mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-23 12:24:34 +00:00
a106725fc5
patch brings numerous advantages to LLVM. One way to look at it is through diffstat: 109 files changed, 3005 insertions(+), 5906 deletions(-) Removing almost 3K lines of code is a good thing. Other advantages include: 1. Value::getType() is a simple load that can be CSE'd, not a mutating union-find operation. 2. Types a uniqued and never move once created, defining away PATypeHolder. 3. Structs can be "named" now, and their name is part of the identity that uniques them. This means that the compiler doesn't merge them structurally which makes the IR much less confusing. 4. Now that there is no way to get a cycle in a type graph without a named struct type, "upreferences" go away. 5. Type refinement is completely gone, which should make LTO much MUCH faster in some common cases with C++ code. 6. Types are now generally immutable, so we can use "Type *" instead "const Type *" everywhere. Downsides of this patch are that it removes some functions from the C API, so people using those will have to upgrade to (not yet added) new API. "LLVM 3.0" is the right time to do this. There are still some cleanups pending after this, this patch is large enough as-is. llvm-svn: 134829
185 lines
6.9 KiB
C++
185 lines
6.9 KiB
C++
//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the MapValue function, which is shared by various parts of
|
|
// the lib/Transforms/Utils library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Metadata.h"
|
|
using namespace llvm;
|
|
|
|
// Out of line method to get vtable etc for class.
|
|
void ValueMapTypeRemapper::Anchor() {}
|
|
|
|
Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper) {
|
|
ValueToValueMapTy::iterator I = VM.find(V);
|
|
|
|
// If the value already exists in the map, use it.
|
|
if (I != VM.end() && I->second) return I->second;
|
|
|
|
// Global values do not need to be seeded into the VM if they
|
|
// are using the identity mapping.
|
|
if (isa<GlobalValue>(V) || isa<InlineAsm>(V) || isa<MDString>(V))
|
|
return VM[V] = const_cast<Value*>(V);
|
|
|
|
if (const MDNode *MD = dyn_cast<MDNode>(V)) {
|
|
// If this is a module-level metadata and we know that nothing at the module
|
|
// level is changing, then use an identity mapping.
|
|
if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges))
|
|
return VM[V] = const_cast<Value*>(V);
|
|
|
|
// Create a dummy node in case we have a metadata cycle.
|
|
MDNode *Dummy = MDNode::getTemporary(V->getContext(), ArrayRef<Value*>());
|
|
VM[V] = Dummy;
|
|
|
|
// Check all operands to see if any need to be remapped.
|
|
for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) {
|
|
Value *OP = MD->getOperand(i);
|
|
if (OP == 0 || MapValue(OP, VM, Flags, TypeMapper) == OP) continue;
|
|
|
|
// Ok, at least one operand needs remapping.
|
|
SmallVector<Value*, 4> Elts;
|
|
Elts.reserve(MD->getNumOperands());
|
|
for (i = 0; i != e; ++i) {
|
|
Value *Op = MD->getOperand(i);
|
|
Elts.push_back(Op ? MapValue(Op, VM, Flags, TypeMapper) : 0);
|
|
}
|
|
MDNode *NewMD = MDNode::get(V->getContext(), Elts);
|
|
Dummy->replaceAllUsesWith(NewMD);
|
|
VM[V] = NewMD;
|
|
MDNode::deleteTemporary(Dummy);
|
|
return NewMD;
|
|
}
|
|
|
|
VM[V] = const_cast<Value*>(V);
|
|
MDNode::deleteTemporary(Dummy);
|
|
|
|
// No operands needed remapping. Use an identity mapping.
|
|
return const_cast<Value*>(V);
|
|
}
|
|
|
|
// Okay, this either must be a constant (which may or may not be mappable) or
|
|
// is something that is not in the mapping table.
|
|
Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
|
|
if (C == 0)
|
|
return 0;
|
|
|
|
if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
|
|
Function *F =
|
|
cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper));
|
|
BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
|
|
Flags, TypeMapper));
|
|
return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
|
|
}
|
|
|
|
// Otherwise, we have some other constant to remap. Start by checking to see
|
|
// if all operands have an identity remapping.
|
|
unsigned OpNo = 0, NumOperands = C->getNumOperands();
|
|
Value *Mapped = 0;
|
|
for (; OpNo != NumOperands; ++OpNo) {
|
|
Value *Op = C->getOperand(OpNo);
|
|
Mapped = MapValue(Op, VM, Flags, TypeMapper);
|
|
if (Mapped != C) break;
|
|
}
|
|
|
|
// See if the type mapper wants to remap the type as well.
|
|
Type *NewTy = C->getType();
|
|
if (TypeMapper)
|
|
NewTy = TypeMapper->remapType(NewTy);
|
|
|
|
// If the result type and all operands match up, then just insert an identity
|
|
// mapping.
|
|
if (OpNo == NumOperands && NewTy == C->getType())
|
|
return VM[V] = C;
|
|
|
|
// Okay, we need to create a new constant. We've already processed some or
|
|
// all of the operands, set them all up now.
|
|
SmallVector<Constant*, 8> Ops;
|
|
Ops.reserve(NumOperands);
|
|
for (unsigned j = 0; j != OpNo; ++j)
|
|
Ops.push_back(cast<Constant>(C->getOperand(j)));
|
|
|
|
// If one of the operands mismatch, push it and the other mapped operands.
|
|
if (OpNo != NumOperands) {
|
|
Ops.push_back(cast<Constant>(Mapped));
|
|
|
|
// Map the rest of the operands that aren't processed yet.
|
|
for (++OpNo; OpNo != NumOperands; ++OpNo)
|
|
Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
|
|
Flags, TypeMapper));
|
|
}
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
|
|
return VM[V] = CE->getWithOperands(Ops, NewTy);
|
|
if (isa<ConstantArray>(C))
|
|
return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
|
|
if (isa<ConstantStruct>(C))
|
|
return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
|
|
if (isa<ConstantVector>(C))
|
|
return VM[V] = ConstantVector::get(Ops);
|
|
// If this is a no-operand constant, it must be because the type was remapped.
|
|
if (isa<UndefValue>(C))
|
|
return VM[V] = UndefValue::get(NewTy);
|
|
if (isa<ConstantAggregateZero>(C))
|
|
return VM[V] = ConstantAggregateZero::get(NewTy);
|
|
assert(isa<ConstantPointerNull>(C));
|
|
return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
|
|
}
|
|
|
|
/// RemapInstruction - Convert the instruction operands from referencing the
|
|
/// current values into those specified by VMap.
|
|
///
|
|
void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper){
|
|
// Remap operands.
|
|
for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
|
|
Value *V = MapValue(*op, VMap, Flags, TypeMapper);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V != 0)
|
|
*op = V;
|
|
else
|
|
assert((Flags & RF_IgnoreMissingEntries) &&
|
|
"Referenced value not in value map!");
|
|
}
|
|
|
|
// Remap phi nodes' incoming blocks.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V != 0)
|
|
PN->setIncomingBlock(i, cast<BasicBlock>(V));
|
|
else
|
|
assert((Flags & RF_IgnoreMissingEntries) &&
|
|
"Referenced block not in value map!");
|
|
}
|
|
}
|
|
|
|
// Remap attached metadata.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
I->getAllMetadata(MDs);
|
|
for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
|
|
MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) {
|
|
MDNode *Old = MI->second;
|
|
MDNode *New = MapValue(Old, VMap, Flags, TypeMapper);
|
|
if (New != Old)
|
|
I->setMetadata(MI->first, New);
|
|
}
|
|
|
|
// If the instruction's type is being remapped, do so now.
|
|
if (TypeMapper)
|
|
I->mutateType(TypeMapper->remapType(I->getType()));
|
|
}
|