mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-04-03 16:21:41 +00:00

StratifiedSets (as implemented) is very fast, but its accuracy is also limited. If we take a more aggressive andersens-like approach, we can be way more accurate, but we'll also end up being slower. So, we've decided to split CFLAA into CFLSteensAA and CFLAndersAA. Long-term, we want to end up in a place where CFLSteens is queried first; if it can provide an answer, great (since queries are basically map lookups). Otherwise, we'll fall back to CFLAnders, BasicAA, etc. This patch splits everything out so we can try to do something like that when we get a reasonable CFLAnders implementation. Patch by Jia Chen. Differential Revision: http://reviews.llvm.org/D21910 llvm-svn: 274589
1152 lines
39 KiB
C++
1152 lines
39 KiB
C++
//- CFLSteensAliasAnalysis.cpp - Unification-based Alias Analysis ---*- C++-*-//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a CFL-base, summary-based alias analysis algorithm. It
|
|
// does not depend on types. The algorithm is a mixture of the one described in
|
|
// "Demand-driven alias analysis for C" by Xin Zheng and Radu Rugina, and "Fast
|
|
// algorithms for Dyck-CFL-reachability with applications to Alias Analysis" by
|
|
// Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the papers, we build a
|
|
// graph of the uses of a variable, where each node is a memory location, and
|
|
// each edge is an action that happened on that memory location. The "actions"
|
|
// can be one of Dereference, Reference, or Assign. The precision of this
|
|
// analysis is roughly the same as that of an one level context-sensitive
|
|
// Steensgaard's algorithm.
|
|
//
|
|
// Two variables are considered as aliasing iff you can reach one value's node
|
|
// from the other value's node and the language formed by concatenating all of
|
|
// the edge labels (actions) conforms to a context-free grammar.
|
|
//
|
|
// Because this algorithm requires a graph search on each query, we execute the
|
|
// algorithm outlined in "Fast algorithms..." (mentioned above)
|
|
// in order to transform the graph into sets of variables that may alias in
|
|
// ~nlogn time (n = number of variables), which makes queries take constant
|
|
// time.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
|
|
// CFLSteensAA is interprocedural. This is *technically* A Bad Thing, because
|
|
// FunctionPasses are only allowed to inspect the Function that they're being
|
|
// run on. Realistically, this likely isn't a problem until we allow
|
|
// FunctionPasses to run concurrently.
|
|
|
|
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
|
|
#include "StratifiedSets.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <memory>
|
|
#include <tuple>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "cfl-steens-aa"
|
|
|
|
CFLSteensAAResult::CFLSteensAAResult(const TargetLibraryInfo &TLI)
|
|
: AAResultBase(), TLI(TLI) {}
|
|
CFLSteensAAResult::CFLSteensAAResult(CFLSteensAAResult &&Arg)
|
|
: AAResultBase(std::move(Arg)), TLI(Arg.TLI) {}
|
|
CFLSteensAAResult::~CFLSteensAAResult() {}
|
|
|
|
/// We use InterfaceValue to describe parameters/return value, as well as
|
|
/// potential memory locations that are pointed to by parameters/return value,
|
|
/// of a function.
|
|
/// Index is an integer which represents a single parameter or a return value.
|
|
/// When the index is 0, it refers to the return value. Non-zero index i refers
|
|
/// to the i-th parameter.
|
|
/// DerefLevel indicates the number of dereferences one must perform on the
|
|
/// parameter/return value to get this InterfaceValue.
|
|
struct InterfaceValue {
|
|
unsigned Index;
|
|
unsigned DerefLevel;
|
|
};
|
|
|
|
bool operator==(InterfaceValue lhs, InterfaceValue rhs) {
|
|
return lhs.Index == rhs.Index && lhs.DerefLevel == rhs.DerefLevel;
|
|
}
|
|
bool operator!=(InterfaceValue lhs, InterfaceValue rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
/// We use ExternalRelation to describe an externally visible aliasing relations
|
|
/// between parameters/return value of a function.
|
|
struct ExternalRelation {
|
|
InterfaceValue From, To;
|
|
};
|
|
|
|
/// We use ExternalAttribute to describe an externally visible StratifiedAttrs
|
|
/// for parameters/return value.
|
|
struct ExternalAttribute {
|
|
InterfaceValue IValue;
|
|
StratifiedAttrs Attr;
|
|
};
|
|
|
|
/// Information we have about a function and would like to keep around.
|
|
class CFLSteensAAResult::FunctionInfo {
|
|
StratifiedSets<Value *> Sets;
|
|
|
|
// RetParamRelations is a collection of ExternalRelations.
|
|
SmallVector<ExternalRelation, 8> RetParamRelations;
|
|
|
|
// RetParamAttributes is a collection of ExternalAttributes.
|
|
SmallVector<ExternalAttribute, 8> RetParamAttributes;
|
|
|
|
public:
|
|
FunctionInfo(Function &Fn, const SmallVectorImpl<Value *> &RetVals,
|
|
StratifiedSets<Value *> S);
|
|
|
|
const StratifiedSets<Value *> &getStratifiedSets() const { return Sets; }
|
|
const SmallVectorImpl<ExternalRelation> &getRetParamRelations() const {
|
|
return RetParamRelations;
|
|
}
|
|
const SmallVectorImpl<ExternalAttribute> &getRetParamAttributes() const {
|
|
return RetParamAttributes;
|
|
}
|
|
};
|
|
|
|
/// Try to go from a Value* to a Function*. Never returns nullptr.
|
|
static Optional<Function *> parentFunctionOfValue(Value *);
|
|
|
|
/// Returns possible functions called by the Inst* into the given
|
|
/// SmallVectorImpl. Returns true if targets found, false otherwise. This is
|
|
/// templated so we can use it with CallInsts and InvokeInsts.
|
|
static bool getPossibleTargets(CallSite, SmallVectorImpl<Function *> &);
|
|
|
|
const StratifiedIndex StratifiedLink::SetSentinel =
|
|
std::numeric_limits<StratifiedIndex>::max();
|
|
|
|
namespace {
|
|
/// StratifiedInfo Attribute things.
|
|
LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
|
|
LLVM_CONSTEXPR unsigned AttrEscapedIndex = 0;
|
|
LLVM_CONSTEXPR unsigned AttrUnknownIndex = 1;
|
|
LLVM_CONSTEXPR unsigned AttrGlobalIndex = 2;
|
|
LLVM_CONSTEXPR unsigned AttrCallerIndex = 3;
|
|
LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 4;
|
|
LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
|
|
LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
|
|
|
|
// NOTE: These aren't StratifiedAttrs because bitsets don't have a constexpr
|
|
// ctor for some versions of MSVC that we support. We could maybe refactor,
|
|
// but...
|
|
using StratifiedAttr = unsigned;
|
|
LLVM_CONSTEXPR StratifiedAttr AttrNone = 0;
|
|
LLVM_CONSTEXPR StratifiedAttr AttrEscaped = 1 << AttrEscapedIndex;
|
|
LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex;
|
|
LLVM_CONSTEXPR StratifiedAttr AttrGlobal = 1 << AttrGlobalIndex;
|
|
LLVM_CONSTEXPR StratifiedAttr AttrCaller = 1 << AttrCallerIndex;
|
|
LLVM_CONSTEXPR StratifiedAttr ExternalAttrMask =
|
|
AttrEscaped | AttrUnknown | AttrGlobal;
|
|
|
|
/// The maximum number of arguments we can put into a summary.
|
|
LLVM_CONSTEXPR unsigned MaxSupportedArgsInSummary = 50;
|
|
|
|
/// StratifiedSets call for knowledge of "direction", so this is how we
|
|
/// represent that locally.
|
|
enum class Level { Same, Above, Below };
|
|
|
|
/// Edges can be one of four "weights" -- each weight must have an inverse
|
|
/// weight (Assign has Assign; Reference has Dereference).
|
|
enum class EdgeType {
|
|
/// The weight assigned when assigning from or to a value. For example, in:
|
|
/// %b = getelementptr %a, 0
|
|
/// ...The relationships are %b assign %a, and %a assign %b. This used to be
|
|
/// two edges, but having a distinction bought us nothing.
|
|
Assign,
|
|
|
|
/// The edge used when we have an edge going from some handle to a Value.
|
|
/// Examples of this include:
|
|
/// %b = load %a (%b Dereference %a)
|
|
/// %b = extractelement %a, 0 (%a Dereference %b)
|
|
Dereference,
|
|
|
|
/// The edge used when our edge goes from a value to a handle that may have
|
|
/// contained it at some point. Examples:
|
|
/// %b = load %a (%a Reference %b)
|
|
/// %b = extractelement %a, 0 (%b Reference %a)
|
|
Reference
|
|
};
|
|
|
|
/// The Program Expression Graph (PEG) of CFL analysis
|
|
class CFLGraph {
|
|
typedef Value *Node;
|
|
|
|
struct Edge {
|
|
EdgeType Type;
|
|
Node Other;
|
|
};
|
|
|
|
typedef std::vector<Edge> EdgeList;
|
|
|
|
struct NodeInfo {
|
|
EdgeList Edges;
|
|
StratifiedAttrs Attr;
|
|
};
|
|
|
|
typedef DenseMap<Node, NodeInfo> NodeMap;
|
|
NodeMap NodeImpls;
|
|
|
|
// Gets the inverse of a given EdgeType.
|
|
static EdgeType flipWeight(EdgeType Initial) {
|
|
switch (Initial) {
|
|
case EdgeType::Assign:
|
|
return EdgeType::Assign;
|
|
case EdgeType::Dereference:
|
|
return EdgeType::Reference;
|
|
case EdgeType::Reference:
|
|
return EdgeType::Dereference;
|
|
}
|
|
llvm_unreachable("Incomplete coverage of EdgeType enum");
|
|
}
|
|
|
|
const NodeInfo *getNode(Node N) const {
|
|
auto Itr = NodeImpls.find(N);
|
|
if (Itr == NodeImpls.end())
|
|
return nullptr;
|
|
return &Itr->second;
|
|
}
|
|
NodeInfo *getNode(Node N) {
|
|
auto Itr = NodeImpls.find(N);
|
|
if (Itr == NodeImpls.end())
|
|
return nullptr;
|
|
return &Itr->second;
|
|
}
|
|
|
|
static Node nodeDeref(const NodeMap::value_type &P) { return P.first; }
|
|
typedef std::pointer_to_unary_function<const NodeMap::value_type &, Node>
|
|
NodeDerefFun;
|
|
|
|
public:
|
|
typedef EdgeList::const_iterator const_edge_iterator;
|
|
typedef mapped_iterator<NodeMap::const_iterator, NodeDerefFun>
|
|
const_node_iterator;
|
|
|
|
bool addNode(Node N) {
|
|
return NodeImpls.insert(std::make_pair(N, NodeInfo{EdgeList(), AttrNone}))
|
|
.second;
|
|
}
|
|
|
|
void addAttr(Node N, StratifiedAttrs Attr) {
|
|
auto *Info = getNode(N);
|
|
assert(Info != nullptr);
|
|
Info->Attr |= Attr;
|
|
}
|
|
|
|
void addEdge(Node From, Node To, EdgeType Type) {
|
|
auto *FromInfo = getNode(From);
|
|
assert(FromInfo != nullptr);
|
|
auto *ToInfo = getNode(To);
|
|
assert(ToInfo != nullptr);
|
|
|
|
FromInfo->Edges.push_back(Edge{Type, To});
|
|
ToInfo->Edges.push_back(Edge{flipWeight(Type), From});
|
|
}
|
|
|
|
StratifiedAttrs attrFor(Node N) const {
|
|
auto *Info = getNode(N);
|
|
assert(Info != nullptr);
|
|
return Info->Attr;
|
|
}
|
|
|
|
iterator_range<const_edge_iterator> edgesFor(Node N) const {
|
|
auto *Info = getNode(N);
|
|
assert(Info != nullptr);
|
|
auto &Edges = Info->Edges;
|
|
return make_range(Edges.begin(), Edges.end());
|
|
}
|
|
|
|
iterator_range<const_node_iterator> nodes() const {
|
|
return make_range<const_node_iterator>(
|
|
map_iterator(NodeImpls.begin(), NodeDerefFun(nodeDeref)),
|
|
map_iterator(NodeImpls.end(), NodeDerefFun(nodeDeref)));
|
|
}
|
|
|
|
bool empty() const { return NodeImpls.empty(); }
|
|
std::size_t size() const { return NodeImpls.size(); }
|
|
};
|
|
|
|
// This is the result of instantiating InterfaceValue at a particular callsite
|
|
struct InterprocNode {
|
|
Value *Val;
|
|
unsigned DerefLevel;
|
|
};
|
|
|
|
// Interprocedural assignment edges that CFLGraph may not easily model
|
|
struct InterprocEdge {
|
|
InterprocNode From, To;
|
|
};
|
|
|
|
// Interprocedural attribute tagging that CFLGraph may not easily model
|
|
struct InterprocAttr {
|
|
InterprocNode Node;
|
|
StratifiedAttrs Attr;
|
|
};
|
|
|
|
/// Gets the edges our graph should have, based on an Instruction*
|
|
class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
|
|
CFLSteensAAResult &AA;
|
|
const TargetLibraryInfo &TLI;
|
|
|
|
CFLGraph &Graph;
|
|
SmallVectorImpl<Value *> &ReturnValues;
|
|
SmallPtrSetImpl<Value *> &Externals;
|
|
SmallPtrSetImpl<Value *> &Escapes;
|
|
SmallVectorImpl<InterprocEdge> &InterprocEdges;
|
|
SmallVectorImpl<InterprocAttr> &InterprocAttrs;
|
|
|
|
static bool hasUsefulEdges(ConstantExpr *CE) {
|
|
// ConstantExpr doesn't have terminators, invokes, or fences, so only needs
|
|
// to check for compares.
|
|
return CE->getOpcode() != Instruction::ICmp &&
|
|
CE->getOpcode() != Instruction::FCmp;
|
|
}
|
|
|
|
void addNode(Value *Val) {
|
|
if (!Graph.addNode(Val))
|
|
return;
|
|
|
|
if (isa<GlobalValue>(Val))
|
|
Externals.insert(Val);
|
|
else if (auto CExpr = dyn_cast<ConstantExpr>(Val))
|
|
if (hasUsefulEdges(CExpr))
|
|
visitConstantExpr(CExpr);
|
|
}
|
|
|
|
void addNodeWithAttr(Value *Val, StratifiedAttrs Attr) {
|
|
addNode(Val);
|
|
Graph.addAttr(Val, Attr);
|
|
}
|
|
|
|
void addEdge(Value *From, Value *To, EdgeType Type) {
|
|
if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
|
|
return;
|
|
addNode(From);
|
|
if (To != From)
|
|
addNode(To);
|
|
Graph.addEdge(From, To, Type);
|
|
}
|
|
|
|
public:
|
|
GetEdgesVisitor(CFLSteensAAResult &AA, const TargetLibraryInfo &TLI,
|
|
CFLGraph &Graph, SmallVectorImpl<Value *> &ReturnValues,
|
|
SmallPtrSetImpl<Value *> &Externals,
|
|
SmallPtrSetImpl<Value *> &Escapes,
|
|
SmallVectorImpl<InterprocEdge> &InterprocEdges,
|
|
SmallVectorImpl<InterprocAttr> &InterprocAttrs)
|
|
: AA(AA), TLI(TLI), Graph(Graph), ReturnValues(ReturnValues),
|
|
Externals(Externals), Escapes(Escapes), InterprocEdges(InterprocEdges),
|
|
InterprocAttrs(InterprocAttrs) {}
|
|
|
|
void visitInstruction(Instruction &) {
|
|
llvm_unreachable("Unsupported instruction encountered");
|
|
}
|
|
|
|
void visitReturnInst(ReturnInst &Inst) {
|
|
if (auto RetVal = Inst.getReturnValue()) {
|
|
if (RetVal->getType()->isPointerTy()) {
|
|
addNode(RetVal);
|
|
ReturnValues.push_back(RetVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
void visitPtrToIntInst(PtrToIntInst &Inst) {
|
|
auto *Ptr = Inst.getOperand(0);
|
|
addNodeWithAttr(Ptr, AttrEscaped);
|
|
}
|
|
|
|
void visitIntToPtrInst(IntToPtrInst &Inst) {
|
|
auto *Ptr = &Inst;
|
|
addNodeWithAttr(Ptr, AttrUnknown);
|
|
}
|
|
|
|
void visitCastInst(CastInst &Inst) {
|
|
auto *Src = Inst.getOperand(0);
|
|
addEdge(Src, &Inst, EdgeType::Assign);
|
|
}
|
|
|
|
void visitBinaryOperator(BinaryOperator &Inst) {
|
|
auto *Op1 = Inst.getOperand(0);
|
|
auto *Op2 = Inst.getOperand(1);
|
|
addEdge(Op1, &Inst, EdgeType::Assign);
|
|
addEdge(Op2, &Inst, EdgeType::Assign);
|
|
}
|
|
|
|
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
|
|
auto *Ptr = Inst.getPointerOperand();
|
|
auto *Val = Inst.getNewValOperand();
|
|
addEdge(Ptr, Val, EdgeType::Dereference);
|
|
}
|
|
|
|
void visitAtomicRMWInst(AtomicRMWInst &Inst) {
|
|
auto *Ptr = Inst.getPointerOperand();
|
|
auto *Val = Inst.getValOperand();
|
|
addEdge(Ptr, Val, EdgeType::Dereference);
|
|
}
|
|
|
|
void visitPHINode(PHINode &Inst) {
|
|
for (Value *Val : Inst.incoming_values())
|
|
addEdge(Val, &Inst, EdgeType::Assign);
|
|
}
|
|
|
|
void visitGetElementPtrInst(GetElementPtrInst &Inst) {
|
|
auto *Op = Inst.getPointerOperand();
|
|
addEdge(Op, &Inst, EdgeType::Assign);
|
|
}
|
|
|
|
void visitSelectInst(SelectInst &Inst) {
|
|
// Condition is not processed here (The actual statement producing
|
|
// the condition result is processed elsewhere). For select, the
|
|
// condition is evaluated, but not loaded, stored, or assigned
|
|
// simply as a result of being the condition of a select.
|
|
|
|
auto *TrueVal = Inst.getTrueValue();
|
|
auto *FalseVal = Inst.getFalseValue();
|
|
addEdge(TrueVal, &Inst, EdgeType::Assign);
|
|
addEdge(FalseVal, &Inst, EdgeType::Assign);
|
|
}
|
|
|
|
void visitAllocaInst(AllocaInst &Inst) { Graph.addNode(&Inst); }
|
|
|
|
void visitLoadInst(LoadInst &Inst) {
|
|
auto *Ptr = Inst.getPointerOperand();
|
|
auto *Val = &Inst;
|
|
addEdge(Val, Ptr, EdgeType::Reference);
|
|
}
|
|
|
|
void visitStoreInst(StoreInst &Inst) {
|
|
auto *Ptr = Inst.getPointerOperand();
|
|
auto *Val = Inst.getValueOperand();
|
|
addEdge(Ptr, Val, EdgeType::Dereference);
|
|
}
|
|
|
|
void visitVAArgInst(VAArgInst &Inst) {
|
|
// We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
|
|
// two things:
|
|
// 1. Loads a value from *((T*)*Ptr).
|
|
// 2. Increments (stores to) *Ptr by some target-specific amount.
|
|
// For now, we'll handle this like a landingpad instruction (by placing the
|
|
// result in its own group, and having that group alias externals).
|
|
addNodeWithAttr(&Inst, AttrUnknown);
|
|
}
|
|
|
|
static bool isFunctionExternal(Function *Fn) {
|
|
return !Fn->hasExactDefinition();
|
|
}
|
|
|
|
bool tryInterproceduralAnalysis(CallSite CS,
|
|
const SmallVectorImpl<Function *> &Fns) {
|
|
assert(Fns.size() > 0);
|
|
|
|
if (CS.arg_size() > MaxSupportedArgsInSummary)
|
|
return false;
|
|
|
|
// Exit early if we'll fail anyway
|
|
for (auto *Fn : Fns) {
|
|
if (isFunctionExternal(Fn) || Fn->isVarArg())
|
|
return false;
|
|
// Fail if the caller does not provide enough arguments
|
|
assert(Fn->arg_size() <= CS.arg_size());
|
|
auto &MaybeInfo = AA.ensureCached(Fn);
|
|
if (!MaybeInfo.hasValue())
|
|
return false;
|
|
}
|
|
|
|
auto InstantiateInterfaceIndex = [&CS](unsigned Index) {
|
|
auto Value =
|
|
(Index == 0) ? CS.getInstruction() : CS.getArgument(Index - 1);
|
|
return Value->getType()->isPointerTy() ? Value : nullptr;
|
|
};
|
|
|
|
for (auto *Fn : Fns) {
|
|
auto &FnInfo = AA.ensureCached(Fn);
|
|
assert(FnInfo.hasValue());
|
|
|
|
auto &RetParamRelations = FnInfo->getRetParamRelations();
|
|
for (auto &Relation : RetParamRelations) {
|
|
auto FromVal = InstantiateInterfaceIndex(Relation.From.Index);
|
|
auto ToVal = InstantiateInterfaceIndex(Relation.To.Index);
|
|
if (FromVal && ToVal) {
|
|
auto FromLevel = Relation.From.DerefLevel;
|
|
auto ToLevel = Relation.To.DerefLevel;
|
|
InterprocEdges.push_back(
|
|
InterprocEdge{InterprocNode{FromVal, FromLevel},
|
|
InterprocNode{ToVal, ToLevel}});
|
|
}
|
|
}
|
|
|
|
auto &RetParamAttributes = FnInfo->getRetParamAttributes();
|
|
for (auto &Attribute : RetParamAttributes) {
|
|
if (auto Val = InstantiateInterfaceIndex(Attribute.IValue.Index)) {
|
|
InterprocAttrs.push_back(InterprocAttr{
|
|
InterprocNode{Val, Attribute.IValue.DerefLevel}, Attribute.Attr});
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void visitCallSite(CallSite CS) {
|
|
auto Inst = CS.getInstruction();
|
|
|
|
// Make sure all arguments and return value are added to the graph first
|
|
for (Value *V : CS.args())
|
|
addNode(V);
|
|
if (Inst->getType()->isPointerTy())
|
|
addNode(Inst);
|
|
|
|
// Check if Inst is a call to a library function that allocates/deallocates
|
|
// on the heap. Those kinds of functions do not introduce any aliases.
|
|
// TODO: address other common library functions such as realloc(), strdup(),
|
|
// etc.
|
|
if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI) ||
|
|
isFreeCall(Inst, &TLI))
|
|
return;
|
|
|
|
// TODO: Add support for noalias args/all the other fun function attributes
|
|
// that we can tack on.
|
|
SmallVector<Function *, 4> Targets;
|
|
if (getPossibleTargets(CS, Targets))
|
|
if (tryInterproceduralAnalysis(CS, Targets))
|
|
return;
|
|
|
|
// Because the function is opaque, we need to note that anything
|
|
// could have happened to the arguments (unless the function is marked
|
|
// readonly or readnone), and that the result could alias just about
|
|
// anything, too (unless the result is marked noalias).
|
|
if (!CS.onlyReadsMemory())
|
|
for (Value *V : CS.args()) {
|
|
if (V->getType()->isPointerTy())
|
|
Escapes.insert(V);
|
|
}
|
|
|
|
if (Inst->getType()->isPointerTy()) {
|
|
auto *Fn = CS.getCalledFunction();
|
|
if (Fn == nullptr || !Fn->doesNotAlias(0))
|
|
Graph.addAttr(Inst, AttrUnknown);
|
|
}
|
|
}
|
|
|
|
/// Because vectors/aggregates are immutable and unaddressable, there's
|
|
/// nothing we can do to coax a value out of them, other than calling
|
|
/// Extract{Element,Value}. We can effectively treat them as pointers to
|
|
/// arbitrary memory locations we can store in and load from.
|
|
void visitExtractElementInst(ExtractElementInst &Inst) {
|
|
auto *Ptr = Inst.getVectorOperand();
|
|
auto *Val = &Inst;
|
|
addEdge(Val, Ptr, EdgeType::Reference);
|
|
}
|
|
|
|
void visitInsertElementInst(InsertElementInst &Inst) {
|
|
auto *Vec = Inst.getOperand(0);
|
|
auto *Val = Inst.getOperand(1);
|
|
addEdge(Vec, &Inst, EdgeType::Assign);
|
|
addEdge(&Inst, Val, EdgeType::Dereference);
|
|
}
|
|
|
|
void visitLandingPadInst(LandingPadInst &Inst) {
|
|
// Exceptions come from "nowhere", from our analysis' perspective.
|
|
// So we place the instruction its own group, noting that said group may
|
|
// alias externals
|
|
addNodeWithAttr(&Inst, AttrUnknown);
|
|
}
|
|
|
|
void visitInsertValueInst(InsertValueInst &Inst) {
|
|
auto *Agg = Inst.getOperand(0);
|
|
auto *Val = Inst.getOperand(1);
|
|
addEdge(Agg, &Inst, EdgeType::Assign);
|
|
addEdge(&Inst, Val, EdgeType::Dereference);
|
|
}
|
|
|
|
void visitExtractValueInst(ExtractValueInst &Inst) {
|
|
auto *Ptr = Inst.getAggregateOperand();
|
|
addEdge(&Inst, Ptr, EdgeType::Reference);
|
|
}
|
|
|
|
void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
|
|
auto *From1 = Inst.getOperand(0);
|
|
auto *From2 = Inst.getOperand(1);
|
|
addEdge(From1, &Inst, EdgeType::Assign);
|
|
addEdge(From2, &Inst, EdgeType::Assign);
|
|
}
|
|
|
|
void visitConstantExpr(ConstantExpr *CE) {
|
|
switch (CE->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown instruction type encountered!");
|
|
// Build the switch statement using the Instruction.def file.
|
|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
|
case Instruction::OPCODE: \
|
|
visit##OPCODE(*(CLASS *)CE); \
|
|
break;
|
|
#include "llvm/IR/Instruction.def"
|
|
}
|
|
}
|
|
};
|
|
|
|
class CFLGraphBuilder {
|
|
// Input of the builder
|
|
CFLSteensAAResult &Analysis;
|
|
const TargetLibraryInfo &TLI;
|
|
|
|
// Output of the builder
|
|
CFLGraph Graph;
|
|
SmallVector<Value *, 4> ReturnedValues;
|
|
|
|
// Auxiliary structures used by the builder
|
|
SmallPtrSet<Value *, 8> ExternalValues;
|
|
SmallPtrSet<Value *, 8> EscapedValues;
|
|
SmallVector<InterprocEdge, 8> InterprocEdges;
|
|
SmallVector<InterprocAttr, 8> InterprocAttrs;
|
|
|
|
// Helper functions
|
|
|
|
// Determines whether or not we an instruction is useless to us (e.g.
|
|
// FenceInst)
|
|
static bool hasUsefulEdges(Instruction *Inst) {
|
|
bool IsNonInvokeRetTerminator = isa<TerminatorInst>(Inst) &&
|
|
!isa<InvokeInst>(Inst) &&
|
|
!isa<ReturnInst>(Inst);
|
|
return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) &&
|
|
!IsNonInvokeRetTerminator;
|
|
}
|
|
|
|
void addArgumentToGraph(Argument &Arg) {
|
|
if (Arg.getType()->isPointerTy()) {
|
|
Graph.addNode(&Arg);
|
|
ExternalValues.insert(&Arg);
|
|
}
|
|
}
|
|
|
|
// Given an Instruction, this will add it to the graph, along with any
|
|
// Instructions that are potentially only available from said Instruction
|
|
// For example, given the following line:
|
|
// %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
|
|
// addInstructionToGraph would add both the `load` and `getelementptr`
|
|
// instructions to the graph appropriately.
|
|
void addInstructionToGraph(Instruction &Inst) {
|
|
if (!hasUsefulEdges(&Inst))
|
|
return;
|
|
|
|
GetEdgesVisitor(Analysis, TLI, Graph, ReturnedValues, ExternalValues,
|
|
EscapedValues, InterprocEdges, InterprocAttrs)
|
|
.visit(Inst);
|
|
}
|
|
|
|
// Builds the graph needed for constructing the StratifiedSets for the given
|
|
// function
|
|
void buildGraphFrom(Function &Fn) {
|
|
for (auto &Bb : Fn.getBasicBlockList())
|
|
for (auto &Inst : Bb.getInstList())
|
|
addInstructionToGraph(Inst);
|
|
|
|
for (auto &Arg : Fn.args())
|
|
addArgumentToGraph(Arg);
|
|
}
|
|
|
|
public:
|
|
CFLGraphBuilder(CFLSteensAAResult &Analysis, const TargetLibraryInfo &TLI,
|
|
Function &Fn)
|
|
: Analysis(Analysis), TLI(TLI) {
|
|
buildGraphFrom(Fn);
|
|
}
|
|
|
|
const CFLGraph &getCFLGraph() const { return Graph; }
|
|
const SmallVector<Value *, 4> &getReturnValues() const {
|
|
return ReturnedValues;
|
|
}
|
|
const SmallPtrSet<Value *, 8> &getExternalValues() const {
|
|
return ExternalValues;
|
|
}
|
|
const SmallPtrSet<Value *, 8> &getEscapedValues() const {
|
|
return EscapedValues;
|
|
}
|
|
const SmallVector<InterprocEdge, 8> &getInterprocEdges() const {
|
|
return InterprocEdges;
|
|
}
|
|
const SmallVector<InterprocAttr, 8> &getInterprocAttrs() const {
|
|
return InterprocAttrs;
|
|
}
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Function declarations that require types defined in the namespace above
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Given a StratifiedAttrs, returns true if it marks the corresponding values
|
|
/// as globals or arguments
|
|
static bool isGlobalOrArgAttr(StratifiedAttrs Attr);
|
|
|
|
/// Given a StratifiedAttrs, returns true if the corresponding values come from
|
|
/// an unknown source (such as opaque memory or an integer cast)
|
|
static bool isUnknownAttr(StratifiedAttrs Attr);
|
|
|
|
/// Given an argument number, returns the appropriate StratifiedAttr to set.
|
|
static StratifiedAttrs argNumberToAttr(unsigned ArgNum);
|
|
|
|
/// Given a Value, potentially return which StratifiedAttr it maps to.
|
|
static Optional<StratifiedAttrs> valueToAttr(Value *Val);
|
|
|
|
/// Gets the "Level" that one should travel in StratifiedSets
|
|
/// given an EdgeType.
|
|
static Level directionOfEdgeType(EdgeType);
|
|
|
|
/// Determines whether it would be pointless to add the given Value to our sets.
|
|
static bool canSkipAddingToSets(Value *Val);
|
|
|
|
static Optional<Function *> parentFunctionOfValue(Value *Val) {
|
|
if (auto *Inst = dyn_cast<Instruction>(Val)) {
|
|
auto *Bb = Inst->getParent();
|
|
return Bb->getParent();
|
|
}
|
|
|
|
if (auto *Arg = dyn_cast<Argument>(Val))
|
|
return Arg->getParent();
|
|
return None;
|
|
}
|
|
|
|
static bool getPossibleTargets(CallSite CS,
|
|
SmallVectorImpl<Function *> &Output) {
|
|
if (auto *Fn = CS.getCalledFunction()) {
|
|
Output.push_back(Fn);
|
|
return true;
|
|
}
|
|
|
|
// TODO: If the call is indirect, we might be able to enumerate all potential
|
|
// targets of the call and return them, rather than just failing.
|
|
return false;
|
|
}
|
|
|
|
static bool isGlobalOrArgAttr(StratifiedAttrs Attr) {
|
|
return Attr.reset(AttrEscapedIndex)
|
|
.reset(AttrUnknownIndex)
|
|
.reset(AttrCallerIndex)
|
|
.any();
|
|
}
|
|
|
|
static bool isUnknownAttr(StratifiedAttrs Attr) {
|
|
return Attr.test(AttrUnknownIndex) || Attr.test(AttrCallerIndex);
|
|
}
|
|
|
|
static Optional<StratifiedAttrs> valueToAttr(Value *Val) {
|
|
if (isa<GlobalValue>(Val))
|
|
return StratifiedAttrs(AttrGlobal);
|
|
|
|
if (auto *Arg = dyn_cast<Argument>(Val))
|
|
// Only pointer arguments should have the argument attribute,
|
|
// because things can't escape through scalars without us seeing a
|
|
// cast, and thus, interaction with them doesn't matter.
|
|
if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy())
|
|
return argNumberToAttr(Arg->getArgNo());
|
|
return None;
|
|
}
|
|
|
|
static StratifiedAttrs argNumberToAttr(unsigned ArgNum) {
|
|
if (ArgNum >= AttrMaxNumArgs)
|
|
return AttrUnknown;
|
|
// N.B. MSVC complains if we use `1U` here, since StratifiedAttrs' ctor takes
|
|
// an unsigned long long.
|
|
return StratifiedAttrs(1ULL << (ArgNum + AttrFirstArgIndex));
|
|
}
|
|
|
|
static Level directionOfEdgeType(EdgeType Weight) {
|
|
switch (Weight) {
|
|
case EdgeType::Reference:
|
|
return Level::Above;
|
|
case EdgeType::Dereference:
|
|
return Level::Below;
|
|
case EdgeType::Assign:
|
|
return Level::Same;
|
|
}
|
|
llvm_unreachable("Incomplete switch coverage");
|
|
}
|
|
|
|
static bool canSkipAddingToSets(Value *Val) {
|
|
// Constants can share instances, which may falsely unify multiple
|
|
// sets, e.g. in
|
|
// store i32* null, i32** %ptr1
|
|
// store i32* null, i32** %ptr2
|
|
// clearly ptr1 and ptr2 should not be unified into the same set, so
|
|
// we should filter out the (potentially shared) instance to
|
|
// i32* null.
|
|
if (isa<Constant>(Val)) {
|
|
// TODO: Because all of these things are constant, we can determine whether
|
|
// the data is *actually* mutable at graph building time. This will probably
|
|
// come for free/cheap with offset awareness.
|
|
bool CanStoreMutableData = isa<GlobalValue>(Val) ||
|
|
isa<ConstantExpr>(Val) ||
|
|
isa<ConstantAggregate>(Val);
|
|
return !CanStoreMutableData;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
CFLSteensAAResult::FunctionInfo::FunctionInfo(
|
|
Function &Fn, const SmallVectorImpl<Value *> &RetVals,
|
|
StratifiedSets<Value *> S)
|
|
: Sets(std::move(S)) {
|
|
// Historically, an arbitrary upper-bound of 50 args was selected. We may want
|
|
// to remove this if it doesn't really matter in practice.
|
|
if (Fn.arg_size() > MaxSupportedArgsInSummary)
|
|
return;
|
|
|
|
DenseMap<StratifiedIndex, InterfaceValue> InterfaceMap;
|
|
|
|
// Our intention here is to record all InterfaceValues that share the same
|
|
// StratifiedIndex in RetParamRelations. For each valid InterfaceValue, we
|
|
// have its StratifiedIndex scanned here and check if the index is presented
|
|
// in InterfaceMap: if it is not, we add the correspondence to the map;
|
|
// otherwise, an aliasing relation is found and we add it to
|
|
// RetParamRelations.
|
|
|
|
auto AddToRetParamRelations = [&](unsigned InterfaceIndex,
|
|
StratifiedIndex SetIndex) {
|
|
unsigned Level = 0;
|
|
while (true) {
|
|
InterfaceValue CurrValue{InterfaceIndex, Level};
|
|
|
|
auto Itr = InterfaceMap.find(SetIndex);
|
|
if (Itr != InterfaceMap.end()) {
|
|
if (CurrValue != Itr->second)
|
|
RetParamRelations.push_back(ExternalRelation{CurrValue, Itr->second});
|
|
break;
|
|
}
|
|
|
|
auto &Link = Sets.getLink(SetIndex);
|
|
InterfaceMap.insert(std::make_pair(SetIndex, CurrValue));
|
|
auto ExternalAttrs = Link.Attrs & StratifiedAttrs(ExternalAttrMask);
|
|
if (ExternalAttrs.any())
|
|
RetParamAttributes.push_back(
|
|
ExternalAttribute{CurrValue, ExternalAttrs});
|
|
|
|
if (!Link.hasBelow())
|
|
break;
|
|
|
|
++Level;
|
|
SetIndex = Link.Below;
|
|
}
|
|
};
|
|
|
|
// Populate RetParamRelations for return values
|
|
for (auto *RetVal : RetVals) {
|
|
assert(RetVal != nullptr);
|
|
assert(RetVal->getType()->isPointerTy());
|
|
auto RetInfo = Sets.find(RetVal);
|
|
if (RetInfo.hasValue())
|
|
AddToRetParamRelations(0, RetInfo->Index);
|
|
}
|
|
|
|
// Populate RetParamRelations for parameters
|
|
unsigned I = 0;
|
|
for (auto &Param : Fn.args()) {
|
|
if (Param.getType()->isPointerTy()) {
|
|
auto ParamInfo = Sets.find(&Param);
|
|
if (ParamInfo.hasValue())
|
|
AddToRetParamRelations(I + 1, ParamInfo->Index);
|
|
}
|
|
++I;
|
|
}
|
|
}
|
|
|
|
// Builds the graph + StratifiedSets for a function.
|
|
CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
|
|
CFLGraphBuilder GraphBuilder(*this, TLI, *Fn);
|
|
StratifiedSetsBuilder<Value *> SetBuilder;
|
|
|
|
auto &Graph = GraphBuilder.getCFLGraph();
|
|
SmallVector<Value *, 16> Worklist;
|
|
for (auto Node : Graph.nodes())
|
|
Worklist.push_back(Node);
|
|
|
|
while (!Worklist.empty()) {
|
|
auto *CurValue = Worklist.pop_back_val();
|
|
SetBuilder.add(CurValue);
|
|
if (canSkipAddingToSets(CurValue))
|
|
continue;
|
|
|
|
auto Attr = Graph.attrFor(CurValue);
|
|
SetBuilder.noteAttributes(CurValue, Attr);
|
|
|
|
for (const auto &Edge : Graph.edgesFor(CurValue)) {
|
|
auto Label = Edge.Type;
|
|
auto *OtherValue = Edge.Other;
|
|
|
|
if (canSkipAddingToSets(OtherValue))
|
|
continue;
|
|
|
|
bool Added;
|
|
switch (directionOfEdgeType(Label)) {
|
|
case Level::Above:
|
|
Added = SetBuilder.addAbove(CurValue, OtherValue);
|
|
break;
|
|
case Level::Below:
|
|
Added = SetBuilder.addBelow(CurValue, OtherValue);
|
|
break;
|
|
case Level::Same:
|
|
Added = SetBuilder.addWith(CurValue, OtherValue);
|
|
break;
|
|
}
|
|
|
|
if (Added)
|
|
Worklist.push_back(OtherValue);
|
|
}
|
|
}
|
|
|
|
// Special handling for globals and arguments
|
|
for (auto *External : GraphBuilder.getExternalValues()) {
|
|
SetBuilder.add(External);
|
|
auto Attr = valueToAttr(External);
|
|
if (Attr.hasValue()) {
|
|
SetBuilder.noteAttributes(External, *Attr);
|
|
if (*Attr == AttrGlobal)
|
|
SetBuilder.addAttributesBelow(External, 1, AttrUnknown);
|
|
else
|
|
SetBuilder.addAttributesBelow(External, 1, AttrCaller);
|
|
}
|
|
}
|
|
|
|
// Special handling for interprocedural aliases
|
|
for (auto &Edge : GraphBuilder.getInterprocEdges()) {
|
|
auto FromVal = Edge.From.Val;
|
|
auto ToVal = Edge.To.Val;
|
|
SetBuilder.add(FromVal);
|
|
SetBuilder.add(ToVal);
|
|
SetBuilder.addBelowWith(FromVal, Edge.From.DerefLevel, ToVal,
|
|
Edge.To.DerefLevel);
|
|
}
|
|
|
|
// Special handling for interprocedural attributes
|
|
for (auto &IPAttr : GraphBuilder.getInterprocAttrs()) {
|
|
auto Val = IPAttr.Node.Val;
|
|
SetBuilder.add(Val);
|
|
SetBuilder.addAttributesBelow(Val, IPAttr.Node.DerefLevel, IPAttr.Attr);
|
|
}
|
|
|
|
// Special handling for opaque external functions
|
|
for (auto *Escape : GraphBuilder.getEscapedValues()) {
|
|
SetBuilder.add(Escape);
|
|
SetBuilder.noteAttributes(Escape, AttrEscaped);
|
|
SetBuilder.addAttributesBelow(Escape, 1, AttrUnknown);
|
|
}
|
|
|
|
return FunctionInfo(*Fn, GraphBuilder.getReturnValues(), SetBuilder.build());
|
|
}
|
|
|
|
void CFLSteensAAResult::scan(Function *Fn) {
|
|
auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
|
|
(void)InsertPair;
|
|
assert(InsertPair.second &&
|
|
"Trying to scan a function that has already been cached");
|
|
|
|
// Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
|
|
// may get evaluated after operator[], potentially triggering a DenseMap
|
|
// resize and invalidating the reference returned by operator[]
|
|
auto FunInfo = buildSetsFrom(Fn);
|
|
Cache[Fn] = std::move(FunInfo);
|
|
|
|
Handles.push_front(FunctionHandle(Fn, this));
|
|
}
|
|
|
|
void CFLSteensAAResult::evict(Function *Fn) { Cache.erase(Fn); }
|
|
|
|
/// Ensures that the given function is available in the cache, and returns the
|
|
/// entry.
|
|
const Optional<CFLSteensAAResult::FunctionInfo> &
|
|
CFLSteensAAResult::ensureCached(Function *Fn) {
|
|
auto Iter = Cache.find(Fn);
|
|
if (Iter == Cache.end()) {
|
|
scan(Fn);
|
|
Iter = Cache.find(Fn);
|
|
assert(Iter != Cache.end());
|
|
assert(Iter->second.hasValue());
|
|
}
|
|
return Iter->second;
|
|
}
|
|
|
|
AliasResult CFLSteensAAResult::query(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB) {
|
|
auto *ValA = const_cast<Value *>(LocA.Ptr);
|
|
auto *ValB = const_cast<Value *>(LocB.Ptr);
|
|
|
|
if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
|
|
return NoAlias;
|
|
|
|
Function *Fn = nullptr;
|
|
auto MaybeFnA = parentFunctionOfValue(ValA);
|
|
auto MaybeFnB = parentFunctionOfValue(ValB);
|
|
if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
|
|
// The only times this is known to happen are when globals + InlineAsm are
|
|
// involved
|
|
DEBUG(dbgs()
|
|
<< "CFLSteensAA: could not extract parent function information.\n");
|
|
return MayAlias;
|
|
}
|
|
|
|
if (MaybeFnA.hasValue()) {
|
|
Fn = *MaybeFnA;
|
|
assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
|
|
"Interprocedural queries not supported");
|
|
} else {
|
|
Fn = *MaybeFnB;
|
|
}
|
|
|
|
assert(Fn != nullptr);
|
|
auto &MaybeInfo = ensureCached(Fn);
|
|
assert(MaybeInfo.hasValue());
|
|
|
|
auto &Sets = MaybeInfo->getStratifiedSets();
|
|
auto MaybeA = Sets.find(ValA);
|
|
if (!MaybeA.hasValue())
|
|
return MayAlias;
|
|
|
|
auto MaybeB = Sets.find(ValB);
|
|
if (!MaybeB.hasValue())
|
|
return MayAlias;
|
|
|
|
auto SetA = *MaybeA;
|
|
auto SetB = *MaybeB;
|
|
auto AttrsA = Sets.getLink(SetA.Index).Attrs;
|
|
auto AttrsB = Sets.getLink(SetB.Index).Attrs;
|
|
|
|
// If both values are local (meaning the corresponding set has attribute
|
|
// AttrNone or AttrEscaped), then we know that CFLSteensAA fully models them:
|
|
// they may-alias each other if and only if they are in the same set.
|
|
// If at least one value is non-local (meaning it either is global/argument or
|
|
// it comes from unknown sources like integer cast), the situation becomes a
|
|
// bit more interesting. We follow three general rules described below:
|
|
// - Non-local values may alias each other
|
|
// - AttrNone values do not alias any non-local values
|
|
// - AttrEscaped do not alias globals/arguments, but they may alias
|
|
// AttrUnknown values
|
|
if (SetA.Index == SetB.Index)
|
|
return MayAlias;
|
|
if (AttrsA.none() || AttrsB.none())
|
|
return NoAlias;
|
|
if (isUnknownAttr(AttrsA) || isUnknownAttr(AttrsB))
|
|
return MayAlias;
|
|
if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB))
|
|
return MayAlias;
|
|
return NoAlias;
|
|
}
|
|
|
|
ModRefInfo CFLSteensAAResult::getArgModRefInfo(ImmutableCallSite CS,
|
|
unsigned ArgIdx) {
|
|
if (auto CalledFunc = CS.getCalledFunction()) {
|
|
auto &MaybeInfo = ensureCached(const_cast<Function *>(CalledFunc));
|
|
if (!MaybeInfo.hasValue())
|
|
return MRI_ModRef;
|
|
auto &RetParamAttributes = MaybeInfo->getRetParamAttributes();
|
|
auto &RetParamRelations = MaybeInfo->getRetParamRelations();
|
|
|
|
bool ArgAttributeIsWritten =
|
|
std::any_of(RetParamAttributes.begin(), RetParamAttributes.end(),
|
|
[ArgIdx](const ExternalAttribute &ExtAttr) {
|
|
return ExtAttr.IValue.Index == ArgIdx + 1;
|
|
});
|
|
bool ArgIsAccessed =
|
|
std::any_of(RetParamRelations.begin(), RetParamRelations.end(),
|
|
[ArgIdx](const ExternalRelation &ExtRelation) {
|
|
return ExtRelation.To.Index == ArgIdx + 1 ||
|
|
ExtRelation.From.Index == ArgIdx + 1;
|
|
});
|
|
|
|
return (!ArgIsAccessed && !ArgAttributeIsWritten) ? MRI_NoModRef
|
|
: MRI_ModRef;
|
|
}
|
|
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
FunctionModRefBehavior
|
|
CFLSteensAAResult::getModRefBehavior(ImmutableCallSite CS) {
|
|
// If we know the callee, try analyzing it
|
|
if (auto CalledFunc = CS.getCalledFunction())
|
|
return getModRefBehavior(CalledFunc);
|
|
|
|
// Otherwise, be conservative
|
|
return FMRB_UnknownModRefBehavior;
|
|
}
|
|
|
|
FunctionModRefBehavior CFLSteensAAResult::getModRefBehavior(const Function *F) {
|
|
assert(F != nullptr);
|
|
|
|
// TODO: Remove the const_cast
|
|
auto &MaybeInfo = ensureCached(const_cast<Function *>(F));
|
|
if (!MaybeInfo.hasValue())
|
|
return FMRB_UnknownModRefBehavior;
|
|
auto &RetParamAttributes = MaybeInfo->getRetParamAttributes();
|
|
auto &RetParamRelations = MaybeInfo->getRetParamRelations();
|
|
|
|
// First, if any argument is marked Escpaed, Unknown or Global, anything may
|
|
// happen to them and thus we can't draw any conclusion.
|
|
if (!RetParamAttributes.empty())
|
|
return FMRB_UnknownModRefBehavior;
|
|
|
|
// Currently we don't (and can't) distinguish reads from writes in
|
|
// RetParamRelations. All we can say is whether there may be memory access or
|
|
// not.
|
|
if (RetParamRelations.empty())
|
|
return FMRB_DoesNotAccessMemory;
|
|
|
|
// Check if something beyond argmem gets touched.
|
|
bool AccessArgMemoryOnly =
|
|
std::all_of(RetParamRelations.begin(), RetParamRelations.end(),
|
|
[](const ExternalRelation &ExtRelation) {
|
|
// Both DerefLevels has to be 0, since we don't know which
|
|
// one is a read and which is a write.
|
|
return ExtRelation.From.DerefLevel == 0 &&
|
|
ExtRelation.To.DerefLevel == 0;
|
|
});
|
|
return AccessArgMemoryOnly ? FMRB_OnlyAccessesArgumentPointees
|
|
: FMRB_UnknownModRefBehavior;
|
|
}
|
|
|
|
char CFLSteensAA::PassID;
|
|
|
|
CFLSteensAAResult CFLSteensAA::run(Function &F, AnalysisManager<Function> &AM) {
|
|
return CFLSteensAAResult(AM.getResult<TargetLibraryAnalysis>(F));
|
|
}
|
|
|
|
char CFLSteensAAWrapperPass::ID = 0;
|
|
INITIALIZE_PASS(CFLSteensAAWrapperPass, "cfl-steens-aa",
|
|
"Unification-Based CFL Alias Analysis", false, true)
|
|
|
|
ImmutablePass *llvm::createCFLSteensAAWrapperPass() {
|
|
return new CFLSteensAAWrapperPass();
|
|
}
|
|
|
|
CFLSteensAAWrapperPass::CFLSteensAAWrapperPass() : ImmutablePass(ID) {
|
|
initializeCFLSteensAAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void CFLSteensAAWrapperPass::initializePass() {
|
|
auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
|
|
Result.reset(new CFLSteensAAResult(TLIWP.getTLI()));
|
|
}
|
|
|
|
void CFLSteensAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
}
|