llvm-mirror/include/llvm/CodeGen/ScheduleDAGInstrs.h
Adrian Prantl 076a6683eb Remove \brief commands from doxygen comments.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.

Patch produced by

  for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done

Differential Revision: https://reviews.llvm.org/D46290

llvm-svn: 331272
2018-05-01 15:54:18 +00:00

385 lines
15 KiB
C++

//===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file Implements the ScheduleDAGInstrs class, which implements scheduling
/// for a MachineInstr-based dependency graph.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
#define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseMultiSet.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/MC/LaneBitmask.h"
#include <cassert>
#include <cstdint>
#include <list>
#include <utility>
#include <vector>
namespace llvm {
class LiveIntervals;
class MachineFrameInfo;
class MachineFunction;
class MachineInstr;
class MachineLoopInfo;
class MachineOperand;
struct MCSchedClassDesc;
class PressureDiffs;
class PseudoSourceValue;
class RegPressureTracker;
class UndefValue;
class Value;
/// An individual mapping from virtual register number to SUnit.
struct VReg2SUnit {
unsigned VirtReg;
LaneBitmask LaneMask;
SUnit *SU;
VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU)
: VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
unsigned getSparseSetIndex() const {
return TargetRegisterInfo::virtReg2Index(VirtReg);
}
};
/// Mapping from virtual register to SUnit including an operand index.
struct VReg2SUnitOperIdx : public VReg2SUnit {
unsigned OperandIndex;
VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask,
unsigned OperandIndex, SUnit *SU)
: VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {}
};
/// Record a physical register access.
/// For non-data-dependent uses, OpIdx == -1.
struct PhysRegSUOper {
SUnit *SU;
int OpIdx;
unsigned Reg;
PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
unsigned getSparseSetIndex() const { return Reg; }
};
/// Use a SparseMultiSet to track physical registers. Storage is only
/// allocated once for the pass. It can be cleared in constant time and reused
/// without any frees.
using Reg2SUnitsMap =
SparseMultiSet<PhysRegSUOper, identity<unsigned>, uint16_t>;
/// Use SparseSet as a SparseMap by relying on the fact that it never
/// compares ValueT's, only unsigned keys. This allows the set to be cleared
/// between scheduling regions in constant time as long as ValueT does not
/// require a destructor.
using VReg2SUnitMap = SparseSet<VReg2SUnit, VirtReg2IndexFunctor>;
/// Track local uses of virtual registers. These uses are gathered by the DAG
/// builder and may be consulted by the scheduler to avoid iterating an entire
/// vreg use list.
using VReg2SUnitMultiMap = SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor>;
using VReg2SUnitOperIdxMultiMap =
SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>;
using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;
struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> {
UnderlyingObject(ValueType V, bool MayAlias)
: PointerIntPair<ValueType, 1, bool>(V, MayAlias) {}
ValueType getValue() const { return getPointer(); }
bool mayAlias() const { return getInt(); }
};
using UnderlyingObjectsVector = SmallVector<UnderlyingObject, 4>;
/// A ScheduleDAG for scheduling lists of MachineInstr.
class ScheduleDAGInstrs : public ScheduleDAG {
protected:
const MachineLoopInfo *MLI;
const MachineFrameInfo &MFI;
/// TargetSchedModel provides an interface to the machine model.
TargetSchedModel SchedModel;
/// True if the DAG builder should remove kill flags (in preparation for
/// rescheduling).
bool RemoveKillFlags;
/// The standard DAG builder does not normally include terminators as DAG
/// nodes because it does not create the necessary dependencies to prevent
/// reordering. A specialized scheduler can override
/// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
/// it has taken responsibility for scheduling the terminator correctly.
bool CanHandleTerminators = false;
/// Whether lane masks should get tracked.
bool TrackLaneMasks = false;
// State specific to the current scheduling region.
// ------------------------------------------------
/// The block in which to insert instructions
MachineBasicBlock *BB;
/// The beginning of the range to be scheduled.
MachineBasicBlock::iterator RegionBegin;
/// The end of the range to be scheduled.
MachineBasicBlock::iterator RegionEnd;
/// Instructions in this region (distance(RegionBegin, RegionEnd)).
unsigned NumRegionInstrs;
/// After calling BuildSchedGraph, each machine instruction in the current
/// scheduling region is mapped to an SUnit.
DenseMap<MachineInstr*, SUnit*> MISUnitMap;
// State internal to DAG building.
// -------------------------------
/// Defs, Uses - Remember where defs and uses of each register are as we
/// iterate upward through the instructions. This is allocated here instead
/// of inside BuildSchedGraph to avoid the need for it to be initialized and
/// destructed for each block.
Reg2SUnitsMap Defs;
Reg2SUnitsMap Uses;
/// Tracks the last instruction(s) in this region defining each virtual
/// register. There may be multiple current definitions for a register with
/// disjunct lanemasks.
VReg2SUnitMultiMap CurrentVRegDefs;
/// Tracks the last instructions in this region using each virtual register.
VReg2SUnitOperIdxMultiMap CurrentVRegUses;
AliasAnalysis *AAForDep = nullptr;
/// Remember a generic side-effecting instruction as we proceed.
/// No other SU ever gets scheduled around it (except in the special
/// case of a huge region that gets reduced).
SUnit *BarrierChain = nullptr;
public:
/// A list of SUnits, used in Value2SUsMap, during DAG construction.
/// Note: to gain speed it might be worth investigating an optimized
/// implementation of this data structure, such as a singly linked list
/// with a memory pool (SmallVector was tried but slow and SparseSet is not
/// applicable).
using SUList = std::list<SUnit *>;
protected:
/// A map from ValueType to SUList, used during DAG construction, as
/// a means of remembering which SUs depend on which memory locations.
class Value2SUsMap;
/// Reduces maps in FIFO order, by N SUs. This is better than turning
/// every Nth memory SU into BarrierChain in buildSchedGraph(), since
/// it avoids unnecessary edges between seen SUs above the new BarrierChain,
/// and those below it.
void reduceHugeMemNodeMaps(Value2SUsMap &stores,
Value2SUsMap &loads, unsigned N);
/// Adds a chain edge between SUa and SUb, but only if both
/// AliasAnalysis and Target fail to deny the dependency.
void addChainDependency(SUnit *SUa, SUnit *SUb,
unsigned Latency = 0);
/// Adds dependencies as needed from all SUs in list to SU.
void addChainDependencies(SUnit *SU, SUList &SUs, unsigned Latency) {
for (SUnit *Entry : SUs)
addChainDependency(SU, Entry, Latency);
}
/// Adds dependencies as needed from all SUs in map, to SU.
void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap);
/// Adds dependencies as needed to SU, from all SUs mapped to V.
void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap,
ValueType V);
/// Adds barrier chain edges from all SUs in map, and then clear the map.
/// This is equivalent to insertBarrierChain(), but optimized for the common
/// case where the new BarrierChain (a global memory object) has a higher
/// NodeNum than all SUs in map. It is assumed BarrierChain has been set
/// before calling this.
void addBarrierChain(Value2SUsMap &map);
/// Inserts a barrier chain in a huge region, far below current SU.
/// Adds barrier chain edges from all SUs in map with higher NodeNums than
/// this new BarrierChain, and remove them from map. It is assumed
/// BarrierChain has been set before calling this.
void insertBarrierChain(Value2SUsMap &map);
/// For an unanalyzable memory access, this Value is used in maps.
UndefValue *UnknownValue;
using DbgValueVector =
std::vector<std::pair<MachineInstr *, MachineInstr *>>;
/// Remember instruction that precedes DBG_VALUE.
/// These are generated by buildSchedGraph but persist so they can be
/// referenced when emitting the final schedule.
DbgValueVector DbgValues;
MachineInstr *FirstDbgValue = nullptr;
/// Set of live physical registers for updating kill flags.
LivePhysRegs LiveRegs;
public:
explicit ScheduleDAGInstrs(MachineFunction &mf,
const MachineLoopInfo *mli,
bool RemoveKillFlags = false);
~ScheduleDAGInstrs() override = default;
/// Gets the machine model for instruction scheduling.
const TargetSchedModel *getSchedModel() const { return &SchedModel; }
/// Resolves and cache a resolved scheduling class for an SUnit.
const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
if (!SU->SchedClass && SchedModel.hasInstrSchedModel())
SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
return SU->SchedClass;
}
/// Returns an iterator to the top of the current scheduling region.
MachineBasicBlock::iterator begin() const { return RegionBegin; }
/// Returns an iterator to the bottom of the current scheduling region.
MachineBasicBlock::iterator end() const { return RegionEnd; }
/// Creates a new SUnit and return a ptr to it.
SUnit *newSUnit(MachineInstr *MI);
/// Returns an existing SUnit for this MI, or nullptr.
SUnit *getSUnit(MachineInstr *MI) const;
/// If this method returns true, handling of the scheduling regions
/// themselves (in case of a scheduling boundary in MBB) will be done
/// beginning with the topmost region of MBB.
virtual bool doMBBSchedRegionsTopDown() const { return false; }
/// Prepares to perform scheduling in the given block.
virtual void startBlock(MachineBasicBlock *BB);
/// Cleans up after scheduling in the given block.
virtual void finishBlock();
/// Initialize the DAG and common scheduler state for a new
/// scheduling region. This does not actually create the DAG, only clears
/// it. The scheduling driver may call BuildSchedGraph multiple times per
/// scheduling region.
virtual void enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
unsigned regioninstrs);
/// Called when the scheduler has finished scheduling the current region.
virtual void exitRegion();
/// Builds SUnits for the current region.
/// If \p RPTracker is non-null, compute register pressure as a side effect.
/// The DAG builder is an efficient place to do it because it already visits
/// operands.
void buildSchedGraph(AliasAnalysis *AA,
RegPressureTracker *RPTracker = nullptr,
PressureDiffs *PDiffs = nullptr,
LiveIntervals *LIS = nullptr,
bool TrackLaneMasks = false);
/// Adds dependencies from instructions in the current list of
/// instructions being scheduled to scheduling barrier. We want to make sure
/// instructions which define registers that are either used by the
/// terminator or are live-out are properly scheduled. This is especially
/// important when the definition latency of the return value(s) are too
/// high to be hidden by the branch or when the liveout registers used by
/// instructions in the fallthrough block.
void addSchedBarrierDeps();
/// Orders nodes according to selected style.
///
/// Typically, a scheduling algorithm will implement schedule() without
/// overriding enterRegion() or exitRegion().
virtual void schedule() = 0;
/// Allow targets to perform final scheduling actions at the level of the
/// whole MachineFunction. By default does nothing.
virtual void finalizeSchedule() {}
void dumpNode(const SUnit *SU) const override;
/// Returns a label for a DAG node that points to an instruction.
std::string getGraphNodeLabel(const SUnit *SU) const override;
/// Returns a label for the region of code covered by the DAG.
std::string getDAGName() const override;
/// Fixes register kill flags that scheduling has made invalid.
void fixupKills(MachineBasicBlock &MBB);
protected:
void initSUnits();
void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
/// Initializes register live-range state for updating kills.
/// PostRA helper for rewriting kill flags.
void startBlockForKills(MachineBasicBlock *BB);
/// Toggles a register operand kill flag.
///
/// Other adjustments may be made to the instruction if necessary. Return
/// true if the operand has been deleted, false if not.
void toggleKillFlag(MachineInstr &MI, MachineOperand &MO);
/// Returns a mask for which lanes get read/written by the given (register)
/// machine operand.
LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
};
/// Creates a new SUnit and return a ptr to it.
inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
#ifndef NDEBUG
const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
#endif
SUnits.emplace_back(MI, (unsigned)SUnits.size());
assert((Addr == nullptr || Addr == &SUnits[0]) &&
"SUnits std::vector reallocated on the fly!");
return &SUnits.back();
}
/// Returns an existing SUnit for this MI, or nullptr.
inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
if (I == MISUnitMap.end())
return nullptr;
return I->second;
}
} // end namespace llvm
#endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H