llvm-mirror/lib/Target/X86/X86Instr64bit.td
Nate Begeman 92efc4f0ce Map address space 256 to gs; similar mappings could be supported for the
other x86 segments.  address space 0 is stack/default, 1-255 are reserved for
client use.

llvm-svn: 62980
2009-01-26 01:24:32 +00:00

1763 lines
86 KiB
TableGen

//====- X86Instr64bit.td - Describe X86-64 Instructions ----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86-64 instruction set, defining the instructions,
// and properties of the instructions which are needed for code generation,
// machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operand Definitions.
//
// 64-bits but only 32 bits are significant.
def i64i32imm : Operand<i64>;
// 64-bits but only 8 bits are significant.
def i64i8imm : Operand<i64>;
def lea64mem : Operand<i64> {
let PrintMethod = "printi64mem";
let MIOperandInfo = (ops GR64, i8imm, GR64, i32imm);
}
def lea64_32mem : Operand<i32> {
let PrintMethod = "printlea64_32mem";
let MIOperandInfo = (ops GR32, i8imm, GR32, i32imm);
}
//===----------------------------------------------------------------------===//
// Complex Pattern Definitions.
//
def lea64addr : ComplexPattern<i64, 4, "SelectLEAAddr",
[add, mul, shl, or, frameindex, X86Wrapper],
[]>;
//===----------------------------------------------------------------------===//
// Pattern fragments.
//
def i64immSExt8 : PatLeaf<(i64 imm), [{
// i64immSExt8 predicate - True if the 64-bit immediate fits in a 8-bit
// sign extended field.
return (int64_t)N->getZExtValue() == (int8_t)N->getZExtValue();
}]>;
def i64immSExt32 : PatLeaf<(i64 imm), [{
// i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// sign extended field.
return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue();
}]>;
def i64immZExt32 : PatLeaf<(i64 imm), [{
// i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// unsignedsign extended field.
return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue();
}]>;
def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
def zextloadi64i1 : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>;
def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
def extloadi64i1 : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>;
def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
//===----------------------------------------------------------------------===//
// Instruction list...
//
// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [RSP, EFLAGS], Uses = [RSP] in {
def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
"#ADJCALLSTACKDOWN",
[(X86callseq_start timm:$amt)]>,
Requires<[In64BitMode]>;
def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKUP",
[(X86callseq_end timm:$amt1, timm:$amt2)]>,
Requires<[In64BitMode]>;
}
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1 in
// All calls clobber the non-callee saved registers. RSP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead. Uses for argument
// registers are added manually.
let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Uses = [RSP] in {
def CALL64pcrel32 : I<0xE8, RawFrm, (outs), (ins i64imm:$dst, variable_ops),
"call\t${dst:call}", []>;
def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst, variable_ops),
"call\t{*}$dst", [(X86call GR64:$dst)]>;
def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst, variable_ops),
"call\t{*}$dst", [(X86call (loadi64 addr:$dst))]>;
}
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TCRETURNdi64 : I<0, Pseudo, (outs), (ins i64imm:$dst, i32imm:$offset, variable_ops),
"#TC_RETURN $dst $offset",
[]>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TCRETURNri64 : I<0, Pseudo, (outs), (ins GR64:$dst, i32imm:$offset, variable_ops),
"#TC_RETURN $dst $offset",
[]>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst # TAILCALL",
[]>;
// Branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
[(brind GR64:$dst)]>;
def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
[(brind (loadi64 addr:$dst))]>;
}
//===----------------------------------------------------------------------===//
// EH Pseudo Instructions
//
let isTerminator = 1, isReturn = 1, isBarrier = 1,
hasCtrlDep = 1 in {
def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
"ret\t#eh_return, addr: $addr",
[(X86ehret GR64:$addr)]>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions...
//
let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in
def LEAVE64 : I<0xC9, RawFrm,
(outs), (ins), "leave", []>;
let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in {
let mayLoad = 1 in
def POP64r : I<0x58, AddRegFrm,
(outs GR64:$reg), (ins), "pop{q}\t$reg", []>;
let mayStore = 1 in
def PUSH64r : I<0x50, AddRegFrm,
(outs), (ins GR64:$reg), "push{q}\t$reg", []>;
}
let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1 in
def POPFQ : I<0x9D, RawFrm, (outs), (ins), "popf", []>, REX_W;
let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1 in
def PUSHFQ : I<0x9C, RawFrm, (outs), (ins), "pushf", []>;
def LEA64_32r : I<0x8D, MRMSrcMem,
(outs GR32:$dst), (ins lea64_32mem:$src),
"lea{l}\t{$src|$dst}, {$dst|$src}",
[(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>;
let isReMaterializable = 1 in
def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
"lea{q}\t{$src|$dst}, {$dst|$src}",
[(set GR64:$dst, lea64addr:$src)]>;
let isTwoAddress = 1 in
def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src),
"bswap{q}\t$dst",
[(set GR64:$dst, (bswap GR64:$src))]>, TB;
// Bit scan instructions.
let Defs = [EFLAGS] in {
def BSF64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"bsf{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsf GR64:$src)), (implicit EFLAGS)]>, TB;
def BSF64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"bsf{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsf (loadi64 addr:$src))),
(implicit EFLAGS)]>, TB;
def BSR64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"bsr{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsr GR64:$src)), (implicit EFLAGS)]>, TB;
def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"bsr{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsr (loadi64 addr:$src))),
(implicit EFLAGS)]>, TB;
} // Defs = [EFLAGS]
// Repeat string ops
let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI] in
def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
[(X86rep_movs i64)]>, REP;
let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI] in
def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
[(X86rep_stos i64)]>, REP;
//===----------------------------------------------------------------------===//
// Move Instructions...
//
let neverHasSideEffects = 1 in
def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
"mov{q}\t{$src, $dst|$dst, $src}", []>;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def MOV64ri : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src),
"movabs{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, imm:$src)]>;
def MOV64ri32 : RIi32<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, i64immSExt32:$src)]>;
}
let canFoldAsLoad = 1 in
def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (load addr:$src))]>;
def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(store GR64:$src, addr:$dst)]>;
def MOV64mi32 : RIi32<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(store i64immSExt32:$src, addr:$dst)]>;
// Sign/Zero extenders
def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
"movs{bq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR8:$src))]>, TB;
def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
"movs{bq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i8 addr:$src))]>, TB;
def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
"movs{wq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR16:$src))]>, TB;
def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
"movs{wq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i16 addr:$src))]>, TB;
def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR32:$src))]>;
def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i32 addr:$src))]>;
// Use movzbl instead of movzbq when the destination is a register; it's
// equivalent due to implicit zero-extending, and it has a smaller encoding.
def MOVZX64rr8 : I<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
"movz{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zext GR8:$src))]>, TB;
def MOVZX64rm8 : I<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
"movz{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zextloadi64i8 addr:$src))]>, TB;
// Use movzwl instead of movzwq when the destination is a register; it's
// equivalent due to implicit zero-extending, and it has a smaller encoding.
def MOVZX64rr16: I<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
"movz{wl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zext GR16:$src))]>, TB;
def MOVZX64rm16: I<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
"movz{wl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zextloadi64i16 addr:$src))]>, TB;
// There's no movzlq instruction, but movl can be used for this purpose, using
// implicit zero-extension. We need this because the seeming alternative for
// implementing zext from 32 to 64, an EXTRACT_SUBREG/SUBREG_TO_REG pair, isn't
// safe because both instructions could be optimized away in the
// register-to-register case, leaving nothing behind to do the zero extension.
def MOVZX64rr32 : I<0x89, MRMDestReg, (outs GR64:$dst), (ins GR32:$src),
"mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zext GR32:$src))]>;
def MOVZX64rm32 : I<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
"mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zextloadi64i32 addr:$src))]>;
let neverHasSideEffects = 1 in {
let Defs = [RAX], Uses = [EAX] in
def CDQE : RI<0x98, RawFrm, (outs), (ins),
"{cltq|cdqe}", []>; // RAX = signext(EAX)
let Defs = [RAX,RDX], Uses = [RAX] in
def CQO : RI<0x99, RawFrm, (outs), (ins),
"{cqto|cqo}", []>; // RDX:RAX = signext(RAX)
}
//===----------------------------------------------------------------------===//
// Arithmetic Instructions...
//
let Defs = [EFLAGS] in {
let isTwoAddress = 1 in {
let isConvertibleToThreeAddress = 1 in {
let isCommutable = 1 in
// Register-Register Addition
def ADD64rr : RI<0x01, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, GR64:$src2)),
(implicit EFLAGS)]>;
// Register-Integer Addition
def ADD64ri8 : RIi8<0x83, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, i64immSExt8:$src2)),
(implicit EFLAGS)]>;
def ADD64ri32 : RIi32<0x81, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, i64immSExt32:$src2)),
(implicit EFLAGS)]>;
} // isConvertibleToThreeAddress
// Register-Memory Addition
def ADD64rm : RI<0x03, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, (load addr:$src2))),
(implicit EFLAGS)]>;
} // isTwoAddress
// Memory-Register Addition
def ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), GR64:$src2), addr:$dst),
(implicit EFLAGS)]>;
def ADD64mi8 : RIi8<0x83, MRM0m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), i64immSExt8:$src2), addr:$dst),
(implicit EFLAGS)]>;
def ADD64mi32 : RIi32<0x81, MRM0m, (outs), (ins i64mem:$dst, i64i32imm :$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), i64immSExt32:$src2), addr:$dst),
(implicit EFLAGS)]>;
let Uses = [EFLAGS] in {
let isTwoAddress = 1 in {
let isCommutable = 1 in
def ADC64rr : RI<0x11, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (adde GR64:$src1, GR64:$src2))]>;
def ADC64rm : RI<0x13, MRMSrcMem , (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (adde GR64:$src1, (load addr:$src2)))]>;
def ADC64ri8 : RIi8<0x83, MRM2r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (adde GR64:$src1, i64immSExt8:$src2))]>;
def ADC64ri32 : RIi32<0x81, MRM2r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (adde GR64:$src1, i64immSExt32:$src2))]>;
} // isTwoAddress
def ADC64mr : RI<0x11, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), GR64:$src2), addr:$dst)]>;
def ADC64mi8 : RIi8<0x83, MRM2m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
def ADC64mi32 : RIi32<0x81, MRM2m, (outs), (ins i64mem:$dst, i64i32imm:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
} // Uses = [EFLAGS]
let isTwoAddress = 1 in {
// Register-Register Subtraction
def SUB64rr : RI<0x29, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sub GR64:$src1, GR64:$src2)),
(implicit EFLAGS)]>;
// Register-Memory Subtraction
def SUB64rm : RI<0x2B, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sub GR64:$src1, (load addr:$src2))),
(implicit EFLAGS)]>;
// Register-Integer Subtraction
def SUB64ri8 : RIi8<0x83, MRM5r, (outs GR64:$dst),
(ins GR64:$src1, i64i8imm:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sub GR64:$src1, i64immSExt8:$src2)),
(implicit EFLAGS)]>;
def SUB64ri32 : RIi32<0x81, MRM5r, (outs GR64:$dst),
(ins GR64:$src1, i64i32imm:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sub GR64:$src1, i64immSExt32:$src2)),
(implicit EFLAGS)]>;
} // isTwoAddress
// Memory-Register Subtraction
def SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), GR64:$src2), addr:$dst),
(implicit EFLAGS)]>;
// Memory-Integer Subtraction
def SUB64mi8 : RIi8<0x83, MRM5m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), i64immSExt8:$src2),
addr:$dst),
(implicit EFLAGS)]>;
def SUB64mi32 : RIi32<0x81, MRM5m, (outs), (ins i64mem:$dst, i64i32imm:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), i64immSExt32:$src2),
addr:$dst),
(implicit EFLAGS)]>;
let Uses = [EFLAGS] in {
let isTwoAddress = 1 in {
def SBB64rr : RI<0x19, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sube GR64:$src1, GR64:$src2))]>;
def SBB64rm : RI<0x1B, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sube GR64:$src1, (load addr:$src2)))]>;
def SBB64ri8 : RIi8<0x83, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sube GR64:$src1, i64immSExt8:$src2))]>;
def SBB64ri32 : RIi32<0x81, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sube GR64:$src1, i64immSExt32:$src2))]>;
} // isTwoAddress
def SBB64mr : RI<0x19, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), GR64:$src2), addr:$dst)]>;
def SBB64mi8 : RIi8<0x83, MRM3m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
def SBB64mi32 : RIi32<0x81, MRM3m, (outs), (ins i64mem:$dst, i64i32imm:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), i64immSExt32:$src2), addr:$dst)]>;
} // Uses = [EFLAGS]
} // Defs = [EFLAGS]
// Unsigned multiplication
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in {
def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
"mul{q}\t$src", []>; // RAX,RDX = RAX*GR64
let mayLoad = 1 in
def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
"mul{q}\t$src", []>; // RAX,RDX = RAX*[mem64]
// Signed multiplication
def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src),
"imul{q}\t$src", []>; // RAX,RDX = RAX*GR64
let mayLoad = 1 in
def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
"imul{q}\t$src", []>; // RAX,RDX = RAX*[mem64]
}
let Defs = [EFLAGS] in {
let isTwoAddress = 1 in {
let isCommutable = 1 in
// Register-Register Signed Integer Multiplication
def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
(ins GR64:$src1, GR64:$src2),
"imul{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (mul GR64:$src1, GR64:$src2)),
(implicit EFLAGS)]>, TB;
// Register-Memory Signed Integer Multiplication
def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
(ins GR64:$src1, i64mem:$src2),
"imul{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (mul GR64:$src1, (load addr:$src2))),
(implicit EFLAGS)]>, TB;
} // isTwoAddress
// Suprisingly enough, these are not two address instructions!
// Register-Integer Signed Integer Multiplication
def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8
(outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, (mul GR64:$src1, i64immSExt8:$src2)),
(implicit EFLAGS)]>;
def IMUL64rri32 : RIi32<0x69, MRMSrcReg, // GR64 = GR64*I32
(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, (mul GR64:$src1, i64immSExt32:$src2)),
(implicit EFLAGS)]>;
// Memory-Integer Signed Integer Multiplication
def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8
(outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, (mul (load addr:$src1),
i64immSExt8:$src2)),
(implicit EFLAGS)]>;
def IMUL64rmi32 : RIi32<0x69, MRMSrcMem, // GR64 = [mem64]*I32
(outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, (mul (load addr:$src1),
i64immSExt32:$src2)),
(implicit EFLAGS)]>;
} // Defs = [EFLAGS]
// Unsigned division / remainder
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in {
def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src), // RDX:RAX/r64 = RAX,RDX
"div{q}\t$src", []>;
// Signed division / remainder
def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src), // RDX:RAX/r64 = RAX,RDX
"idiv{q}\t$src", []>;
let mayLoad = 1 in {
def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src), // RDX:RAX/[mem64] = RAX,RDX
"div{q}\t$src", []>;
def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), // RDX:RAX/[mem64] = RAX,RDX
"idiv{q}\t$src", []>;
}
}
// Unary instructions
let Defs = [EFLAGS], CodeSize = 2 in {
let isTwoAddress = 1 in
def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src), "neg{q}\t$dst",
[(set GR64:$dst, (ineg GR64:$src))]>;
def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
[(store (ineg (loadi64 addr:$dst)), addr:$dst)]>;
let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in
def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src), "inc{q}\t$dst",
[(set GR64:$dst, (add GR64:$src, 1))]>;
def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
[(store (add (loadi64 addr:$dst), 1), addr:$dst)]>;
let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in
def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src), "dec{q}\t$dst",
[(set GR64:$dst, (add GR64:$src, -1))]>;
def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
[(store (add (loadi64 addr:$dst), -1), addr:$dst)]>;
// In 64-bit mode, single byte INC and DEC cannot be encoded.
let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in {
// Can transform into LEA.
def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src), "inc{w}\t$dst",
[(set GR16:$dst, (add GR16:$src, 1))]>,
OpSize, Requires<[In64BitMode]>;
def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src), "inc{l}\t$dst",
[(set GR32:$dst, (add GR32:$src, 1))]>,
Requires<[In64BitMode]>;
def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src), "dec{w}\t$dst",
[(set GR16:$dst, (add GR16:$src, -1))]>,
OpSize, Requires<[In64BitMode]>;
def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src), "dec{l}\t$dst",
[(set GR32:$dst, (add GR32:$src, -1))]>,
Requires<[In64BitMode]>;
} // isConvertibleToThreeAddress
// These are duplicates of their 32-bit counterparts. Only needed so X86 knows
// how to unfold them.
let isTwoAddress = 0, CodeSize = 2 in {
def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
[(store (add (loadi16 addr:$dst), 1), addr:$dst)]>,
OpSize, Requires<[In64BitMode]>;
def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
[(store (add (loadi32 addr:$dst), 1), addr:$dst)]>,
Requires<[In64BitMode]>;
def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
[(store (add (loadi16 addr:$dst), -1), addr:$dst)]>,
OpSize, Requires<[In64BitMode]>;
def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
[(store (add (loadi32 addr:$dst), -1), addr:$dst)]>,
Requires<[In64BitMode]>;
}
} // Defs = [EFLAGS], CodeSize
let Defs = [EFLAGS] in {
// Shift instructions
let isTwoAddress = 1 in {
let Uses = [CL] in
def SHL64rCL : RI<0xD3, MRM4r, (outs GR64:$dst), (ins GR64:$src),
"shl{q}\t{%cl, $dst|$dst, %CL}",
[(set GR64:$dst, (shl GR64:$src, CL))]>;
let isConvertibleToThreeAddress = 1 in // Can transform into LEA.
def SHL64ri : RIi8<0xC1, MRM4r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
"shl{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (shl GR64:$src1, (i8 imm:$src2)))]>;
// NOTE: We don't use shifts of a register by one, because 'add reg,reg' is
// cheaper.
} // isTwoAddress
let Uses = [CL] in
def SHL64mCL : RI<0xD3, MRM4m, (outs), (ins i64mem:$dst),
"shl{q}\t{%cl, $dst|$dst, %CL}",
[(store (shl (loadi64 addr:$dst), CL), addr:$dst)]>;
def SHL64mi : RIi8<0xC1, MRM4m, (outs), (ins i64mem:$dst, i8imm:$src),
"shl{q}\t{$src, $dst|$dst, $src}",
[(store (shl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SHL64m1 : RI<0xD1, MRM4m, (outs), (ins i64mem:$dst),
"shl{q}\t$dst",
[(store (shl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
let isTwoAddress = 1 in {
let Uses = [CL] in
def SHR64rCL : RI<0xD3, MRM5r, (outs GR64:$dst), (ins GR64:$src),
"shr{q}\t{%cl, $dst|$dst, %CL}",
[(set GR64:$dst, (srl GR64:$src, CL))]>;
def SHR64ri : RIi8<0xC1, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
"shr{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (srl GR64:$src1, (i8 imm:$src2)))]>;
def SHR64r1 : RI<0xD1, MRM5r, (outs GR64:$dst), (ins GR64:$src1),
"shr{q}\t$dst",
[(set GR64:$dst, (srl GR64:$src1, (i8 1)))]>;
} // isTwoAddress
let Uses = [CL] in
def SHR64mCL : RI<0xD3, MRM5m, (outs), (ins i64mem:$dst),
"shr{q}\t{%cl, $dst|$dst, %CL}",
[(store (srl (loadi64 addr:$dst), CL), addr:$dst)]>;
def SHR64mi : RIi8<0xC1, MRM5m, (outs), (ins i64mem:$dst, i8imm:$src),
"shr{q}\t{$src, $dst|$dst, $src}",
[(store (srl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SHR64m1 : RI<0xD1, MRM5m, (outs), (ins i64mem:$dst),
"shr{q}\t$dst",
[(store (srl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
let isTwoAddress = 1 in {
let Uses = [CL] in
def SAR64rCL : RI<0xD3, MRM7r, (outs GR64:$dst), (ins GR64:$src),
"sar{q}\t{%cl, $dst|$dst, %CL}",
[(set GR64:$dst, (sra GR64:$src, CL))]>;
def SAR64ri : RIi8<0xC1, MRM7r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
"sar{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sra GR64:$src1, (i8 imm:$src2)))]>;
def SAR64r1 : RI<0xD1, MRM7r, (outs GR64:$dst), (ins GR64:$src1),
"sar{q}\t$dst",
[(set GR64:$dst, (sra GR64:$src1, (i8 1)))]>;
} // isTwoAddress
let Uses = [CL] in
def SAR64mCL : RI<0xD3, MRM7m, (outs), (ins i64mem:$dst),
"sar{q}\t{%cl, $dst|$dst, %CL}",
[(store (sra (loadi64 addr:$dst), CL), addr:$dst)]>;
def SAR64mi : RIi8<0xC1, MRM7m, (outs), (ins i64mem:$dst, i8imm:$src),
"sar{q}\t{$src, $dst|$dst, $src}",
[(store (sra (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SAR64m1 : RI<0xD1, MRM7m, (outs), (ins i64mem:$dst),
"sar{q}\t$dst",
[(store (sra (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
// Rotate instructions
let isTwoAddress = 1 in {
let Uses = [CL] in
def ROL64rCL : RI<0xD3, MRM0r, (outs GR64:$dst), (ins GR64:$src),
"rol{q}\t{%cl, $dst|$dst, %CL}",
[(set GR64:$dst, (rotl GR64:$src, CL))]>;
def ROL64ri : RIi8<0xC1, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
"rol{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (rotl GR64:$src1, (i8 imm:$src2)))]>;
def ROL64r1 : RI<0xD1, MRM0r, (outs GR64:$dst), (ins GR64:$src1),
"rol{q}\t$dst",
[(set GR64:$dst, (rotl GR64:$src1, (i8 1)))]>;
} // isTwoAddress
let Uses = [CL] in
def ROL64mCL : I<0xD3, MRM0m, (outs), (ins i64mem:$dst),
"rol{q}\t{%cl, $dst|$dst, %CL}",
[(store (rotl (loadi64 addr:$dst), CL), addr:$dst)]>;
def ROL64mi : RIi8<0xC1, MRM0m, (outs), (ins i64mem:$dst, i8imm:$src),
"rol{q}\t{$src, $dst|$dst, $src}",
[(store (rotl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def ROL64m1 : RI<0xD1, MRM0m, (outs), (ins i64mem:$dst),
"rol{q}\t$dst",
[(store (rotl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
let isTwoAddress = 1 in {
let Uses = [CL] in
def ROR64rCL : RI<0xD3, MRM1r, (outs GR64:$dst), (ins GR64:$src),
"ror{q}\t{%cl, $dst|$dst, %CL}",
[(set GR64:$dst, (rotr GR64:$src, CL))]>;
def ROR64ri : RIi8<0xC1, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
"ror{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (rotr GR64:$src1, (i8 imm:$src2)))]>;
def ROR64r1 : RI<0xD1, MRM1r, (outs GR64:$dst), (ins GR64:$src1),
"ror{q}\t$dst",
[(set GR64:$dst, (rotr GR64:$src1, (i8 1)))]>;
} // isTwoAddress
let Uses = [CL] in
def ROR64mCL : RI<0xD3, MRM1m, (outs), (ins i64mem:$dst),
"ror{q}\t{%cl, $dst|$dst, %CL}",
[(store (rotr (loadi64 addr:$dst), CL), addr:$dst)]>;
def ROR64mi : RIi8<0xC1, MRM1m, (outs), (ins i64mem:$dst, i8imm:$src),
"ror{q}\t{$src, $dst|$dst, $src}",
[(store (rotr (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def ROR64m1 : RI<0xD1, MRM1m, (outs), (ins i64mem:$dst),
"ror{q}\t$dst",
[(store (rotr (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
// Double shift instructions (generalizations of rotate)
let isTwoAddress = 1 in {
let Uses = [CL] in {
def SHLD64rrCL : RI<0xA5, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"shld{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
[(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2, CL))]>, TB;
def SHRD64rrCL : RI<0xAD, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"shrd{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
[(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2, CL))]>, TB;
}
let isCommutable = 1 in { // FIXME: Update X86InstrInfo::commuteInstruction
def SHLD64rri8 : RIi8<0xA4, MRMDestReg,
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$src3),
"shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2,
(i8 imm:$src3)))]>,
TB;
def SHRD64rri8 : RIi8<0xAC, MRMDestReg,
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$src3),
"shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2,
(i8 imm:$src3)))]>,
TB;
} // isCommutable
} // isTwoAddress
let Uses = [CL] in {
def SHLD64mrCL : RI<0xA5, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"shld{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
[(store (X86shld (loadi64 addr:$dst), GR64:$src2, CL),
addr:$dst)]>, TB;
def SHRD64mrCL : RI<0xAD, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"shrd{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
[(store (X86shrd (loadi64 addr:$dst), GR64:$src2, CL),
addr:$dst)]>, TB;
}
def SHLD64mri8 : RIi8<0xA4, MRMDestMem,
(outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3),
"shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(store (X86shld (loadi64 addr:$dst), GR64:$src2,
(i8 imm:$src3)), addr:$dst)]>,
TB;
def SHRD64mri8 : RIi8<0xAC, MRMDestMem,
(outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3),
"shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(store (X86shrd (loadi64 addr:$dst), GR64:$src2,
(i8 imm:$src3)), addr:$dst)]>,
TB;
} // Defs = [EFLAGS]
//===----------------------------------------------------------------------===//
// Logical Instructions...
//
let isTwoAddress = 1 , AddedComplexity = 15 in
def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src), "not{q}\t$dst",
[(set GR64:$dst, (not GR64:$src))]>;
def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
[(store (not (loadi64 addr:$dst)), addr:$dst)]>;
let Defs = [EFLAGS] in {
let isTwoAddress = 1 in {
let isCommutable = 1 in
def AND64rr : RI<0x21, MRMDestReg,
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"and{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, GR64:$src2))]>;
def AND64rm : RI<0x23, MRMSrcMem,
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"and{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, (load addr:$src2)))]>;
def AND64ri8 : RIi8<0x83, MRM4r,
(outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"and{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64immSExt8:$src2))]>;
def AND64ri32 : RIi32<0x81, MRM4r,
(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"and{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64immSExt32:$src2))]>;
} // isTwoAddress
def AND64mr : RI<0x21, MRMDestMem,
(outs), (ins i64mem:$dst, GR64:$src),
"and{q}\t{$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), GR64:$src), addr:$dst)]>;
def AND64mi8 : RIi8<0x83, MRM4m,
(outs), (ins i64mem:$dst, i64i8imm :$src),
"and{q}\t{$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), i64immSExt8:$src), addr:$dst)]>;
def AND64mi32 : RIi32<0x81, MRM4m,
(outs), (ins i64mem:$dst, i64i32imm:$src),
"and{q}\t{$src, $dst|$dst, $src}",
[(store (and (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst)]>;
let isTwoAddress = 1 in {
let isCommutable = 1 in
def OR64rr : RI<0x09, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"or{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, GR64:$src2))]>;
def OR64rm : RI<0x0B, MRMSrcMem , (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"or{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, (load addr:$src2)))]>;
def OR64ri8 : RIi8<0x83, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"or{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, i64immSExt8:$src2))]>;
def OR64ri32 : RIi32<0x81, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"or{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, i64immSExt32:$src2))]>;
} // isTwoAddress
def OR64mr : RI<0x09, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"or{q}\t{$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), GR64:$src), addr:$dst)]>;
def OR64mi8 : RIi8<0x83, MRM1m, (outs), (ins i64mem:$dst, i64i8imm:$src),
"or{q}\t{$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), i64immSExt8:$src), addr:$dst)]>;
def OR64mi32 : RIi32<0x81, MRM1m, (outs), (ins i64mem:$dst, i64i32imm:$src),
"or{q}\t{$src, $dst|$dst, $src}",
[(store (or (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst)]>;
let isTwoAddress = 1 in {
let isCommutable = 1 in
def XOR64rr : RI<0x31, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"xor{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, GR64:$src2))]>;
def XOR64rm : RI<0x33, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"xor{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, (load addr:$src2)))]>;
def XOR64ri8 : RIi8<0x83, MRM6r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"xor{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, i64immSExt8:$src2))]>;
def XOR64ri32 : RIi32<0x81, MRM6r,
(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"xor{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, i64immSExt32:$src2))]>;
} // isTwoAddress
def XOR64mr : RI<0x31, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"xor{q}\t{$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), GR64:$src), addr:$dst)]>;
def XOR64mi8 : RIi8<0x83, MRM6m, (outs), (ins i64mem:$dst, i64i8imm :$src),
"xor{q}\t{$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), i64immSExt8:$src), addr:$dst)]>;
def XOR64mi32 : RIi32<0x81, MRM6m, (outs), (ins i64mem:$dst, i64i32imm:$src),
"xor{q}\t{$src, $dst|$dst, $src}",
[(store (xor (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst)]>;
} // Defs = [EFLAGS]
//===----------------------------------------------------------------------===//
// Comparison Instructions...
//
// Integer comparison
let Defs = [EFLAGS] in {
let isCommutable = 1 in
def TEST64rr : RI<0x85, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"test{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (and GR64:$src1, GR64:$src2), 0),
(implicit EFLAGS)]>;
def TEST64rm : RI<0x85, MRMSrcMem, (outs), (ins GR64:$src1, i64mem:$src2),
"test{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (and GR64:$src1, (loadi64 addr:$src2)), 0),
(implicit EFLAGS)]>;
def TEST64ri32 : RIi32<0xF7, MRM0r, (outs),
(ins GR64:$src1, i64i32imm:$src2),
"test{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (and GR64:$src1, i64immSExt32:$src2), 0),
(implicit EFLAGS)]>;
def TEST64mi32 : RIi32<0xF7, MRM0m, (outs),
(ins i64mem:$src1, i64i32imm:$src2),
"test{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (and (loadi64 addr:$src1), i64immSExt32:$src2), 0),
(implicit EFLAGS)]>;
def CMP64rr : RI<0x39, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp GR64:$src1, GR64:$src2),
(implicit EFLAGS)]>;
def CMP64mr : RI<0x39, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (loadi64 addr:$src1), GR64:$src2),
(implicit EFLAGS)]>;
def CMP64rm : RI<0x3B, MRMSrcMem, (outs), (ins GR64:$src1, i64mem:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp GR64:$src1, (loadi64 addr:$src2)),
(implicit EFLAGS)]>;
def CMP64ri8 : RIi8<0x83, MRM7r, (outs), (ins GR64:$src1, i64i8imm:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp GR64:$src1, i64immSExt8:$src2),
(implicit EFLAGS)]>;
def CMP64ri32 : RIi32<0x81, MRM7r, (outs), (ins GR64:$src1, i64i32imm:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp GR64:$src1, i64immSExt32:$src2),
(implicit EFLAGS)]>;
def CMP64mi8 : RIi8<0x83, MRM7m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (loadi64 addr:$src1), i64immSExt8:$src2),
(implicit EFLAGS)]>;
def CMP64mi32 : RIi32<0x81, MRM7m, (outs),
(ins i64mem:$src1, i64i32imm:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (loadi64 addr:$src1), i64immSExt32:$src2),
(implicit EFLAGS)]>;
} // Defs = [EFLAGS]
// Bit tests.
// TODO: BTC, BTR, and BTS
let Defs = [EFLAGS] in {
def BT64rr : RI<0xA3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"bt{q}\t{$src2, $src1|$src1, $src2}",
[(X86bt GR64:$src1, GR64:$src2),
(implicit EFLAGS)]>, TB;
// Unlike with the register+register form, the memory+register form of the
// bt instruction does not ignore the high bits of the index. From ISel's
// perspective, this is pretty bizarre. Disable these instructions for now.
//def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
// "bt{q}\t{$src2, $src1|$src1, $src2}",
// [(X86bt (loadi64 addr:$src1), GR64:$src2),
// (implicit EFLAGS)]>, TB;
def BT64ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR64:$src1, i64i8imm:$src2),
"bt{q}\t{$src2, $src1|$src1, $src2}",
[(X86bt GR64:$src1, i64immSExt8:$src2),
(implicit EFLAGS)]>, TB;
// Note that these instructions don't need FastBTMem because that
// only applies when the other operand is in a register. When it's
// an immediate, bt is still fast.
def BT64mi8 : Ii8<0xBA, MRM4m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
"bt{q}\t{$src2, $src1|$src1, $src2}",
[(X86bt (loadi64 addr:$src1), i64immSExt8:$src2),
(implicit EFLAGS)]>, TB;
} // Defs = [EFLAGS]
// Conditional moves
let Uses = [EFLAGS], isTwoAddress = 1 in {
let isCommutable = 1 in {
def CMOVB64rr : RI<0x42, MRMSrcReg, // if <u, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovb\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_B, EFLAGS))]>, TB;
def CMOVAE64rr: RI<0x43, MRMSrcReg, // if >=u, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovae\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_AE, EFLAGS))]>, TB;
def CMOVE64rr : RI<0x44, MRMSrcReg, // if ==, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmove\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_E, EFLAGS))]>, TB;
def CMOVNE64rr: RI<0x45, MRMSrcReg, // if !=, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovne\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_NE, EFLAGS))]>, TB;
def CMOVBE64rr: RI<0x46, MRMSrcReg, // if <=u, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovbe\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_BE, EFLAGS))]>, TB;
def CMOVA64rr : RI<0x47, MRMSrcReg, // if >u, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmova\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_A, EFLAGS))]>, TB;
def CMOVL64rr : RI<0x4C, MRMSrcReg, // if <s, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovl\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_L, EFLAGS))]>, TB;
def CMOVGE64rr: RI<0x4D, MRMSrcReg, // if >=s, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovge\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_GE, EFLAGS))]>, TB;
def CMOVLE64rr: RI<0x4E, MRMSrcReg, // if <=s, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovle\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_LE, EFLAGS))]>, TB;
def CMOVG64rr : RI<0x4F, MRMSrcReg, // if >s, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovg\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_G, EFLAGS))]>, TB;
def CMOVS64rr : RI<0x48, MRMSrcReg, // if signed, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovs\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_S, EFLAGS))]>, TB;
def CMOVNS64rr: RI<0x49, MRMSrcReg, // if !signed, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovns\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_NS, EFLAGS))]>, TB;
def CMOVP64rr : RI<0x4A, MRMSrcReg, // if parity, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovp\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_P, EFLAGS))]>, TB;
def CMOVNP64rr : RI<0x4B, MRMSrcReg, // if !parity, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovnp\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_NP, EFLAGS))]>, TB;
def CMOVO64rr : RI<0x40, MRMSrcReg, // if overflow, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovo\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_O, EFLAGS))]>, TB;
def CMOVNO64rr : RI<0x41, MRMSrcReg, // if !overflow, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovno\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_NO, EFLAGS))]>, TB;
} // isCommutable = 1
def CMOVB64rm : RI<0x42, MRMSrcMem, // if <u, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovb\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_B, EFLAGS))]>, TB;
def CMOVAE64rm: RI<0x43, MRMSrcMem, // if >=u, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovae\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_AE, EFLAGS))]>, TB;
def CMOVE64rm : RI<0x44, MRMSrcMem, // if ==, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmove\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_E, EFLAGS))]>, TB;
def CMOVNE64rm: RI<0x45, MRMSrcMem, // if !=, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovne\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_NE, EFLAGS))]>, TB;
def CMOVBE64rm: RI<0x46, MRMSrcMem, // if <=u, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovbe\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_BE, EFLAGS))]>, TB;
def CMOVA64rm : RI<0x47, MRMSrcMem, // if >u, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmova\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_A, EFLAGS))]>, TB;
def CMOVL64rm : RI<0x4C, MRMSrcMem, // if <s, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovl\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_L, EFLAGS))]>, TB;
def CMOVGE64rm: RI<0x4D, MRMSrcMem, // if >=s, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovge\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_GE, EFLAGS))]>, TB;
def CMOVLE64rm: RI<0x4E, MRMSrcMem, // if <=s, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovle\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_LE, EFLAGS))]>, TB;
def CMOVG64rm : RI<0x4F, MRMSrcMem, // if >s, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovg\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_G, EFLAGS))]>, TB;
def CMOVS64rm : RI<0x48, MRMSrcMem, // if signed, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovs\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_S, EFLAGS))]>, TB;
def CMOVNS64rm: RI<0x49, MRMSrcMem, // if !signed, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovns\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_NS, EFLAGS))]>, TB;
def CMOVP64rm : RI<0x4A, MRMSrcMem, // if parity, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovp\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_P, EFLAGS))]>, TB;
def CMOVNP64rm : RI<0x4B, MRMSrcMem, // if !parity, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovnp\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_NP, EFLAGS))]>, TB;
def CMOVO64rm : RI<0x40, MRMSrcMem, // if overflow, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovo\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_O, EFLAGS))]>, TB;
def CMOVNO64rm : RI<0x41, MRMSrcMem, // if !overflow, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovno\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_NO, EFLAGS))]>, TB;
} // isTwoAddress
//===----------------------------------------------------------------------===//
// Conversion Instructions...
//
// f64 -> signed i64
def Int_CVTSD2SI64rr: RSDI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse2_cvtsd2si64 VR128:$src))]>;
def Int_CVTSD2SI64rm: RSDI<0x2D, MRMSrcMem, (outs GR64:$dst), (ins f128mem:$src),
"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (int_x86_sse2_cvtsd2si64
(load addr:$src)))]>;
def CVTTSD2SI64rr: RSDI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins FR64:$src),
"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (fp_to_sint FR64:$src))]>;
def CVTTSD2SI64rm: RSDI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f64mem:$src),
"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (fp_to_sint (loadf64 addr:$src)))]>;
def Int_CVTTSD2SI64rr: RSDI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse2_cvttsd2si64 VR128:$src))]>;
def Int_CVTTSD2SI64rm: RSDI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f128mem:$src),
"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse2_cvttsd2si64
(load addr:$src)))]>;
// Signed i64 -> f64
def CVTSI2SD64rr: RSDI<0x2A, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
"cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (sint_to_fp GR64:$src))]>;
def CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
"cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (sint_to_fp (loadi64 addr:$src)))]>;
let isTwoAddress = 1 in {
def Int_CVTSI2SD64rr: RSDI<0x2A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, GR64:$src2),
"cvtsi2sd{q}\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtsi642sd VR128:$src1,
GR64:$src2))]>;
def Int_CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i64mem:$src2),
"cvtsi2sd{q}\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtsi642sd VR128:$src1,
(loadi64 addr:$src2)))]>;
} // isTwoAddress
// Signed i64 -> f32
def CVTSI2SS64rr: RSSI<0x2A, MRMSrcReg, (outs FR32:$dst), (ins GR64:$src),
"cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (sint_to_fp GR64:$src))]>;
def CVTSI2SS64rm: RSSI<0x2A, MRMSrcMem, (outs FR32:$dst), (ins i64mem:$src),
"cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (sint_to_fp (loadi64 addr:$src)))]>;
let isTwoAddress = 1 in {
def Int_CVTSI2SS64rr : RSSI<0x2A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, GR64:$src2),
"cvtsi2ss{q}\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse_cvtsi642ss VR128:$src1,
GR64:$src2))]>;
def Int_CVTSI2SS64rm : RSSI<0x2A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i64mem:$src2),
"cvtsi2ss{q}\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse_cvtsi642ss VR128:$src1,
(loadi64 addr:$src2)))]>;
}
// f32 -> signed i64
def Int_CVTSS2SI64rr: RSSI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
"cvtss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse_cvtss2si64 VR128:$src))]>;
def Int_CVTSS2SI64rm: RSSI<0x2D, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
"cvtss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (int_x86_sse_cvtss2si64
(load addr:$src)))]>;
def CVTTSS2SI64rr: RSSI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins FR32:$src),
"cvttss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (fp_to_sint FR32:$src))]>;
def CVTTSS2SI64rm: RSSI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
"cvttss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (fp_to_sint (loadf32 addr:$src)))]>;
def Int_CVTTSS2SI64rr: RSSI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
"cvttss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse_cvttss2si64 VR128:$src))]>;
def Int_CVTTSS2SI64rm: RSSI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
"cvttss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse_cvttss2si64 (load addr:$src)))]>;
//===----------------------------------------------------------------------===//
// Alias Instructions
//===----------------------------------------------------------------------===//
// Alias instructions that map movr0 to xor. Use xorl instead of xorq; it's
// equivalent due to implicit zero-extending, and it sometimes has a smaller
// encoding.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
// FIXME: AddedComplexity gives MOV64r0 a higher priority than MOV64ri32. Remove
// when we have a better way to specify isel priority.
let Defs = [EFLAGS], AddedComplexity = 1,
isReMaterializable = 1, isAsCheapAsAMove = 1 in
def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins),
"xor{l}\t${dst:subreg32}, ${dst:subreg32}",
[(set GR64:$dst, 0)]>;
// Materialize i64 constant where top 32-bits are zero.
let AddedComplexity = 1, isReMaterializable = 1 in
def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
"mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, i64immZExt32:$src)]>;
//===----------------------------------------------------------------------===//
// Thread Local Storage Instructions
//===----------------------------------------------------------------------===//
def TLS_addr64 : I<0, Pseudo, (outs GR64:$dst), (ins i64imm:$sym),
".byte\t0x66; leaq\t${sym:mem}(%rip), $dst; .word\t0x6666; rex64",
[(set GR64:$dst, (X86tlsaddr tglobaltlsaddr:$sym))]>;
let AddedComplexity = 5 in
def MOV64GSrm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"movq\t%gs:$src, $dst",
[(set GR64:$dst, (gsload addr:$src))]>, SegGS;
//===----------------------------------------------------------------------===//
// Atomic Instructions
//===----------------------------------------------------------------------===//
let Defs = [RAX, EFLAGS], Uses = [RAX] in {
def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
"lock\n\tcmpxchgq\t$swap,$ptr",
[(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
}
let Constraints = "$val = $dst" in {
let Defs = [EFLAGS] in
def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$ptr,GR64:$val),
"lock\n\txadd\t$val, $ptr",
[(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
TB, LOCK;
def XCHG64rm : RI<0x87, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$ptr,GR64:$val),
"xchg\t$val, $ptr",
[(set GR64:$dst, (atomic_swap_64 addr:$ptr, GR64:$val))]>;
}
// Atomic exchange, and, or, xor
let Constraints = "$val = $dst", Defs = [EFLAGS],
usesCustomDAGSchedInserter = 1 in {
def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMAND64 PSEUDO!",
[(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMOR64 PSEUDO!",
[(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMXOR64 PSEUDO!",
[(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMNAND64 PSEUDO!",
[(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
"#ATOMMIN64 PSEUDO!",
[(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMMAX64 PSEUDO!",
[(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMUMIN64 PSEUDO!",
[(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMUMAX64 PSEUDO!",
[(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
}
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
(MOV64ri tconstpool :$dst)>, Requires<[NotSmallCode]>;
def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
(MOV64ri tjumptable :$dst)>, Requires<[NotSmallCode]>;
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
(MOV64ri tglobaladdr :$dst)>, Requires<[NotSmallCode]>;
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
(MOV64ri texternalsym:$dst)>, Requires<[NotSmallCode]>;
def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tconstpool:$src)>,
Requires<[SmallCode, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tjumptable:$src)>,
Requires<[SmallCode, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tglobaladdr:$src)>,
Requires<[SmallCode, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
(MOV64mi32 addr:$dst, texternalsym:$src)>,
Requires<[SmallCode, IsStatic]>;
// Calls
// Direct PC relative function call for small code model. 32-bit displacement
// sign extended to 64-bit.
def : Pat<(X86call (i64 tglobaladdr:$dst)),
(CALL64pcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i64 texternalsym:$dst)),
(CALL64pcrel32 texternalsym:$dst)>;
def : Pat<(X86tailcall (i64 tglobaladdr:$dst)),
(CALL64pcrel32 tglobaladdr:$dst)>;
def : Pat<(X86tailcall (i64 texternalsym:$dst)),
(CALL64pcrel32 texternalsym:$dst)>;
def : Pat<(X86tailcall GR64:$dst),
(CALL64r GR64:$dst)>;
// tailcall stuff
def : Pat<(X86tailcall GR32:$dst),
(TAILCALL)>;
def : Pat<(X86tailcall (i64 tglobaladdr:$dst)),
(TAILCALL)>;
def : Pat<(X86tailcall (i64 texternalsym:$dst)),
(TAILCALL)>;
def : Pat<(X86tcret GR64:$dst, imm:$off),
(TCRETURNri64 GR64:$dst, imm:$off)>;
def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
(TCRETURNdi64 texternalsym:$dst, imm:$off)>;
def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
(TCRETURNdi64 texternalsym:$dst, imm:$off)>;
// Comparisons.
// TEST R,R is smaller than CMP R,0
def : Pat<(parallel (X86cmp GR64:$src1, 0), (implicit EFLAGS)),
(TEST64rr GR64:$src1, GR64:$src1)>;
// Conditional moves with folded loads with operands swapped and conditions
// inverted.
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_B, EFLAGS),
(CMOVAE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_AE, EFLAGS),
(CMOVB64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_E, EFLAGS),
(CMOVNE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NE, EFLAGS),
(CMOVE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_BE, EFLAGS),
(CMOVA64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_A, EFLAGS),
(CMOVBE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_L, EFLAGS),
(CMOVGE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_GE, EFLAGS),
(CMOVL64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_LE, EFLAGS),
(CMOVG64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_G, EFLAGS),
(CMOVLE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_P, EFLAGS),
(CMOVNP64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NP, EFLAGS),
(CMOVP64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_S, EFLAGS),
(CMOVNS64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NS, EFLAGS),
(CMOVS64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_O, EFLAGS),
(CMOVNO64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NO, EFLAGS),
(CMOVO64rm GR64:$src2, addr:$src1)>;
// Zero-extension
def : Pat<(i64 (zext GR32:$src)),
(SUBREG_TO_REG (i64 0), GR32:$src, x86_subreg_32bit)>;
// zextload bool -> zextload byte
def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
// extload
// When extloading from 16-bit and smaller memory locations into 64-bit registers,
// use zero-extending loads so that the entire 64-bit register is defined, avoiding
// partial-register updates.
def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
// For other extloads, use subregs, since the high contents of the register are
// defined after an extload.
def : Pat<(extloadi64i32 addr:$src),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (MOV32rm addr:$src),
x86_subreg_32bit)>;
def : Pat<(extloadi16i1 addr:$src),
(INSERT_SUBREG (i16 (IMPLICIT_DEF)), (MOV8rm addr:$src),
x86_subreg_8bit)>,
Requires<[In64BitMode]>;
def : Pat<(extloadi16i8 addr:$src),
(INSERT_SUBREG (i16 (IMPLICIT_DEF)), (MOV8rm addr:$src),
x86_subreg_8bit)>,
Requires<[In64BitMode]>;
// anyext
def : Pat<(i64 (anyext GR8:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>;
def : Pat<(i64 (anyext GR16:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR16:$src, x86_subreg_16bit)>;
def : Pat<(i64 (anyext GR32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, x86_subreg_32bit)>;
def : Pat<(i16 (anyext GR8:$src)),
(INSERT_SUBREG (i16 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>,
Requires<[In64BitMode]>;
def : Pat<(i32 (anyext GR8:$src)),
(INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>,
Requires<[In64BitMode]>;
//===----------------------------------------------------------------------===//
// Some peepholes
//===----------------------------------------------------------------------===//
// Odd encoding trick: -128 fits into an 8-bit immediate field while
// +128 doesn't, so in this special case use a sub instead of an add.
def : Pat<(add GR64:$src1, 128),
(SUB64ri8 GR64:$src1, -128)>;
def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
(SUB64mi8 addr:$dst, -128)>;
// The same trick applies for 32-bit immediate fields in 64-bit
// instructions.
def : Pat<(add GR64:$src1, 0x0000000080000000),
(SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
(SUB64mi32 addr:$dst, 0xffffffff80000000)>;
// r & (2^32-1) ==> movz
def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
(MOVZX64rr32 (i32 (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit)))>;
// r & (2^16-1) ==> movz
def : Pat<(and GR64:$src, 0xffff),
(MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit)))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR64:$src, 0xff),
(MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit)))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
(MOVZX32rr8 (i8 (EXTRACT_SUBREG GR32:$src1, x86_subreg_8bit)))>,
Requires<[In64BitMode]>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
(MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, x86_subreg_8bit)))>,
Requires<[In64BitMode]>;
// sext_inreg patterns
def : Pat<(sext_inreg GR64:$src, i32),
(MOVSX64rr32 (i32 (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit)))>;
def : Pat<(sext_inreg GR64:$src, i16),
(MOVSX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit)))>;
def : Pat<(sext_inreg GR64:$src, i8),
(MOVSX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit)))>;
def : Pat<(sext_inreg GR32:$src, i8),
(MOVSX32rr8 (i8 (EXTRACT_SUBREG GR32:$src, x86_subreg_8bit)))>,
Requires<[In64BitMode]>;
def : Pat<(sext_inreg GR16:$src, i8),
(MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, x86_subreg_8bit)))>,
Requires<[In64BitMode]>;
// trunc patterns
def : Pat<(i32 (trunc GR64:$src)),
(i32 (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit))>;
def : Pat<(i16 (trunc GR64:$src)),
(i16 (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit))>;
def : Pat<(i8 (trunc GR64:$src)),
(i8 (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit))>;
def : Pat<(i8 (trunc GR32:$src)),
(i8 (EXTRACT_SUBREG GR32:$src, x86_subreg_8bit))>,
Requires<[In64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
(i8 (EXTRACT_SUBREG GR16:$src, x86_subreg_8bit))>,
Requires<[In64BitMode]>;
// (shl x, 1) ==> (add x, x)
def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
// (shl x (and y, 63)) ==> (shl x, y)
def : Pat<(shl GR64:$src1, (and CL:$amt, 63)),
(SHL64rCL GR64:$src1)>;
def : Pat<(store (shl (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst),
(SHL64mCL addr:$dst)>;
def : Pat<(srl GR64:$src1, (and CL:$amt, 63)),
(SHR64rCL GR64:$src1)>;
def : Pat<(store (srl (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst),
(SHR64mCL addr:$dst)>;
def : Pat<(sra GR64:$src1, (and CL:$amt, 63)),
(SAR64rCL GR64:$src1)>;
def : Pat<(store (sra (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst),
(SAR64mCL addr:$dst)>;
// (or (x >> c) | (y << (64 - c))) ==> (shrd64 x, y, c)
def : Pat<(or (srl GR64:$src1, CL:$amt),
(shl GR64:$src2, (sub 64, CL:$amt))),
(SHRD64rrCL GR64:$src1, GR64:$src2)>;
def : Pat<(store (or (srl (loadi64 addr:$dst), CL:$amt),
(shl GR64:$src2, (sub 64, CL:$amt))), addr:$dst),
(SHRD64mrCL addr:$dst, GR64:$src2)>;
def : Pat<(or (srl GR64:$src1, (i8 (trunc RCX:$amt))),
(shl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
(SHRD64rrCL GR64:$src1, GR64:$src2)>;
def : Pat<(store (or (srl (loadi64 addr:$dst), (i8 (trunc RCX:$amt))),
(shl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
addr:$dst),
(SHRD64mrCL addr:$dst, GR64:$src2)>;
def : Pat<(shrd GR64:$src1, (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)),
(SHRD64rri8 GR64:$src1, GR64:$src2, (i8 imm:$amt1))>;
def : Pat<(store (shrd (loadi64 addr:$dst), (i8 imm:$amt1),
GR64:$src2, (i8 imm:$amt2)), addr:$dst),
(SHRD64mri8 addr:$dst, GR64:$src2, (i8 imm:$amt1))>;
// (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
def : Pat<(or (shl GR64:$src1, CL:$amt),
(srl GR64:$src2, (sub 64, CL:$amt))),
(SHLD64rrCL GR64:$src1, GR64:$src2)>;
def : Pat<(store (or (shl (loadi64 addr:$dst), CL:$amt),
(srl GR64:$src2, (sub 64, CL:$amt))), addr:$dst),
(SHLD64mrCL addr:$dst, GR64:$src2)>;
def : Pat<(or (shl GR64:$src1, (i8 (trunc RCX:$amt))),
(srl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
(SHLD64rrCL GR64:$src1, GR64:$src2)>;
def : Pat<(store (or (shl (loadi64 addr:$dst), (i8 (trunc RCX:$amt))),
(srl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
addr:$dst),
(SHLD64mrCL addr:$dst, GR64:$src2)>;
def : Pat<(shld GR64:$src1, (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)),
(SHLD64rri8 GR64:$src1, GR64:$src2, (i8 imm:$amt1))>;
def : Pat<(store (shld (loadi64 addr:$dst), (i8 imm:$amt1),
GR64:$src2, (i8 imm:$amt2)), addr:$dst),
(SHLD64mri8 addr:$dst, GR64:$src2, (i8 imm:$amt1))>;
// X86 specific add which produces a flag.
def : Pat<(addc GR64:$src1, GR64:$src2),
(ADD64rr GR64:$src1, GR64:$src2)>;
def : Pat<(addc GR64:$src1, (load addr:$src2)),
(ADD64rm GR64:$src1, addr:$src2)>;
def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
(ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
(ADD64ri32 GR64:$src1, imm:$src2)>;
def : Pat<(subc GR64:$src1, GR64:$src2),
(SUB64rr GR64:$src1, GR64:$src2)>;
def : Pat<(subc GR64:$src1, (load addr:$src2)),
(SUB64rm GR64:$src1, addr:$src2)>;
def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
(SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(subc GR64:$src1, imm:$src2),
(SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
//===----------------------------------------------------------------------===//
// Overflow Patterns
//===----------------------------------------------------------------------===//
// Register-Register Addition with Overflow
def : Pat<(parallel (X86add_ovf GR64:$src1, GR64:$src2),
(implicit EFLAGS)),
(ADD64rr GR64:$src1, GR64:$src2)>;
// Register-Integer Addition with Overflow
def : Pat<(parallel (X86add_ovf GR64:$src1, i64immSExt8:$src2),
(implicit EFLAGS)),
(ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(parallel (X86add_ovf GR64:$src1, i64immSExt32:$src2),
(implicit EFLAGS)),
(ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
// Register-Memory Addition with Overflow
def : Pat<(parallel (X86add_ovf GR64:$src1, (load addr:$src2)),
(implicit EFLAGS)),
(ADD64rm GR64:$src1, addr:$src2)>;
// Memory-Register Addition with Overflow
def : Pat<(parallel (store (X86add_ovf (load addr:$dst), GR64:$src2),
addr:$dst),
(implicit EFLAGS)),
(ADD64mr addr:$dst, GR64:$src2)>;
def : Pat<(parallel (store (X86add_ovf (load addr:$dst), i64immSExt8:$src2),
addr:$dst),
(implicit EFLAGS)),
(ADD64mi8 addr:$dst, i64immSExt8:$src2)>;
def : Pat<(parallel (store (X86add_ovf (load addr:$dst), i64immSExt32:$src2),
addr:$dst),
(implicit EFLAGS)),
(ADD64mi32 addr:$dst, i64immSExt32:$src2)>;
// Register-Register Subtraction with Overflow
def : Pat<(parallel (X86sub_ovf GR64:$src1, GR64:$src2),
(implicit EFLAGS)),
(SUB64rr GR64:$src1, GR64:$src2)>;
// Register-Memory Subtraction with Overflow
def : Pat<(parallel (X86sub_ovf GR64:$src1, (load addr:$src2)),
(implicit EFLAGS)),
(SUB64rm GR64:$src1, addr:$src2)>;
// Register-Integer Subtraction with Overflow
def : Pat<(parallel (X86sub_ovf GR64:$src1, i64immSExt8:$src2),
(implicit EFLAGS)),
(SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(parallel (X86sub_ovf GR64:$src1, i64immSExt32:$src2),
(implicit EFLAGS)),
(SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
// Memory-Register Subtraction with Overflow
def : Pat<(parallel (store (X86sub_ovf (load addr:$dst), GR64:$src2),
addr:$dst),
(implicit EFLAGS)),
(SUB64mr addr:$dst, GR64:$src2)>;
// Memory-Integer Subtraction with Overflow
def : Pat<(parallel (store (X86sub_ovf (load addr:$dst), i64immSExt8:$src2),
addr:$dst),
(implicit EFLAGS)),
(SUB64mi8 addr:$dst, i64immSExt8:$src2)>;
def : Pat<(parallel (store (X86sub_ovf (load addr:$dst), i64immSExt32:$src2),
addr:$dst),
(implicit EFLAGS)),
(SUB64mi32 addr:$dst, i64immSExt32:$src2)>;
// Register-Register Signed Integer Multiplication with Overflow
def : Pat<(parallel (X86smul_ovf GR64:$src1, GR64:$src2),
(implicit EFLAGS)),
(IMUL64rr GR64:$src1, GR64:$src2)>;
// Register-Memory Signed Integer Multiplication with Overflow
def : Pat<(parallel (X86smul_ovf GR64:$src1, (load addr:$src2)),
(implicit EFLAGS)),
(IMUL64rm GR64:$src1, addr:$src2)>;
// Register-Integer Signed Integer Multiplication with Overflow
def : Pat<(parallel (X86smul_ovf GR64:$src1, i64immSExt8:$src2),
(implicit EFLAGS)),
(IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(parallel (X86smul_ovf GR64:$src1, i64immSExt32:$src2),
(implicit EFLAGS)),
(IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
// Memory-Integer Signed Integer Multiplication with Overflow
def : Pat<(parallel (X86smul_ovf (load addr:$src1), i64immSExt8:$src2),
(implicit EFLAGS)),
(IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
def : Pat<(parallel (X86smul_ovf (load addr:$src1), i64immSExt32:$src2),
(implicit EFLAGS)),
(IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
//===----------------------------------------------------------------------===//
// X86-64 SSE Instructions
//===----------------------------------------------------------------------===//
// Move instructions...
def MOV64toPQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector GR64:$src)))]>;
def MOVPQIto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (vector_extract (v2i64 VR128:$src),
(iPTR 0)))]>;
def MOV64toSDrr : RPDI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert GR64:$src))]>;
def MOV64toSDrm : RPDI<0x6E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>;
def MOVSDto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (bitconvert FR64:$src))]>;
def MOVSDto64mr : RPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (bitconvert FR64:$src)), addr:$dst)]>;
//===----------------------------------------------------------------------===//
// X86-64 SSE4.1 Instructions
//===----------------------------------------------------------------------===//
/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR64:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR64:$dst,
(extractelt (v2i64 VR128:$src1), imm:$src2))]>, OpSize, REX_W;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i64mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (v2i64 VR128:$src1), imm:$src2),
addr:$dst)]>, OpSize, REX_W;
}
defm PEXTRQ : SS41I_extract64<0x16, "pextrq">;
let isTwoAddress = 1 in {
multiclass SS41I_insert64<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR64:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>,
OpSize, REX_W;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i64mem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2),
imm:$src3)))]>, OpSize, REX_W;
}
}
defm PINSRQ : SS41I_insert64<0x22, "pinsrq">;