branch to overflowMBB)
|
|
//
|
|
// thisMBB
|
|
// | .
|
|
// | .
|
|
// offsetMBB overflowMBB
|
|
// | .
|
|
// | .
|
|
// endMBB
|
|
|
|
// Registers for the PHI in endMBB
|
|
OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
|
|
OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
|
|
|
|
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
|
|
MachineFunction *MF = MBB->getParent();
|
|
overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
MachineFunction::iterator MBBIter = MBB;
|
|
++MBBIter;
|
|
|
|
// Insert the new basic blocks
|
|
MF->insert(MBBIter, offsetMBB);
|
|
MF->insert(MBBIter, overflowMBB);
|
|
MF->insert(MBBIter, endMBB);
|
|
|
|
// Transfer the remainder of MBB and its successor edges to endMBB.
|
|
endMBB->splice(endMBB->begin(), thisMBB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
thisMBB->end());
|
|
endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
|
|
|
|
// Make offsetMBB and overflowMBB successors of thisMBB
|
|
thisMBB->addSuccessor(offsetMBB);
|
|
thisMBB->addSuccessor(overflowMBB);
|
|
|
|
// endMBB is a successor of both offsetMBB and overflowMBB
|
|
offsetMBB->addSuccessor(endMBB);
|
|
overflowMBB->addSuccessor(endMBB);
|
|
|
|
// Load the offset value into a register
|
|
OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
|
|
BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
|
|
.addOperand(Base)
|
|
.addOperand(Scale)
|
|
.addOperand(Index)
|
|
.addDisp(Disp, UseFPOffset ? 4 : 0)
|
|
.addOperand(Segment)
|
|
.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// Check if there is enough room left to pull this argument.
|
|
BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
|
|
.addReg(OffsetReg)
|
|
.addImm(MaxOffset + 8 - ArgSizeA8);
|
|
|
|
// Branch to "overflowMBB" if offset >= max
|
|
// Fall through to "offsetMBB" otherwise
|
|
BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
|
|
.addMBB(overflowMBB);
|
|
}
|
|
|
|
// In offsetMBB, emit code to use the reg_save_area.
|
|
if (offsetMBB) {
|
|
assert(OffsetReg != 0);
|
|
|
|
// Read the reg_save_area address.
|
|
unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
|
|
BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
|
|
.addOperand(Base)
|
|
.addOperand(Scale)
|
|
.addOperand(Index)
|
|
.addDisp(Disp, 16)
|
|
.addOperand(Segment)
|
|
.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// Zero-extend the offset
|
|
unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
|
|
BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
|
|
.addImm(0)
|
|
.addReg(OffsetReg)
|
|
.addImm(X86::sub_32bit);
|
|
|
|
// Add the offset to the reg_save_area to get the final address.
|
|
BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
|
|
.addReg(OffsetReg64)
|
|
.addReg(RegSaveReg);
|
|
|
|
// Compute the offset for the next argument
|
|
unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
|
|
BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
|
|
.addReg(OffsetReg)
|
|
.addImm(UseFPOffset ? 16 : 8);
|
|
|
|
// Store it back into the va_list.
|
|
BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
|
|
.addOperand(Base)
|
|
.addOperand(Scale)
|
|
.addOperand(Index)
|
|
.addDisp(Disp, UseFPOffset ? 4 : 0)
|
|
.addOperand(Segment)
|
|
.addReg(NextOffsetReg)
|
|
.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// Jump to endMBB
|
|
BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
|
|
.addMBB(endMBB);
|
|
}
|
|
|
|
//
|
|
// Emit code to use overflow area
|
|
//
|
|
|
|
// Load the overflow_area address into a register.
|
|
unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
|
|
BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
|
|
.addOperand(Base)
|
|
.addOperand(Scale)
|
|
.addOperand(Index)
|
|
.addDisp(Disp, 8)
|
|
.addOperand(Segment)
|
|
.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// If we need to align it, do so. Otherwise, just copy the address
|
|
// to OverflowDestReg.
|
|
if (NeedsAlign) {
|
|
// Align the overflow address
|
|
assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
|
|
unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
|
|
|
|
// aligned_addr = (addr + (align-1)) & ~(align-1)
|
|
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
|
|
.addReg(OverflowAddrReg)
|
|
.addImm(Align-1);
|
|
|
|
BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
|
|
.addReg(TmpReg)
|
|
.addImm(~(uint64_t)(Align-1));
|
|
} else {
|
|
BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
|
|
.addReg(OverflowAddrReg);
|
|
}
|
|
|
|
// Compute the next overflow address after this argument.
|
|
// (the overflow address should be kept 8-byte aligned)
|
|
unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
|
|
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
|
|
.addReg(OverflowDestReg)
|
|
.addImm(ArgSizeA8);
|
|
|
|
// Store the new overflow address.
|
|
BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
|
|
.addOperand(Base)
|
|
.addOperand(Scale)
|
|
.addOperand(Index)
|
|
.addDisp(Disp, 8)
|
|
.addOperand(Segment)
|
|
.addReg(NextAddrReg)
|
|
.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// If we branched, emit the PHI to the front of endMBB.
|
|
if (offsetMBB) {
|
|
BuildMI(*endMBB, endMBB->begin(), DL,
|
|
TII->get(X86::PHI), DestReg)
|
|
.addReg(OffsetDestReg).addMBB(offsetMBB)
|
|
.addReg(OverflowDestReg).addMBB(overflowMBB);
|
|
}
|
|
|
|
// Erase the pseudo instruction
|
|
MI->eraseFromParent();
|
|
|
|
return endMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
|
|
MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
// Emit code to save XMM registers to the stack. The ABI says that the
|
|
// number of registers to save is given in %al, so it's theoretically
|
|
// possible to do an indirect jump trick to avoid saving all of them,
|
|
// however this code takes a simpler approach and just executes all
|
|
// of the stores if %al is non-zero. It's less code, and it's probably
|
|
// easier on the hardware branch predictor, and stores aren't all that
|
|
// expensive anyway.
|
|
|
|
// Create the new basic blocks. One block contains all the XMM stores,
|
|
// and one block is the final destination regardless of whether any
|
|
// stores were performed.
|
|
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
|
|
MachineFunction *F = MBB->getParent();
|
|
MachineFunction::iterator MBBIter = MBB;
|
|
++MBBIter;
|
|
MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(MBBIter, XMMSaveMBB);
|
|
F->insert(MBBIter, EndMBB);
|
|
|
|
// Transfer the remainder of MBB and its successor edges to EndMBB.
|
|
EndMBB->splice(EndMBB->begin(), MBB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
MBB->end());
|
|
EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
|
|
// The original block will now fall through to the XMM save block.
|
|
MBB->addSuccessor(XMMSaveMBB);
|
|
// The XMMSaveMBB will fall through to the end block.
|
|
XMMSaveMBB->addSuccessor(EndMBB);
|
|
|
|
// Now add the instructions.
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
unsigned CountReg = MI->getOperand(0).getReg();
|
|
int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
|
|
int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
|
|
|
|
if (!Subtarget->isTargetWin64()) {
|
|
// If %al is 0, branch around the XMM save block.
|
|
BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
|
|
BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
|
|
MBB->addSuccessor(EndMBB);
|
|
}
|
|
|
|
// In the XMM save block, save all the XMM argument registers.
|
|
for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
|
|
int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
|
|
MachineMemOperand *MMO =
|
|
F->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
|
|
MachineMemOperand::MOStore,
|
|
/*Size=*/16, /*Align=*/16);
|
|
BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
|
|
.addFrameIndex(RegSaveFrameIndex)
|
|
.addImm(/*Scale=*/1)
|
|
.addReg(/*IndexReg=*/0)
|
|
.addImm(/*Disp=*/Offset)
|
|
.addReg(/*Segment=*/0)
|
|
.addReg(MI->getOperand(i).getReg())
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
|
|
return EndMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY ccX, r1, r2
|
|
// bCC copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// If the EFLAGS register isn't dead in the terminator, then claim that it's
|
|
// live into the sink and copy blocks.
|
|
const MachineFunction *MF = BB->getParent();
|
|
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
|
|
BitVector ReservedRegs = TRI->getReservedRegs(*MF);
|
|
|
|
for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
|
|
const MachineOperand &MO = MI->getOperand(I);
|
|
if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg != X86::EFLAGS) continue;
|
|
copy0MBB->addLiveIn(Reg);
|
|
sinkMBB->addLiveIn(Reg);
|
|
}
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// Create the conditional branch instruction.
|
|
unsigned Opc =
|
|
X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
|
|
BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
copy0MBB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
|
|
TII->get(X86::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return sinkMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
assert(!Subtarget->isTargetEnvMacho());
|
|
|
|
// The lowering is pretty easy: we're just emitting the call to _alloca. The
|
|
// non-trivial part is impdef of ESP.
|
|
|
|
if (Subtarget->isTargetWin64()) {
|
|
if (Subtarget->isTargetCygMing()) {
|
|
// ___chkstk(Mingw64):
|
|
// Clobbers R10, R11, RAX and EFLAGS.
|
|
// Updates RSP.
|
|
BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
|
|
.addExternalSymbol("___chkstk")
|
|
.addReg(X86::RAX, RegState::Implicit)
|
|
.addReg(X86::RSP, RegState::Implicit)
|
|
.addReg(X86::RAX, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::RSP, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
|
|
} else {
|
|
// __chkstk(MSVCRT): does not update stack pointer.
|
|
// Clobbers R10, R11 and EFLAGS.
|
|
// FIXME: RAX(allocated size) might be reused and not killed.
|
|
BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
|
|
.addExternalSymbol("__chkstk")
|
|
.addReg(X86::RAX, RegState::Implicit)
|
|
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
|
|
// RAX has the offset to subtracted from RSP.
|
|
BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
|
|
.addReg(X86::RSP)
|
|
.addReg(X86::RAX);
|
|
}
|
|
} else {
|
|
const char *StackProbeSymbol =
|
|
Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
|
|
.addExternalSymbol(StackProbeSymbol)
|
|
.addReg(X86::EAX, RegState::Implicit)
|
|
.addReg(X86::ESP, RegState::Implicit)
|
|
.addReg(X86::EAX, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::ESP, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
|
|
}
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
// This is pretty easy. We're taking the value that we received from
|
|
// our load from the relocation, sticking it in either RDI (x86-64)
|
|
// or EAX and doing an indirect call. The return value will then
|
|
// be in the normal return register.
|
|
const X86InstrInfo *TII
|
|
= static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
MachineFunction *F = BB->getParent();
|
|
|
|
assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
|
|
assert(MI->getOperand(3).isGlobal() && "This should be a global");
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
|
|
TII->get(X86::MOV64rm), X86::RDI)
|
|
.addReg(X86::RIP)
|
|
.addImm(0).addReg(0)
|
|
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
|
|
MI->getOperand(3).getTargetFlags())
|
|
.addReg(0);
|
|
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
|
|
addDirectMem(MIB, X86::RDI);
|
|
} else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
|
|
TII->get(X86::MOV32rm), X86::EAX)
|
|
.addReg(0)
|
|
.addImm(0).addReg(0)
|
|
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
|
|
MI->getOperand(3).getTargetFlags())
|
|
.addReg(0);
|
|
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
|
|
addDirectMem(MIB, X86::EAX);
|
|
} else {
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
|
|
TII->get(X86::MOV32rm), X86::EAX)
|
|
.addReg(TII->getGlobalBaseReg(F))
|
|
.addImm(0).addReg(0)
|
|
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
|
|
MI->getOperand(3).getTargetFlags())
|
|
.addReg(0);
|
|
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
|
|
addDirectMem(MIB, X86::EAX);
|
|
}
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
switch (MI->getOpcode()) {
|
|
default: assert(false && "Unexpected instr type to insert");
|
|
case X86::TAILJMPd64:
|
|
case X86::TAILJMPr64:
|
|
case X86::TAILJMPm64:
|
|
assert(!"TAILJMP64 would not be touched here.");
|
|
case X86::TCRETURNdi64:
|
|
case X86::TCRETURNri64:
|
|
case X86::TCRETURNmi64:
|
|
// Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
|
|
// On AMD64, additional defs should be added before register allocation.
|
|
if (!Subtarget->isTargetWin64()) {
|
|
MI->addRegisterDefined(X86::RSI);
|
|
MI->addRegisterDefined(X86::RDI);
|
|
MI->addRegisterDefined(X86::XMM6);
|
|
MI->addRegisterDefined(X86::XMM7);
|
|
MI->addRegisterDefined(X86::XMM8);
|
|
MI->addRegisterDefined(X86::XMM9);
|
|
MI->addRegisterDefined(X86::XMM10);
|
|
MI->addRegisterDefined(X86::XMM11);
|
|
MI->addRegisterDefined(X86::XMM12);
|
|
MI->addRegisterDefined(X86::XMM13);
|
|
MI->addRegisterDefined(X86::XMM14);
|
|
MI->addRegisterDefined(X86::XMM15);
|
|
}
|
|
return BB;
|
|
case X86::WIN_ALLOCA:
|
|
return EmitLoweredWinAlloca(MI, BB);
|
|
case X86::TLSCall_32:
|
|
case X86::TLSCall_64:
|
|
return EmitLoweredTLSCall(MI, BB);
|
|
case X86::CMOV_GR8:
|
|
case X86::CMOV_FR32:
|
|
case X86::CMOV_FR64:
|
|
case X86::CMOV_V4F32:
|
|
case X86::CMOV_V2F64:
|
|
case X86::CMOV_V2I64:
|
|
case X86::CMOV_GR16:
|
|
case X86::CMOV_GR32:
|
|
case X86::CMOV_RFP32:
|
|
case X86::CMOV_RFP64:
|
|
case X86::CMOV_RFP80:
|
|
return EmitLoweredSelect(MI, BB);
|
|
|
|
case X86::FP32_TO_INT16_IN_MEM:
|
|
case X86::FP32_TO_INT32_IN_MEM:
|
|
case X86::FP32_TO_INT64_IN_MEM:
|
|
case X86::FP64_TO_INT16_IN_MEM:
|
|
case X86::FP64_TO_INT32_IN_MEM:
|
|
case X86::FP64_TO_INT64_IN_MEM:
|
|
case X86::FP80_TO_INT16_IN_MEM:
|
|
case X86::FP80_TO_INT32_IN_MEM:
|
|
case X86::FP80_TO_INT64_IN_MEM: {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
// Change the floating point control register to use "round towards zero"
|
|
// mode when truncating to an integer value.
|
|
MachineFunction *F = BB->getParent();
|
|
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
|
|
addFrameReference(BuildMI(*BB, MI, DL,
|
|
TII->get(X86::FNSTCW16m)), CWFrameIdx);
|
|
|
|
// Load the old value of the high byte of the control word...
|
|
unsigned OldCW =
|
|
F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
|
|
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
|
|
CWFrameIdx);
|
|
|
|
// Set the high part to be round to zero...
|
|
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
|
|
.addImm(0xC7F);
|
|
|
|
// Reload the modified control word now...
|
|
addFrameReference(BuildMI(*BB, MI, DL,
|
|
TII->get(X86::FLDCW16m)), CWFrameIdx);
|
|
|
|
// Restore the memory image of control word to original value
|
|
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
|
|
.addReg(OldCW);
|
|
|
|
// Get the X86 opcode to use.
|
|
unsigned Opc;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("illegal opcode!");
|
|
case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
|
|
case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
|
|
case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
|
|
case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
|
|
case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
|
|
case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
|
|
case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
|
|
case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
|
|
case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
|
|
}
|
|
|
|
X86AddressMode AM;
|
|
MachineOperand &Op = MI->getOperand(0);
|
|
if (Op.isReg()) {
|
|
AM.BaseType = X86AddressMode::RegBase;
|
|
AM.Base.Reg = Op.getReg();
|
|
} else {
|
|
AM.BaseType = X86AddressMode::FrameIndexBase;
|
|
AM.Base.FrameIndex = Op.getIndex();
|
|
}
|
|
Op = MI->getOperand(1);
|
|
if (Op.isImm())
|
|
AM.Scale = Op.getImm();
|
|
Op = MI->getOperand(2);
|
|
if (Op.isImm())
|
|
AM.IndexReg = Op.getImm();
|
|
Op = MI->getOperand(3);
|
|
if (Op.isGlobal()) {
|
|
AM.GV = Op.getGlobal();
|
|
} else {
|
|
AM.Disp = Op.getImm();
|
|
}
|
|
addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
|
|
.addReg(MI->getOperand(X86::AddrNumOperands).getReg());
|
|
|
|
// Reload the original control word now.
|
|
addFrameReference(BuildMI(*BB, MI, DL,
|
|
TII->get(X86::FLDCW16m)), CWFrameIdx);
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
// String/text processing lowering.
|
|
case X86::PCMPISTRM128REG:
|
|
case X86::VPCMPISTRM128REG:
|
|
return EmitPCMP(MI, BB, 3, false /* in-mem */);
|
|
case X86::PCMPISTRM128MEM:
|
|
case X86::VPCMPISTRM128MEM:
|
|
return EmitPCMP(MI, BB, 3, true /* in-mem */);
|
|
case X86::PCMPESTRM128REG:
|
|
case X86::VPCMPESTRM128REG:
|
|
return EmitPCMP(MI, BB, 5, false /* in mem */);
|
|
case X86::PCMPESTRM128MEM:
|
|
case X86::VPCMPESTRM128MEM:
|
|
return EmitPCMP(MI, BB, 5, true /* in mem */);
|
|
|
|
// Thread synchronization.
|
|
case X86::MONITOR:
|
|
return EmitMonitor(MI, BB);
|
|
case X86::MWAIT:
|
|
return EmitMwait(MI, BB);
|
|
|
|
// Atomic Lowering.
|
|
case X86::ATOMAND32:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
|
|
X86::AND32ri, X86::MOV32rm,
|
|
X86::LCMPXCHG32,
|
|
X86::NOT32r, X86::EAX,
|
|
X86::GR32RegisterClass);
|
|
case X86::ATOMOR32:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
|
|
X86::OR32ri, X86::MOV32rm,
|
|
X86::LCMPXCHG32,
|
|
X86::NOT32r, X86::EAX,
|
|
X86::GR32RegisterClass);
|
|
case X86::ATOMXOR32:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
|
|
X86::XOR32ri, X86::MOV32rm,
|
|
X86::LCMPXCHG32,
|
|
X86::NOT32r, X86::EAX,
|
|
X86::GR32RegisterClass);
|
|
case X86::ATOMNAND32:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
|
|
X86::AND32ri, X86::MOV32rm,
|
|
X86::LCMPXCHG32,
|
|
X86::NOT32r, X86::EAX,
|
|
X86::GR32RegisterClass, true);
|
|
case X86::ATOMMIN32:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
|
|
case X86::ATOMMAX32:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
|
|
case X86::ATOMUMIN32:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
|
|
case X86::ATOMUMAX32:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
|
|
|
|
case X86::ATOMAND16:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
|
|
X86::AND16ri, X86::MOV16rm,
|
|
X86::LCMPXCHG16,
|
|
X86::NOT16r, X86::AX,
|
|
X86::GR16RegisterClass);
|
|
case X86::ATOMOR16:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
|
|
X86::OR16ri, X86::MOV16rm,
|
|
X86::LCMPXCHG16,
|
|
X86::NOT16r, X86::AX,
|
|
X86::GR16RegisterClass);
|
|
case X86::ATOMXOR16:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
|
|
X86::XOR16ri, X86::MOV16rm,
|
|
X86::LCMPXCHG16,
|
|
X86::NOT16r, X86::AX,
|
|
X86::GR16RegisterClass);
|
|
case X86::ATOMNAND16:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
|
|
X86::AND16ri, X86::MOV16rm,
|
|
X86::LCMPXCHG16,
|
|
X86::NOT16r, X86::AX,
|
|
X86::GR16RegisterClass, true);
|
|
case X86::ATOMMIN16:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
|
|
case X86::ATOMMAX16:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
|
|
case X86::ATOMUMIN16:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
|
|
case X86::ATOMUMAX16:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
|
|
|
|
case X86::ATOMAND8:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
|
|
X86::AND8ri, X86::MOV8rm,
|
|
X86::LCMPXCHG8,
|
|
X86::NOT8r, X86::AL,
|
|
X86::GR8RegisterClass);
|
|
case X86::ATOMOR8:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
|
|
X86::OR8ri, X86::MOV8rm,
|
|
X86::LCMPXCHG8,
|
|
X86::NOT8r, X86::AL,
|
|
X86::GR8RegisterClass);
|
|
case X86::ATOMXOR8:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
|
|
X86::XOR8ri, X86::MOV8rm,
|
|
X86::LCMPXCHG8,
|
|
X86::NOT8r, X86::AL,
|
|
X86::GR8RegisterClass);
|
|
case X86::ATOMNAND8:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
|
|
X86::AND8ri, X86::MOV8rm,
|
|
X86::LCMPXCHG8,
|
|
X86::NOT8r, X86::AL,
|
|
X86::GR8RegisterClass, true);
|
|
// FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
|
|
// This group is for 64-bit host.
|
|
case X86::ATOMAND64:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
|
|
X86::AND64ri32, X86::MOV64rm,
|
|
X86::LCMPXCHG64,
|
|
X86::NOT64r, X86::RAX,
|
|
X86::GR64RegisterClass);
|
|
case X86::ATOMOR64:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
|
|
X86::OR64ri32, X86::MOV64rm,
|
|
X86::LCMPXCHG64,
|
|
X86::NOT64r, X86::RAX,
|
|
X86::GR64RegisterClass);
|
|
case X86::ATOMXOR64:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
|
|
X86::XOR64ri32, X86::MOV64rm,
|
|
X86::LCMPXCHG64,
|
|
X86::NOT64r, X86::RAX,
|
|
X86::GR64RegisterClass);
|
|
case X86::ATOMNAND64:
|
|
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
|
|
X86::AND64ri32, X86::MOV64rm,
|
|
X86::LCMPXCHG64,
|
|
X86::NOT64r, X86::RAX,
|
|
X86::GR64RegisterClass, true);
|
|
case X86::ATOMMIN64:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
|
|
case X86::ATOMMAX64:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
|
|
case X86::ATOMUMIN64:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
|
|
case X86::ATOMUMAX64:
|
|
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
|
|
|
|
// This group does 64-bit operations on a 32-bit host.
|
|
case X86::ATOMAND6432:
|
|
return EmitAtomicBit6432WithCustomInserter(MI, BB,
|
|
X86::AND32rr, X86::AND32rr,
|
|
X86::AND32ri, X86::AND32ri,
|
|
false);
|
|
case X86::ATOMOR6432:
|
|
return EmitAtomicBit6432WithCustomInserter(MI, BB,
|
|
X86::OR32rr, X86::OR32rr,
|
|
X86::OR32ri, X86::OR32ri,
|
|
false);
|
|
case X86::ATOMXOR6432:
|
|
return EmitAtomicBit6432WithCustomInserter(MI, BB,
|
|
X86::XOR32rr, X86::XOR32rr,
|
|
X86::XOR32ri, X86::XOR32ri,
|
|
false);
|
|
case X86::ATOMNAND6432:
|
|
return EmitAtomicBit6432WithCustomInserter(MI, BB,
|
|
X86::AND32rr, X86::AND32rr,
|
|
X86::AND32ri, X86::AND32ri,
|
|
true);
|
|
case X86::ATOMADD6432:
|
|
return EmitAtomicBit6432WithCustomInserter(MI, BB,
|
|
X86::ADD32rr, X86::ADC32rr,
|
|
X86::ADD32ri, X86::ADC32ri,
|
|
false);
|
|
case X86::ATOMSUB6432:
|
|
return EmitAtomicBit6432WithCustomInserter(MI, BB,
|
|
X86::SUB32rr, X86::SBB32rr,
|
|
X86::SUB32ri, X86::SBB32ri,
|
|
false);
|
|
case X86::ATOMSWAP6432:
|
|
return EmitAtomicBit6432WithCustomInserter(MI, BB,
|
|
X86::MOV32rr, X86::MOV32rr,
|
|
X86::MOV32ri, X86::MOV32ri,
|
|
false);
|
|
case X86::VASTART_SAVE_XMM_REGS:
|
|
return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
|
|
|
|
case X86::VAARG_64:
|
|
return EmitVAARG64WithCustomInserter(MI, BB);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
|
|
const APInt &Mask,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
unsigned Opc = Op.getOpcode();
|
|
assert((Opc >= ISD::BUILTIN_OP_END ||
|
|
Opc == ISD::INTRINSIC_WO_CHAIN ||
|
|
Opc == ISD::INTRINSIC_W_CHAIN ||
|
|
Opc == ISD::INTRINSIC_VOID) &&
|
|
"Should use MaskedValueIsZero if you don't know whether Op"
|
|
" is a target node!");
|
|
|
|
KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
|
|
switch (Opc) {
|
|
default: break;
|
|
case X86ISD::ADD:
|
|
case X86ISD::SUB:
|
|
case X86ISD::ADC:
|
|
case X86ISD::SBB:
|
|
case X86ISD::SMUL:
|
|
case X86ISD::UMUL:
|
|
case X86ISD::INC:
|
|
case X86ISD::DEC:
|
|
case X86ISD::OR:
|
|
case X86ISD::XOR:
|
|
case X86ISD::AND:
|
|
// These nodes' second result is a boolean.
|
|
if (Op.getResNo() == 0)
|
|
break;
|
|
// Fallthrough
|
|
case X86ISD::SETCC:
|
|
KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
|
|
Mask.getBitWidth() - 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
|
|
unsigned Depth) const {
|
|
// SETCC_CARRY sets the dest to ~0 for true or 0 for false.
|
|
if (Op.getOpcode() == X86ISD::SETCC_CARRY)
|
|
return Op.getValueType().getScalarType().getSizeInBits();
|
|
|
|
// Fallback case.
|
|
return 1;
|
|
}
|
|
|
|
/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
|
|
/// node is a GlobalAddress + offset.
|
|
bool X86TargetLowering::isGAPlusOffset(SDNode *N,
|
|
const GlobalValue* &GA,
|
|
int64_t &Offset) const {
|
|
if (N->getOpcode() == X86ISD::Wrapper) {
|
|
if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
|
|
GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
|
|
Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
|
|
return true;
|
|
}
|
|
}
|
|
return TargetLowering::isGAPlusOffset(N, GA, Offset);
|
|
}
|
|
|
|
/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
|
|
/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
|
|
/// if the load addresses are consecutive, non-overlapping, and in the right
|
|
/// order.
|
|
static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
DebugLoc dl = N->getDebugLoc();
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (VT.getSizeInBits() != 128)
|
|
return SDValue();
|
|
|
|
// Don't create instructions with illegal types after legalize types has run.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
|
|
return SDValue();
|
|
|
|
SmallVector<SDValue, 16> Elts;
|
|
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
|
|
Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
|
|
|
|
return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
|
|
}
|
|
|
|
/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
|
|
/// generation and convert it from being a bunch of shuffles and extracts
|
|
/// to a simple store and scalar loads to extract the elements.
|
|
static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
SDValue InputVector = N->getOperand(0);
|
|
|
|
// Only operate on vectors of 4 elements, where the alternative shuffling
|
|
// gets to be more expensive.
|
|
if (InputVector.getValueType() != MVT::v4i32)
|
|
return SDValue();
|
|
|
|
// Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
|
|
// single use which is a sign-extend or zero-extend, and all elements are
|
|
// used.
|
|
SmallVector<SDNode *, 4> Uses;
|
|
unsigned ExtractedElements = 0;
|
|
for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
|
|
UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
|
|
if (UI.getUse().getResNo() != InputVector.getResNo())
|
|
return SDValue();
|
|
|
|
SDNode *Extract = *UI;
|
|
if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return SDValue();
|
|
|
|
if (Extract->getValueType(0) != MVT::i32)
|
|
return SDValue();
|
|
if (!Extract->hasOneUse())
|
|
return SDValue();
|
|
if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
|
|
Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
|
|
return SDValue();
|
|
if (!isa<ConstantSDNode>(Extract->getOperand(1)))
|
|
return SDValue();
|
|
|
|
// Record which element was extracted.
|
|
ExtractedElements |=
|
|
1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
|
|
|
|
Uses.push_back(Extract);
|
|
}
|
|
|
|
// If not all the elements were used, this may not be worthwhile.
|
|
if (ExtractedElements != 15)
|
|
return SDValue();
|
|
|
|
// Ok, we've now decided to do the transformation.
|
|
DebugLoc dl = InputVector.getDebugLoc();
|
|
|
|
// Store the value to a temporary stack slot.
|
|
SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
|
|
SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
|
|
MachinePointerInfo(), false, false, 0);
|
|
|
|
// Replace each use (extract) with a load of the appropriate element.
|
|
for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
|
|
UE = Uses.end(); UI != UE; ++UI) {
|
|
SDNode *Extract = *UI;
|
|
|
|
// cOMpute the element's address.
|
|
SDValue Idx = Extract->getOperand(1);
|
|
unsigned EltSize =
|
|
InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
|
|
uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
|
|
|
|
SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
|
|
StackPtr, OffsetVal);
|
|
|
|
// Load the scalar.
|
|
SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
|
|
ScalarAddr, MachinePointerInfo(),
|
|
false, false, 0);
|
|
|
|
// Replace the exact with the load.
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
|
|
}
|
|
|
|
// The replacement was made in place; don't return anything.
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
|
|
static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
DebugLoc DL = N->getDebugLoc();
|
|
SDValue Cond = N->getOperand(0);
|
|
// Get the LHS/RHS of the select.
|
|
SDValue LHS = N->getOperand(1);
|
|
SDValue RHS = N->getOperand(2);
|
|
|
|
// If we have SSE[12] support, try to form min/max nodes. SSE min/max
|
|
// instructions match the semantics of the common C idiom x<y?x:y but not
|
|
// x<=y?x:y, because of how they handle negative zero (which can be
|
|
// ignored in unsafe-math mode).
|
|
if (Subtarget->hasSSE2() &&
|
|
(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
|
|
Cond.getOpcode() == ISD::SETCC) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
|
|
unsigned Opcode = 0;
|
|
// Check for x CC y ? x : y.
|
|
if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
|
|
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETULT:
|
|
// Converting this to a min would handle NaNs incorrectly, and swapping
|
|
// the operands would cause it to handle comparisons between positive
|
|
// and negative zero incorrectly.
|
|
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
|
|
if (!UnsafeFPMath &&
|
|
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
|
|
break;
|
|
std::swap(LHS, RHS);
|
|
}
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
case ISD::SETOLE:
|
|
// Converting this to a min would handle comparisons between positive
|
|
// and negative zero incorrectly.
|
|
if (!UnsafeFPMath &&
|
|
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
|
|
break;
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
case ISD::SETULE:
|
|
// Converting this to a min would handle both negative zeros and NaNs
|
|
// incorrectly, but we can swap the operands to fix both.
|
|
std::swap(LHS, RHS);
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
|
|
case ISD::SETOGE:
|
|
// Converting this to a max would handle comparisons between positive
|
|
// and negative zero incorrectly.
|
|
if (!UnsafeFPMath &&
|
|
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
|
|
break;
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
case ISD::SETUGT:
|
|
// Converting this to a max would handle NaNs incorrectly, and swapping
|
|
// the operands would cause it to handle comparisons between positive
|
|
// and negative zero incorrectly.
|
|
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
|
|
if (!UnsafeFPMath &&
|
|
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
|
|
break;
|
|
std::swap(LHS, RHS);
|
|
}
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
case ISD::SETUGE:
|
|
// Converting this to a max would handle both negative zeros and NaNs
|
|
// incorrectly, but we can swap the operands to fix both.
|
|
std::swap(LHS, RHS);
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
}
|
|
// Check for x CC y ? y : x -- a min/max with reversed arms.
|
|
} else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
|
|
DAG.isEqualTo(RHS, Cond.getOperand(0))) {
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETOGE:
|
|
// Converting this to a min would handle comparisons between positive
|
|
// and negative zero incorrectly, and swapping the operands would
|
|
// cause it to handle NaNs incorrectly.
|
|
if (!UnsafeFPMath &&
|
|
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
|
|
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
|
|
break;
|
|
std::swap(LHS, RHS);
|
|
}
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
case ISD::SETUGT:
|
|
// Converting this to a min would handle NaNs incorrectly.
|
|
if (!UnsafeFPMath &&
|
|
(!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
|
|
break;
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
case ISD::SETUGE:
|
|
// Converting this to a min would handle both negative zeros and NaNs
|
|
// incorrectly, but we can swap the operands to fix both.
|
|
std::swap(LHS, RHS);
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
|
|
case ISD::SETULT:
|
|
// Converting this to a max would handle NaNs incorrectly.
|
|
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
|
|
break;
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
case ISD::SETOLE:
|
|
// Converting this to a max would handle comparisons between positive
|
|
// and negative zero incorrectly, and swapping the operands would
|
|
// cause it to handle NaNs incorrectly.
|
|
if (!UnsafeFPMath &&
|
|
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
|
|
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
|
|
break;
|
|
std::swap(LHS, RHS);
|
|
}
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
case ISD::SETULE:
|
|
// Converting this to a max would handle both negative zeros and NaNs
|
|
// incorrectly, but we can swap the operands to fix both.
|
|
std::swap(LHS, RHS);
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Opcode)
|
|
return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
|
|
}
|
|
|
|
// If this is a select between two integer constants, try to do some
|
|
// optimizations.
|
|
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
|
|
if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
|
|
// Don't do this for crazy integer types.
|
|
if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
|
|
// If this is efficiently invertible, canonicalize the LHSC/RHSC values
|
|
// so that TrueC (the true value) is larger than FalseC.
|
|
bool NeedsCondInvert = false;
|
|
|
|
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
|
|
// Efficiently invertible.
|
|
(Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
|
|
(Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
|
|
isa<ConstantSDNode>(Cond.getOperand(1))))) {
|
|
NeedsCondInvert = true;
|
|
std::swap(TrueC, FalseC);
|
|
}
|
|
|
|
// Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
|
|
if (FalseC->getAPIntValue() == 0 &&
|
|
TrueC->getAPIntValue().isPowerOf2()) {
|
|
if (NeedsCondInvert) // Invert the condition if needed.
|
|
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(1, Cond.getValueType()));
|
|
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
|
|
|
|
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
|
|
return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
|
|
DAG.getConstant(ShAmt, MVT::i8));
|
|
}
|
|
|
|
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
|
|
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
|
|
if (NeedsCondInvert) // Invert the condition if needed.
|
|
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(1, Cond.getValueType()));
|
|
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
|
|
FalseC->getValueType(0), Cond);
|
|
return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
|
|
SDValue(FalseC, 0));
|
|
}
|
|
|
|
// Optimize cases that will turn into an LEA instruction. This requires
|
|
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
|
|
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
|
|
uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
|
|
if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
|
|
|
|
bool isFastMultiplier = false;
|
|
if (Diff < 10) {
|
|
switch ((unsigned char)Diff) {
|
|
default: break;
|
|
case 1: // result = add base, cond
|
|
case 2: // result = lea base( , cond*2)
|
|
case 3: // result = lea base(cond, cond*2)
|
|
case 4: // result = lea base( , cond*4)
|
|
case 5: // result = lea base(cond, cond*4)
|
|
case 8: // result = lea base( , cond*8)
|
|
case 9: // result = lea base(cond, cond*8)
|
|
isFastMultiplier = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (isFastMultiplier) {
|
|
APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
|
|
if (NeedsCondInvert) // Invert the condition if needed.
|
|
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(1, Cond.getValueType()));
|
|
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
|
|
Cond);
|
|
// Scale the condition by the difference.
|
|
if (Diff != 1)
|
|
Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(Diff, Cond.getValueType()));
|
|
|
|
// Add the base if non-zero.
|
|
if (FalseC->getAPIntValue() != 0)
|
|
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
|
|
SDValue(FalseC, 0));
|
|
return Cond;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
|
|
static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
// If the flag operand isn't dead, don't touch this CMOV.
|
|
if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
|
|
return SDValue();
|
|
|
|
SDValue FalseOp = N->getOperand(0);
|
|
SDValue TrueOp = N->getOperand(1);
|
|
X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
|
|
SDValue Cond = N->getOperand(3);
|
|
if (CC == X86::COND_E || CC == X86::COND_NE) {
|
|
switch (Cond.getOpcode()) {
|
|
default: break;
|
|
case X86ISD::BSR:
|
|
case X86ISD::BSF:
|
|
// If operand of BSR / BSF are proven never zero, then ZF cannot be set.
|
|
if (DAG.isKnownNeverZero(Cond.getOperand(0)))
|
|
return (CC == X86::COND_E) ? FalseOp : TrueOp;
|
|
}
|
|
}
|
|
|
|
// If this is a select between two integer constants, try to do some
|
|
// optimizations. Note that the operands are ordered the opposite of SELECT
|
|
// operands.
|
|
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
|
|
if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
|
|
// Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
|
|
// larger than FalseC (the false value).
|
|
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
|
|
CC = X86::GetOppositeBranchCondition(CC);
|
|
std::swap(TrueC, FalseC);
|
|
}
|
|
|
|
// Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
|
|
// This is efficient for any integer data type (including i8/i16) and
|
|
// shift amount.
|
|
if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
|
|
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
|
|
DAG.getConstant(CC, MVT::i8), Cond);
|
|
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
|
|
|
|
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
|
|
Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(ShAmt, MVT::i8));
|
|
if (N->getNumValues() == 2) // Dead flag value?
|
|
return DCI.CombineTo(N, Cond, SDValue());
|
|
return Cond;
|
|
}
|
|
|
|
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
|
|
// for any integer data type, including i8/i16.
|
|
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
|
|
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
|
|
DAG.getConstant(CC, MVT::i8), Cond);
|
|
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
|
|
FalseC->getValueType(0), Cond);
|
|
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
|
|
SDValue(FalseC, 0));
|
|
|
|
if (N->getNumValues() == 2) // Dead flag value?
|
|
return DCI.CombineTo(N, Cond, SDValue());
|
|
return Cond;
|
|
}
|
|
|
|
// Optimize cases that will turn into an LEA instruction. This requires
|
|
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
|
|
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
|
|
uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
|
|
if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
|
|
|
|
bool isFastMultiplier = false;
|
|
if (Diff < 10) {
|
|
switch ((unsigned char)Diff) {
|
|
default: break;
|
|
case 1: // result = add base, cond
|
|
case 2: // result = lea base( , cond*2)
|
|
case 3: // result = lea base(cond, cond*2)
|
|
case 4: // result = lea base( , cond*4)
|
|
case 5: // result = lea base(cond, cond*4)
|
|
case 8: // result = lea base( , cond*8)
|
|
case 9: // result = lea base(cond, cond*8)
|
|
isFastMultiplier = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (isFastMultiplier) {
|
|
APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
|
|
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
|
|
DAG.getConstant(CC, MVT::i8), Cond);
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
|
|
Cond);
|
|
// Scale the condition by the difference.
|
|
if (Diff != 1)
|
|
Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(Diff, Cond.getValueType()));
|
|
|
|
// Add the base if non-zero.
|
|
if (FalseC->getAPIntValue() != 0)
|
|
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
|
|
SDValue(FalseC, 0));
|
|
if (N->getNumValues() == 2) // Dead flag value?
|
|
return DCI.CombineTo(N, Cond, SDValue());
|
|
return Cond;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
|
|
/// PerformMulCombine - Optimize a single multiply with constant into two
|
|
/// in order to implement it with two cheaper instructions, e.g.
|
|
/// LEA + SHL, LEA + LEA.
|
|
static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!C)
|
|
return SDValue();
|
|
uint64_t MulAmt = C->getZExtValue();
|
|
if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
|
|
return SDValue();
|
|
|
|
uint64_t MulAmt1 = 0;
|
|
uint64_t MulAmt2 = 0;
|
|
if ((MulAmt % 9) == 0) {
|
|
MulAmt1 = 9;
|
|
MulAmt2 = MulAmt / 9;
|
|
} else if ((MulAmt % 5) == 0) {
|
|
MulAmt1 = 5;
|
|
MulAmt2 = MulAmt / 5;
|
|
} else if ((MulAmt % 3) == 0) {
|
|
MulAmt1 = 3;
|
|
MulAmt2 = MulAmt / 3;
|
|
}
|
|
if (MulAmt2 &&
|
|
(isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
if (isPowerOf2_64(MulAmt2) &&
|
|
!(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
|
|
// If second multiplifer is pow2, issue it first. We want the multiply by
|
|
// 3, 5, or 9 to be folded into the addressing mode unless the lone use
|
|
// is an add.
|
|
std::swap(MulAmt1, MulAmt2);
|
|
|
|
SDValue NewMul;
|
|
if (isPowerOf2_64(MulAmt1))
|
|
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
|
|
DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
|
|
else
|
|
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
|
|
DAG.getConstant(MulAmt1, VT));
|
|
|
|
if (isPowerOf2_64(MulAmt2))
|
|
NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
|
|
DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
|
|
else
|
|
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
|
|
DAG.getConstant(MulAmt2, VT));
|
|
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, NewMul, false);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N0.getValueType();
|
|
|
|
// fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
|
|
// since the result of setcc_c is all zero's or all ones.
|
|
if (N1C && N0.getOpcode() == ISD::AND &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
|
|
((N00.getOpcode() == ISD::ANY_EXTEND ||
|
|
N00.getOpcode() == ISD::ZERO_EXTEND) &&
|
|
N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
|
|
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
|
|
APInt ShAmt = N1C->getAPIntValue();
|
|
Mask = Mask.shl(ShAmt);
|
|
if (Mask != 0)
|
|
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
|
|
N00, DAG.getConstant(Mask, VT));
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
|
|
/// when possible.
|
|
static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector() && VT.isInteger() &&
|
|
N->getOpcode() == ISD::SHL)
|
|
return PerformSHLCombine(N, DAG);
|
|
|
|
// On X86 with SSE2 support, we can transform this to a vector shift if
|
|
// all elements are shifted by the same amount. We can't do this in legalize
|
|
// because the a constant vector is typically transformed to a constant pool
|
|
// so we have no knowledge of the shift amount.
|
|
if (!Subtarget->hasSSE2())
|
|
return SDValue();
|
|
|
|
if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
|
|
return SDValue();
|
|
|
|
SDValue ShAmtOp = N->getOperand(1);
|
|
EVT EltVT = VT.getVectorElementType();
|
|
DebugLoc DL = N->getDebugLoc();
|
|
SDValue BaseShAmt = SDValue();
|
|
if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned i = 0;
|
|
for (; i != NumElts; ++i) {
|
|
SDValue Arg = ShAmtOp.getOperand(i);
|
|
if (Arg.getOpcode() == ISD::UNDEF) continue;
|
|
BaseShAmt = Arg;
|
|
break;
|
|
}
|
|
for (; i != NumElts; ++i) {
|
|
SDValue Arg = ShAmtOp.getOperand(i);
|
|
if (Arg.getOpcode() == ISD::UNDEF) continue;
|
|
if (Arg != BaseShAmt) {
|
|
return SDValue();
|
|
}
|
|
}
|
|
} else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
|
|
cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
|
|
SDValue InVec = ShAmtOp.getOperand(0);
|
|
if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
|
|
unsigned NumElts = InVec.getValueType().getVectorNumElements();
|
|
unsigned i = 0;
|
|
for (; i != NumElts; ++i) {
|
|
SDValue Arg = InVec.getOperand(i);
|
|
if (Arg.getOpcode() == ISD::UNDEF) continue;
|
|
BaseShAmt = Arg;
|
|
break;
|
|
}
|
|
} else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
|
|
unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
|
|
if (C->getZExtValue() == SplatIdx)
|
|
BaseShAmt = InVec.getOperand(1);
|
|
}
|
|
}
|
|
if (BaseShAmt.getNode() == 0)
|
|
BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
|
|
DAG.getIntPtrConstant(0));
|
|
} else
|
|
return SDValue();
|
|
|
|
// The shift amount is an i32.
|
|
if (EltVT.bitsGT(MVT::i32))
|
|
BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
|
|
else if (EltVT.bitsLT(MVT::i32))
|
|
BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
|
|
|
|
// The shift amount is identical so we can do a vector shift.
|
|
SDValue ValOp = N->getOperand(0);
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown shift opcode!");
|
|
break;
|
|
case ISD::SHL:
|
|
if (VT == MVT::v2i64)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
|
|
ValOp, BaseShAmt);
|
|
if (VT == MVT::v4i32)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
|
|
ValOp, BaseShAmt);
|
|
if (VT == MVT::v8i16)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
|
|
ValOp, BaseShAmt);
|
|
break;
|
|
case ISD::SRA:
|
|
if (VT == MVT::v4i32)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
|
|
ValOp, BaseShAmt);
|
|
if (VT == MVT::v8i16)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
|
|
ValOp, BaseShAmt);
|
|
break;
|
|
case ISD::SRL:
|
|
if (VT == MVT::v2i64)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
|
|
ValOp, BaseShAmt);
|
|
if (VT == MVT::v4i32)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
|
|
ValOp, BaseShAmt);
|
|
if (VT == MVT::v8i16)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
|
|
ValOp, BaseShAmt);
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
|
|
// CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
|
|
// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
|
|
// and friends. Likewise for OR -> CMPNEQSS.
|
|
static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
unsigned opcode;
|
|
|
|
// SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
|
|
// we're requiring SSE2 for both.
|
|
if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue CMP0 = N0->getOperand(1);
|
|
SDValue CMP1 = N1->getOperand(1);
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
// The SETCCs should both refer to the same CMP.
|
|
if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
|
|
return SDValue();
|
|
|
|
SDValue CMP00 = CMP0->getOperand(0);
|
|
SDValue CMP01 = CMP0->getOperand(1);
|
|
EVT VT = CMP00.getValueType();
|
|
|
|
if (VT == MVT::f32 || VT == MVT::f64) {
|
|
bool ExpectingFlags = false;
|
|
// Check for any users that want flags:
|
|
for (SDNode::use_iterator UI = N->use_begin(),
|
|
UE = N->use_end();
|
|
!ExpectingFlags && UI != UE; ++UI)
|
|
switch (UI->getOpcode()) {
|
|
default:
|
|
case ISD::BR_CC:
|
|
case ISD::BRCOND:
|
|
case ISD::SELECT:
|
|
ExpectingFlags = true;
|
|
break;
|
|
case ISD::CopyToReg:
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
break;
|
|
}
|
|
|
|
if (!ExpectingFlags) {
|
|
enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
|
|
enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
|
|
|
|
if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
|
|
X86::CondCode tmp = cc0;
|
|
cc0 = cc1;
|
|
cc1 = tmp;
|
|
}
|
|
|
|
if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
|
|
(cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
|
|
bool is64BitFP = (CMP00.getValueType() == MVT::f64);
|
|
X86ISD::NodeType NTOperator = is64BitFP ?
|
|
X86ISD::FSETCCsd : X86ISD::FSETCCss;
|
|
// FIXME: need symbolic constants for these magic numbers.
|
|
// See X86ATTInstPrinter.cpp:printSSECC().
|
|
unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
|
|
SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
|
|
DAG.getConstant(x86cc, MVT::i8));
|
|
SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
|
|
OnesOrZeroesF);
|
|
SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
|
|
DAG.getConstant(1, MVT::i32));
|
|
SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
|
|
return OneBitOfTruth;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
|
|
if (R.getNode())
|
|
return R;
|
|
|
|
// Want to form PANDN nodes, in the hopes of then easily combining them with
|
|
// OR and AND nodes to form PBLEND/PSIGN.
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::v2i64)
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
// Check LHS for vnot
|
|
if (N0.getOpcode() == ISD::XOR &&
|
|
ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
|
|
return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1);
|
|
|
|
// Check RHS for vnot
|
|
if (N1.getOpcode() == ISD::XOR &&
|
|
ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
|
|
return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
|
|
if (R.getNode())
|
|
return R;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// look for psign/blend
|
|
if (Subtarget->hasSSSE3()) {
|
|
if (VT == MVT::v2i64) {
|
|
// Canonicalize pandn to RHS
|
|
if (N0.getOpcode() == X86ISD::PANDN)
|
|
std::swap(N0, N1);
|
|
// or (and (m, x), (pandn m, y))
|
|
if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) {
|
|
SDValue Mask = N1.getOperand(0);
|
|
SDValue X = N1.getOperand(1);
|
|
SDValue Y;
|
|
if (N0.getOperand(0) == Mask)
|
|
Y = N0.getOperand(1);
|
|
if (N0.getOperand(1) == Mask)
|
|
Y = N0.getOperand(0);
|
|
|
|
// Check to see if the mask appeared in both the AND and PANDN and
|
|
if (!Y.getNode())
|
|
return SDValue();
|
|
|
|
// Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
|
|
if (Mask.getOpcode() != ISD::BITCAST ||
|
|
X.getOpcode() != ISD::BITCAST ||
|
|
Y.getOpcode() != ISD::BITCAST)
|
|
return SDValue();
|
|
|
|
// Look through mask bitcast.
|
|
Mask = Mask.getOperand(0);
|
|
EVT MaskVT = Mask.getValueType();
|
|
|
|
// Validate that the Mask operand is a vector sra node. The sra node
|
|
// will be an intrinsic.
|
|
if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
|
|
return SDValue();
|
|
|
|
// FIXME: what to do for bytes, since there is a psignb/pblendvb, but
|
|
// there is no psrai.b
|
|
switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
|
|
case Intrinsic::x86_sse2_psrai_w:
|
|
case Intrinsic::x86_sse2_psrai_d:
|
|
break;
|
|
default: return SDValue();
|
|
}
|
|
|
|
// Check that the SRA is all signbits.
|
|
SDValue SraC = Mask.getOperand(2);
|
|
unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
|
|
unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
|
|
if ((SraAmt + 1) != EltBits)
|
|
return SDValue();
|
|
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
// Now we know we at least have a plendvb with the mask val. See if
|
|
// we can form a psignb/w/d.
|
|
// psign = x.type == y.type == mask.type && y = sub(0, x);
|
|
X = X.getOperand(0);
|
|
Y = Y.getOperand(0);
|
|
if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
|
|
ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
|
|
X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
|
|
unsigned Opc = 0;
|
|
switch (EltBits) {
|
|
case 8: Opc = X86ISD::PSIGNB; break;
|
|
case 16: Opc = X86ISD::PSIGNW; break;
|
|
case 32: Opc = X86ISD::PSIGND; break;
|
|
default: break;
|
|
}
|
|
if (Opc) {
|
|
SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
|
|
}
|
|
}
|
|
// PBLENDVB only available on SSE 4.1
|
|
if (!Subtarget->hasSSE41())
|
|
return SDValue();
|
|
|
|
X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
|
|
Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
|
|
Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
|
|
Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
|
|
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
|
|
std::swap(N0, N1);
|
|
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
|
|
return SDValue();
|
|
if (!N0.hasOneUse() || !N1.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue ShAmt0 = N0.getOperand(1);
|
|
if (ShAmt0.getValueType() != MVT::i8)
|
|
return SDValue();
|
|
SDValue ShAmt1 = N1.getOperand(1);
|
|
if (ShAmt1.getValueType() != MVT::i8)
|
|
return SDValue();
|
|
if (ShAmt0.getOpcode() == ISD::TRUNCATE)
|
|
ShAmt0 = ShAmt0.getOperand(0);
|
|
if (ShAmt1.getOpcode() == ISD::TRUNCATE)
|
|
ShAmt1 = ShAmt1.getOperand(0);
|
|
|
|
DebugLoc DL = N->getDebugLoc();
|
|
unsigned Opc = X86ISD::SHLD;
|
|
SDValue Op0 = N0.getOperand(0);
|
|
SDValue Op1 = N1.getOperand(0);
|
|
if (ShAmt0.getOpcode() == ISD::SUB) {
|
|
Opc = X86ISD::SHRD;
|
|
std::swap(Op0, Op1);
|
|
std::swap(ShAmt0, ShAmt1);
|
|
}
|
|
|
|
unsigned Bits = VT.getSizeInBits();
|
|
if (ShAmt1.getOpcode() == ISD::SUB) {
|
|
SDValue Sum = ShAmt1.getOperand(0);
|
|
if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
|
|
SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
|
|
if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
|
|
ShAmt1Op1 = ShAmt1Op1.getOperand(0);
|
|
if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
|
|
return DAG.getNode(Opc, DL, VT,
|
|
Op0, Op1,
|
|
DAG.getNode(ISD::TRUNCATE, DL,
|
|
MVT::i8, ShAmt0));
|
|
}
|
|
} else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
|
|
ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
|
|
if (ShAmt0C &&
|
|
ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
|
|
return DAG.getNode(Opc, DL, VT,
|
|
N0.getOperand(0), N1.getOperand(0),
|
|
DAG.getNode(ISD::TRUNCATE, DL,
|
|
MVT::i8, ShAmt0));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
|
|
static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
// Turn load->store of MMX types into GPR load/stores. This avoids clobbering
|
|
// the FP state in cases where an emms may be missing.
|
|
// A preferable solution to the general problem is to figure out the right
|
|
// places to insert EMMS. This qualifies as a quick hack.
|
|
|
|
// Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
|
|
StoreSDNode *St = cast<StoreSDNode>(N);
|
|
EVT VT = St->getValue().getValueType();
|
|
if (VT.getSizeInBits() != 64)
|
|
return SDValue();
|
|
|
|
const Function *F = DAG.getMachineFunction().getFunction();
|
|
bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
|
|
bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
|
|
&& Subtarget->hasSSE2();
|
|
if ((VT.isVector() ||
|
|
(VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
|
|
isa<LoadSDNode>(St->getValue()) &&
|
|
!cast<LoadSDNode>(St->getValue())->isVolatile() &&
|
|
St->getChain().hasOneUse() && !St->isVolatile()) {
|
|
SDNode* LdVal = St->getValue().getNode();
|
|
LoadSDNode *Ld = 0;
|
|
int TokenFactorIndex = -1;
|
|
SmallVector<SDValue, 8> Ops;
|
|
SDNode* ChainVal = St->getChain().getNode();
|
|
// Must be a store of a load. We currently handle two cases: the load
|
|
// is a direct child, and it's under an intervening TokenFactor. It is
|
|
// possible to dig deeper under nested TokenFactors.
|
|
if (ChainVal == LdVal)
|
|
Ld = cast<LoadSDNode>(St->getChain());
|
|
else if (St->getValue().hasOneUse() &&
|
|
ChainVal->getOpcode() == ISD::TokenFactor) {
|
|
for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
|
|
if (ChainVal->getOperand(i).getNode() == LdVal) {
|
|
TokenFactorIndex = i;
|
|
Ld = cast<LoadSDNode>(St->getValue());
|
|
} else
|
|
Ops.push_back(ChainVal->getOperand(i));
|
|
}
|
|
}
|
|
|
|
if (!Ld || !ISD::isNormalLoad(Ld))
|
|
return SDValue();
|
|
|
|
// If this is not the MMX case, i.e. we are just turning i64 load/store
|
|
// into f64 load/store, avoid the transformation if there are multiple
|
|
// uses of the loaded value.
|
|
if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
|
|
return SDValue();
|
|
|
|
DebugLoc LdDL = Ld->getDebugLoc();
|
|
DebugLoc StDL = N->getDebugLoc();
|
|
// If we are a 64-bit capable x86, lower to a single movq load/store pair.
|
|
// Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
|
|
// pair instead.
|
|
if (Subtarget->is64Bit() || F64IsLegal) {
|
|
EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
|
|
SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
|
|
Ld->getPointerInfo(), Ld->isVolatile(),
|
|
Ld->isNonTemporal(), Ld->getAlignment());
|
|
SDValue NewChain = NewLd.getValue(1);
|
|
if (TokenFactorIndex != -1) {
|
|
Ops.push_back(NewChain);
|
|
NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
|
|
Ops.size());
|
|
}
|
|
return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
|
|
St->getPointerInfo(),
|
|
St->isVolatile(), St->isNonTemporal(),
|
|
St->getAlignment());
|
|
}
|
|
|
|
// Otherwise, lower to two pairs of 32-bit loads / stores.
|
|
SDValue LoAddr = Ld->getBasePtr();
|
|
SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
|
|
DAG.getConstant(4, MVT::i32));
|
|
|
|
SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
|
|
Ld->getPointerInfo(),
|
|
Ld->isVolatile(), Ld->isNonTemporal(),
|
|
Ld->getAlignment());
|
|
SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
|
|
Ld->getPointerInfo().getWithOffset(4),
|
|
Ld->isVolatile(), Ld->isNonTemporal(),
|
|
MinAlign(Ld->getAlignment(), 4));
|
|
|
|
SDValue NewChain = LoLd.getValue(1);
|
|
if (TokenFactorIndex != -1) {
|
|
Ops.push_back(LoLd);
|
|
Ops.push_back(HiLd);
|
|
NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
|
|
Ops.size());
|
|
}
|
|
|
|
LoAddr = St->getBasePtr();
|
|
HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
|
|
DAG.getConstant(4, MVT::i32));
|
|
|
|
SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
|
|
St->getPointerInfo(),
|
|
St->isVolatile(), St->isNonTemporal(),
|
|
St->getAlignment());
|
|
SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
|
|
St->getPointerInfo().getWithOffset(4),
|
|
St->isVolatile(),
|
|
St->isNonTemporal(),
|
|
MinAlign(St->getAlignment(), 4));
|
|
return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
|
|
/// X86ISD::FXOR nodes.
|
|
static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
|
|
assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
|
|
// F[X]OR(0.0, x) -> x
|
|
// F[X]OR(x, 0.0) -> x
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
|
|
if (C->getValueAPF().isPosZero())
|
|
return N->getOperand(1);
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
|
|
if (C->getValueAPF().isPosZero())
|
|
return N->getOperand(0);
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
|
|
static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// FAND(0.0, x) -> 0.0
|
|
// FAND(x, 0.0) -> 0.0
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
|
|
if (C->getValueAPF().isPosZero())
|
|
return N->getOperand(0);
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
|
|
if (C->getValueAPF().isPosZero())
|
|
return N->getOperand(1);
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformBTCombine(SDNode *N,
|
|
SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
// BT ignores high bits in the bit index operand.
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Op1.hasOneUse()) {
|
|
unsigned BitWidth = Op1.getValueSizeInBits();
|
|
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
|
|
APInt KnownZero, KnownOne;
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
|
|
!DCI.isBeforeLegalizeOps());
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
|
|
TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
|
|
DCI.CommitTargetLoweringOpt(TLO);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue Op = N->getOperand(0);
|
|
if (Op.getOpcode() == ISD::BITCAST)
|
|
Op = Op.getOperand(0);
|
|
EVT VT = N->getValueType(0), OpVT = Op.getValueType();
|
|
if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
|
|
VT.getVectorElementType().getSizeInBits() ==
|
|
OpVT.getVectorElementType().getSizeInBits()) {
|
|
return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
|
|
// (and (i32 x86isd::setcc_carry), 1)
|
|
// This eliminates the zext. This transformation is necessary because
|
|
// ISD::SETCC is always legalized to i8.
|
|
DebugLoc dl = N->getDebugLoc();
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
if (N0.getOpcode() == ISD::AND &&
|
|
N0.hasOneUse() &&
|
|
N0.getOperand(0).hasOneUse()) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getOpcode() != X86ISD::SETCC_CARRY)
|
|
return SDValue();
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!C || C->getZExtValue() != 1)
|
|
return SDValue();
|
|
return DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
|
|
N00.getOperand(0), N00.getOperand(1)),
|
|
DAG.getConstant(1, VT));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
|
|
static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned X86CC = N->getConstantOperandVal(0);
|
|
SDValue EFLAG = N->getOperand(1);
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
// Materialize "setb reg" as "sbb reg,reg", since it can be extended without
|
|
// a zext and produces an all-ones bit which is more useful than 0/1 in some
|
|
// cases.
|
|
if (X86CC == X86::COND_B)
|
|
return DAG.getNode(ISD::AND, DL, MVT::i8,
|
|
DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
|
|
DAG.getConstant(X86CC, MVT::i8), EFLAG),
|
|
DAG.getConstant(1, MVT::i8));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, const X86TargetLowering *XTLI) {
|
|
DebugLoc dl = N->getDebugLoc();
|
|
SDValue Op0 = N->getOperand(0);
|
|
// Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
|
|
// a 32-bit target where SSE doesn't support i64->FP operations.
|
|
if (Op0.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
|
|
EVT VT = Ld->getValueType(0);
|
|
if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
|
|
ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
|
|
!XTLI->getSubtarget()->is64Bit() &&
|
|
!DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
|
|
SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0), Ld->getChain(), Op0, DAG);
|
|
DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
|
|
return FILDChain;
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
|
|
static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
|
|
X86TargetLowering::DAGCombinerInfo &DCI) {
|
|
// If the LHS and RHS of the ADC node are zero, then it can't overflow and
|
|
// the result is either zero or one (depending on the input carry bit).
|
|
// Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
|
|
if (X86::isZeroNode(N->getOperand(0)) &&
|
|
X86::isZeroNode(N->getOperand(1)) &&
|
|
// We don't have a good way to replace an EFLAGS use, so only do this when
|
|
// dead right now.
|
|
SDValue(N, 1).use_empty()) {
|
|
DebugLoc DL = N->getDebugLoc();
|
|
EVT VT = N->getValueType(0);
|
|
SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
|
|
SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
|
|
DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
|
|
DAG.getConstant(X86::COND_B,MVT::i8),
|
|
N->getOperand(2)),
|
|
DAG.getConstant(1, VT));
|
|
return DCI.CombineTo(N, Res1, CarryOut);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// fold (add Y, (sete X, 0)) -> adc 0, Y
|
|
// (add Y, (setne X, 0)) -> sbb -1, Y
|
|
// (sub (sete X, 0), Y) -> sbb 0, Y
|
|
// (sub (setne X, 0), Y) -> adc -1, Y
|
|
static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
// Look through ZExts.
|
|
SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
|
|
if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue SetCC = Ext.getOperand(0);
|
|
if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
|
|
return SDValue();
|
|
|
|
X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
|
|
if (CC != X86::COND_E && CC != X86::COND_NE)
|
|
return SDValue();
|
|
|
|
SDValue Cmp = SetCC.getOperand(1);
|
|
if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
|
|
!X86::isZeroNode(Cmp.getOperand(1)) ||
|
|
!Cmp.getOperand(0).getValueType().isInteger())
|
|
return SDValue();
|
|
|
|
SDValue CmpOp0 = Cmp.getOperand(0);
|
|
SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
|
|
DAG.getConstant(1, CmpOp0.getValueType()));
|
|
|
|
SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
|
|
if (CC == X86::COND_NE)
|
|
return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
|
|
DL, OtherVal.getValueType(), OtherVal,
|
|
DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
|
|
return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
|
|
DL, OtherVal.getValueType(), OtherVal,
|
|
DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
|
|
}
|
|
|
|
SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
|
|
case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
|
|
case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
|
|
case ISD::ADD:
|
|
case ISD::SUB: return OptimizeConditonalInDecrement(N, DAG);
|
|
case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
|
|
case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
|
|
case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
|
|
case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this);
|
|
case X86ISD::FXOR:
|
|
case X86ISD::FOR: return PerformFORCombine(N, DAG);
|
|
case X86ISD::FAND: return PerformFANDCombine(N, DAG);
|
|
case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
|
|
case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
|
|
case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG);
|
|
case X86ISD::SETCC: return PerformSETCCCombine(N, DAG);
|
|
case X86ISD::SHUFPS: // Handle all target specific shuffles
|
|
case X86ISD::SHUFPD:
|
|
case X86ISD::PALIGN:
|
|
case X86ISD::PUNPCKHBW:
|
|
case X86ISD::PUNPCKHWD:
|
|
case X86ISD::PUNPCKHDQ:
|
|
case X86ISD::PUNPCKHQDQ:
|
|
case X86ISD::UNPCKHPS:
|
|
case X86ISD::UNPCKHPD:
|
|
case X86ISD::PUNPCKLBW:
|
|
case X86ISD::PUNPCKLWD:
|
|
case X86ISD::PUNPCKLDQ:
|
|
case X86ISD::PUNPCKLQDQ:
|
|
case X86ISD::UNPCKLPS:
|
|
case X86ISD::UNPCKLPD:
|
|
case X86ISD::VUNPCKLPS:
|
|
case X86ISD::VUNPCKLPD:
|
|
case X86ISD::VUNPCKLPSY:
|
|
case X86ISD::VUNPCKLPDY:
|
|
case X86ISD::MOVHLPS:
|
|
case X86ISD::MOVLHPS:
|
|
case X86ISD::PSHUFD:
|
|
case X86ISD::PSHUFHW:
|
|
case X86ISD::PSHUFLW:
|
|
case X86ISD::MOVSS:
|
|
case X86ISD::MOVSD:
|
|
case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// isTypeDesirableForOp - Return true if the target has native support for
|
|
/// the specified value type and it is 'desirable' to use the type for the
|
|
/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
|
|
/// instruction encodings are longer and some i16 instructions are slow.
|
|
bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
|
|
if (!isTypeLegal(VT))
|
|
return false;
|
|
if (VT != MVT::i16)
|
|
return true;
|
|
|
|
switch (Opc) {
|
|
default:
|
|
return true;
|
|
case ISD::LOAD:
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
case ISD::SUB:
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// IsDesirableToPromoteOp - This method query the target whether it is
|
|
/// beneficial for dag combiner to promote the specified node. If true, it
|
|
/// should return the desired promotion type by reference.
|
|
bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
|
|
EVT VT = Op.getValueType();
|
|
if (VT != MVT::i16)
|
|
return false;
|
|
|
|
bool Promote = false;
|
|
bool Commute = false;
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case ISD::LOAD: {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
|
// If the non-extending load has a single use and it's not live out, then it
|
|
// might be folded.
|
|
if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
|
|
Op.hasOneUse()*/) {
|
|
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
|
|
UE = Op.getNode()->use_end(); UI != UE; ++UI) {
|
|
// The only case where we'd want to promote LOAD (rather then it being
|
|
// promoted as an operand is when it's only use is liveout.
|
|
if (UI->getOpcode() != ISD::CopyToReg)
|
|
return false;
|
|
}
|
|
}
|
|
Promote = true;
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
Promote = true;
|
|
break;
|
|
case ISD::SHL:
|
|
case ISD::SRL: {
|
|
SDValue N0 = Op.getOperand(0);
|
|
// Look out for (store (shl (load), x)).
|
|
if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
|
|
return false;
|
|
Promote = true;
|
|
break;
|
|
}
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
Commute = true;
|
|
// fallthrough
|
|
case ISD::SUB: {
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue N1 = Op.getOperand(1);
|
|
if (!Commute && MayFoldLoad(N1))
|
|
return false;
|
|
// Avoid disabling potential load folding opportunities.
|
|
if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
|
|
return false;
|
|
if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
|
|
return false;
|
|
Promote = true;
|
|
}
|
|
}
|
|
|
|
PVT = MVT::i32;
|
|
return Promote;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
|
|
InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
|
|
|
|
std::string AsmStr = IA->getAsmString();
|
|
|
|
// TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
|
|
SmallVector<StringRef, 4> AsmPieces;
|
|
SplitString(AsmStr, AsmPieces, ";\n");
|
|
|
|
switch (AsmPieces.size()) {
|
|
default: return false;
|
|
case 1:
|
|
AsmStr = AsmPieces[0];
|
|
AsmPieces.clear();
|
|
SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace.
|
|
|
|
// FIXME: this should verify that we are targeting a 486 or better. If not,
|
|
// we will turn this bswap into something that will be lowered to logical ops
|
|
// instead of emitting the bswap asm. For now, we don't support 486 or lower
|
|
// so don't worry about this.
|
|
// bswap $0
|
|
if (AsmPieces.size() == 2 &&
|
|
(AsmPieces[0] == "bswap" ||
|
|
AsmPieces[0] == "bswapq" ||
|
|
AsmPieces[0] == "bswapl") &&
|
|
(AsmPieces[1] == "$0" ||
|
|
AsmPieces[1] == "${0:q}")) {
|
|
// No need to check constraints, nothing other than the equivalent of
|
|
// "=r,0" would be valid here.
|
|
const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
|
|
if (!Ty || Ty->getBitWidth() % 16 != 0)
|
|
return false;
|
|
return IntrinsicLowering::LowerToByteSwap(CI);
|
|
}
|
|
// rorw $$8, ${0:w} --> llvm.bswap.i16
|
|
if (CI->getType()->isIntegerTy(16) &&
|
|
AsmPieces.size() == 3 &&
|
|
(AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
|
|
AsmPieces[1] == "$$8," &&
|
|
AsmPieces[2] == "${0:w}" &&
|
|
IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
|
|
AsmPieces.clear();
|
|
const std::string &ConstraintsStr = IA->getConstraintString();
|
|
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
|
|
std::sort(AsmPieces.begin(), AsmPieces.end());
|
|
if (AsmPieces.size() == 4 &&
|
|
AsmPieces[0] == "~{cc}" &&
|
|
AsmPieces[1] == "~{dirflag}" &&
|
|
AsmPieces[2] == "~{flags}" &&
|
|
AsmPieces[3] == "~{fpsr}") {
|
|
const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
|
|
if (!Ty || Ty->getBitWidth() % 16 != 0)
|
|
return false;
|
|
return IntrinsicLowering::LowerToByteSwap(CI);
|
|
}
|
|
}
|
|
break;
|
|
case 3:
|
|
if (CI->getType()->isIntegerTy(32) &&
|
|
IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
|
|
SmallVector<StringRef, 4> Words;
|
|
SplitString(AsmPieces[0], Words, " \t,");
|
|
if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
|
|
Words[2] == "${0:w}") {
|
|
Words.clear();
|
|
SplitString(AsmPieces[1], Words, " \t,");
|
|
if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
|
|
Words[2] == "$0") {
|
|
Words.clear();
|
|
SplitString(AsmPieces[2], Words, " \t,");
|
|
if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
|
|
Words[2] == "${0:w}") {
|
|
AsmPieces.clear();
|
|
const std::string &ConstraintsStr = IA->getConstraintString();
|
|
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
|
|
std::sort(AsmPieces.begin(), AsmPieces.end());
|
|
if (AsmPieces.size() == 4 &&
|
|
AsmPieces[0] == "~{cc}" &&
|
|
AsmPieces[1] == "~{dirflag}" &&
|
|
AsmPieces[2] == "~{flags}" &&
|
|
AsmPieces[3] == "~{fpsr}") {
|
|
const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
|
|
if (!Ty || Ty->getBitWidth() % 16 != 0)
|
|
return false;
|
|
return IntrinsicLowering::LowerToByteSwap(CI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CI->getType()->isIntegerTy(64)) {
|
|
InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
|
|
if (Constraints.size() >= 2 &&
|
|
Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
|
|
Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
|
|
// bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
|
|
SmallVector<StringRef, 4> Words;
|
|
SplitString(AsmPieces[0], Words, " \t");
|
|
if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
|
|
Words.clear();
|
|
SplitString(AsmPieces[1], Words, " \t");
|
|
if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
|
|
Words.clear();
|
|
SplitString(AsmPieces[2], Words, " \t,");
|
|
if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
|
|
Words[2] == "%edx") {
|
|
const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
|
|
if (!Ty || Ty->getBitWidth() % 16 != 0)
|
|
return false;
|
|
return IntrinsicLowering::LowerToByteSwap(CI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
X86TargetLowering::ConstraintType
|
|
X86TargetLowering::getConstraintType(const std::string &Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'R':
|
|
case 'q':
|
|
case 'Q':
|
|
case 'f':
|
|
case 't':
|
|
case 'u':
|
|
case 'y':
|
|
case 'x':
|
|
case 'Y':
|
|
return C_RegisterClass;
|
|
case 'a':
|
|
case 'b':
|
|
case 'c':
|
|
case 'd':
|
|
case 'S':
|
|
case 'D':
|
|
case 'A':
|
|
return C_Register;
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
case 'G':
|
|
case 'C':
|
|
case 'e':
|
|
case 'Z':
|
|
return C_Other;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
X86TargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (CallOperandVal == NULL)
|
|
return CW_Default;
|
|
const Type *type = CallOperandVal->getType();
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
case 'R':
|
|
case 'q':
|
|
case 'Q':
|
|
case 'a':
|
|
case 'b':
|
|
case 'c':
|
|
case 'd':
|
|
case 'S':
|
|
case 'D':
|
|
case 'A':
|
|
if (CallOperandVal->getType()->isIntegerTy())
|
|
weight = CW_SpecificReg;
|
|
break;
|
|
case 'f':
|
|
case 't':
|
|
case 'u':
|
|
if (type->isFloatingPointTy())
|
|
weight = CW_SpecificReg;
|
|
break;
|
|
case 'y':
|
|
if (type->isX86_MMXTy() && Subtarget->hasMMX())
|
|
weight = CW_SpecificReg;
|
|
break;
|
|
case 'x':
|
|
case 'Y':
|
|
if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'I':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
|
|
if (C->getZExtValue() <= 31)
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'J':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getZExtValue() <= 63)
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'K':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'L':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'M':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getZExtValue() <= 3)
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'N':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getZExtValue() <= 0xff)
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'G':
|
|
case 'C':
|
|
if (dyn_cast<ConstantFP>(CallOperandVal)) {
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'e':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if ((C->getSExtValue() >= -0x80000000LL) &&
|
|
(C->getSExtValue() <= 0x7fffffffLL))
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'Z':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getZExtValue() <= 0xffffffff)
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
/// LowerXConstraint - try to replace an X constraint, which matches anything,
|
|
/// with another that has more specific requirements based on the type of the
|
|
/// corresponding operand.
|
|
const char *X86TargetLowering::
|
|
LowerXConstraint(EVT ConstraintVT) const {
|
|
// FP X constraints get lowered to SSE1/2 registers if available, otherwise
|
|
// 'f' like normal targets.
|
|
if (ConstraintVT.isFloatingPoint()) {
|
|
if (Subtarget->hasXMMInt())
|
|
return "Y";
|
|
if (Subtarget->hasXMM())
|
|
return "x";
|
|
}
|
|
|
|
return TargetLowering::LowerXConstraint(ConstraintVT);
|
|
}
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue>&Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result(0, 0);
|
|
|
|
// Only support length 1 constraints for now.
|
|
if (Constraint.length() > 1) return;
|
|
|
|
char ConstraintLetter = Constraint[0];
|
|
switch (ConstraintLetter) {
|
|
default: break;
|
|
case 'I':
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if (C->getZExtValue() <= 31) {
|
|
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'J':
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if (C->getZExtValue() <= 63) {
|
|
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'K':
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
|
|
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'N':
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if (C->getZExtValue() <= 255) {
|
|
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'e': {
|
|
// 32-bit signed value
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
|
|
C->getSExtValue())) {
|
|
// Widen to 64 bits here to get it sign extended.
|
|
Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
|
|
break;
|
|
}
|
|
// FIXME gcc accepts some relocatable values here too, but only in certain
|
|
// memory models; it's complicated.
|
|
}
|
|
return;
|
|
}
|
|
case 'Z': {
|
|
// 32-bit unsigned value
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
|
|
C->getZExtValue())) {
|
|
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
|
|
break;
|
|
}
|
|
}
|
|
// FIXME gcc accepts some relocatable values here too, but only in certain
|
|
// memory models; it's complicated.
|
|
return;
|
|
}
|
|
case 'i': {
|
|
// Literal immediates are always ok.
|
|
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
|
|
// Widen to 64 bits here to get it sign extended.
|
|
Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
|
|
break;
|
|
}
|
|
|
|
// In any sort of PIC mode addresses need to be computed at runtime by
|
|
// adding in a register or some sort of table lookup. These can't
|
|
// be used as immediates.
|
|
if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
|
|
return;
|
|
|
|
// If we are in non-pic codegen mode, we allow the address of a global (with
|
|
// an optional displacement) to be used with 'i'.
|
|
GlobalAddressSDNode *GA = 0;
|
|
int64_t Offset = 0;
|
|
|
|
// Match either (GA), (GA+C), (GA+C1+C2), etc.
|
|
while (1) {
|
|
if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
|
|
Offset += GA->getOffset();
|
|
break;
|
|
} else if (Op.getOpcode() == ISD::ADD) {
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
Offset += C->getZExtValue();
|
|
Op = Op.getOperand(0);
|
|
continue;
|
|
}
|
|
} else if (Op.getOpcode() == ISD::SUB) {
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
Offset += -C->getZExtValue();
|
|
Op = Op.getOperand(0);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, this isn't something we can handle, reject it.
|
|
return;
|
|
}
|
|
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
// If we require an extra load to get this address, as in PIC mode, we
|
|
// can't accept it.
|
|
if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
|
|
getTargetMachine())))
|
|
return;
|
|
|
|
Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
|
|
GA->getValueType(0), Offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
std::vector<unsigned> X86TargetLowering::
|
|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
|
|
EVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
// FIXME: not handling fp-stack yet!
|
|
switch (Constraint[0]) { // GCC X86 Constraint Letters
|
|
default: break; // Unknown constraint letter
|
|
case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
|
|
if (Subtarget->is64Bit()) {
|
|
if (VT == MVT::i32)
|
|
return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
|
|
X86::ESI, X86::EDI, X86::R8D, X86::R9D,
|
|
X86::R10D,X86::R11D,X86::R12D,
|
|
X86::R13D,X86::R14D,X86::R15D,
|
|
X86::EBP, X86::ESP, 0);
|
|
else if (VT == MVT::i16)
|
|
return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
|
|
X86::SI, X86::DI, X86::R8W,X86::R9W,
|
|
X86::R10W,X86::R11W,X86::R12W,
|
|
X86::R13W,X86::R14W,X86::R15W,
|
|
X86::BP, X86::SP, 0);
|
|
else if (VT == MVT::i8)
|
|
return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL,
|
|
X86::SIL, X86::DIL, X86::R8B,X86::R9B,
|
|
X86::R10B,X86::R11B,X86::R12B,
|
|
X86::R13B,X86::R14B,X86::R15B,
|
|
X86::BPL, X86::SPL, 0);
|
|
|
|
else if (VT == MVT::i64)
|
|
return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
|
|
X86::RSI, X86::RDI, X86::R8, X86::R9,
|
|
X86::R10, X86::R11, X86::R12,
|
|
X86::R13, X86::R14, X86::R15,
|
|
X86::RBP, X86::RSP, 0);
|
|
|
|
break;
|
|
}
|
|
// 32-bit fallthrough
|
|
case 'Q': // Q_REGS
|
|
if (VT == MVT::i32)
|
|
return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
|
|
else if (VT == MVT::i16)
|
|
return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
|
|
else if (VT == MVT::i8)
|
|
return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
|
|
else if (VT == MVT::i64)
|
|
return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return std::vector<unsigned>();
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass*>
|
|
X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
EVT VT) const {
|
|
// First, see if this is a constraint that directly corresponds to an LLVM
|
|
// register class.
|
|
if (Constraint.size() == 1) {
|
|
// GCC Constraint Letters
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
case 'r': // GENERAL_REGS
|
|
case 'l': // INDEX_REGS
|
|
if (VT == MVT::i8)
|
|
return std::make_pair(0U, X86::GR8RegisterClass);
|
|
if (VT == MVT::i16)
|
|
return std::make_pair(0U, X86::GR16RegisterClass);
|
|
if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
|
|
return std::make_pair(0U, X86::GR32RegisterClass);
|
|
return std::make_pair(0U, X86::GR64RegisterClass);
|
|
case 'R': // LEGACY_REGS
|
|
if (VT == MVT::i8)
|
|
return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
|
|
if (VT == MVT::i16)
|
|
return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
|
|
if (VT == MVT::i32 || !Subtarget->is64Bit())
|
|
return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
|
|
return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
|
|
case 'f': // FP Stack registers.
|
|
// If SSE is enabled for this VT, use f80 to ensure the isel moves the
|
|
// value to the correct fpstack register class.
|
|
if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
|
|
return std::make_pair(0U, X86::RFP32RegisterClass);
|
|
if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
|
|
return std::make_pair(0U, X86::RFP64RegisterClass);
|
|
return std::make_pair(0U, X86::RFP80RegisterClass);
|
|
case 'y': // MMX_REGS if MMX allowed.
|
|
if (!Subtarget->hasMMX()) break;
|
|
return std::make_pair(0U, X86::VR64RegisterClass);
|
|
case 'Y': // SSE_REGS if SSE2 allowed
|
|
if (!Subtarget->hasXMMInt()) break;
|
|
// FALL THROUGH.
|
|
case 'x': // SSE_REGS if SSE1 allowed
|
|
if (!Subtarget->hasXMM()) break;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: break;
|
|
// Scalar SSE types.
|
|
case MVT::f32:
|
|
case MVT::i32:
|
|
return std::make_pair(0U, X86::FR32RegisterClass);
|
|
case MVT::f64:
|
|
case MVT::i64:
|
|
return std::make_pair(0U, X86::FR64RegisterClass);
|
|
// Vector types.
|
|
case MVT::v16i8:
|
|
case MVT::v8i16:
|
|
case MVT::v4i32:
|
|
case MVT::v2i64:
|
|
case MVT::v4f32:
|
|
case MVT::v2f64:
|
|
return std::make_pair(0U, X86::VR128RegisterClass);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Use the default implementation in TargetLowering to convert the register
|
|
// constraint into a member of a register class.
|
|
std::pair<unsigned, const TargetRegisterClass*> Res;
|
|
Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
|
|
// Not found as a standard register?
|
|
if (Res.second == 0) {
|
|
// Map st(0) -> st(7) -> ST0
|
|
if (Constraint.size() == 7 && Constraint[0] == '{' &&
|
|
tolower(Constraint[1]) == 's' &&
|
|
tolower(Constraint[2]) == 't' &&
|
|
Constraint[3] == '(' &&
|
|
(Constraint[4] >= '0' && Constraint[4] <= '7') &&
|
|
Constraint[5] == ')' &&
|
|
Constraint[6] == '}') {
|
|
|
|
Res.first = X86::ST0+Constraint[4]-'0';
|
|
Res.second = X86::RFP80RegisterClass;
|
|
return Res;
|
|
}
|
|
|
|
// GCC allows "st(0)" to be called just plain "st".
|
|
if (StringRef("{st}").equals_lower(Constraint)) {
|
|
Res.first = X86::ST0;
|
|
Res.second = X86::RFP80RegisterClass;
|
|
return Res;
|
|
}
|
|
|
|
// flags -> EFLAGS
|
|
if (StringRef("{flags}").equals_lower(Constraint)) {
|
|
Res.first = X86::EFLAGS;
|
|
Res.second = X86::CCRRegisterClass;
|
|
return Res;
|
|
}
|
|
|
|
// 'A' means EAX + EDX.
|
|
if (Constraint == "A") {
|
|
Res.first = X86::EAX;
|
|
Res.second = X86::GR32_ADRegisterClass;
|
|
return Res;
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
// Otherwise, check to see if this is a register class of the wrong value
|
|
// type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
|
|
// turn into {ax},{dx}.
|
|
if (Res.second->hasType(VT))
|
|
return Res; // Correct type already, nothing to do.
|
|
|
|
// All of the single-register GCC register classes map their values onto
|
|
// 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
|
|
// really want an 8-bit or 32-bit register, map to the appropriate register
|
|
// class and return the appropriate register.
|
|
if (Res.second == X86::GR16RegisterClass) {
|
|
if (VT == MVT::i8) {
|
|
unsigned DestReg = 0;
|
|
switch (Res.first) {
|
|
default: break;
|
|
case X86::AX: DestReg = X86::AL; break;
|
|
case X86::DX: DestReg = X86::DL; break;
|
|
case X86::CX: DestReg = X86::CL; break;
|
|
case X86::BX: DestReg = X86::BL; break;
|
|
}
|
|
if (DestReg) {
|
|
Res.first = DestReg;
|
|
Res.second = X86::GR8RegisterClass;
|
|
}
|
|
} else if (VT == MVT::i32) {
|
|
unsigned DestReg = 0;
|
|
switch (Res.first) {
|
|
default: break;
|
|
case X86::AX: DestReg = X86::EAX; break;
|
|
case X86::DX: DestReg = X86::EDX; break;
|
|
case X86::CX: DestReg = X86::ECX; break;
|
|
case X86::BX: DestReg = X86::EBX; break;
|
|
case X86::SI: DestReg = X86::ESI; break;
|
|
case X86::DI: DestReg = X86::EDI; break;
|
|
case X86::BP: DestReg = X86::EBP; break;
|
|
case X86::SP: DestReg = X86::ESP; break;
|
|
}
|
|
if (DestReg) {
|
|
Res.first = DestReg;
|
|
Res.second = X86::GR32RegisterClass;
|
|
}
|
|
} else if (VT == MVT::i64) {
|
|
unsigned DestReg = 0;
|
|
switch (Res.first) {
|
|
default: break;
|
|
case X86::AX: DestReg = X86::RAX; break;
|
|
case X86::DX: DestReg = X86::RDX; break;
|
|
case X86::CX: DestReg = X86::RCX; break;
|
|
case X86::BX: DestReg = X86::RBX; break;
|
|
case X86::SI: DestReg = X86::RSI; break;
|
|
case X86::DI: DestReg = X86::RDI; break;
|
|
case X86::BP: DestReg = X86::RBP; break;
|
|
case X86::SP: DestReg = X86::RSP; break;
|
|
}
|
|
if (DestReg) {
|
|
Res.first = DestReg;
|
|
Res.second = X86::GR64RegisterClass;
|
|
}
|
|
}
|
|
} else if (Res.second == X86::FR32RegisterClass ||
|
|
Res.second == X86::FR64RegisterClass ||
|
|
Res.second == X86::VR128RegisterClass) {
|
|
// Handle references to XMM physical registers that got mapped into the
|
|
// wrong class. This can happen with constraints like {xmm0} where the
|
|
// target independent register mapper will just pick the first match it can
|
|
// find, ignoring the required type.
|
|
if (VT == MVT::f32)
|
|
Res.second = X86::FR32RegisterClass;
|
|
else if (VT == MVT::f64)
|
|
Res.second = X86::FR64RegisterClass;
|
|
else if (X86::VR128RegisterClass->hasType(VT))
|
|
Res.second = X86::VR128RegisterClass;
|
|
}
|
|
|
|
return Res;
|
|
}
|