mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-04-12 12:33:17 +00:00
294 lines
11 KiB
C++
294 lines
11 KiB
C++
//===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file provides a collection of function (or more generally, callable)
|
|
/// type erasure utilities supplementing those provided by the standard library
|
|
/// in `<function>`.
|
|
///
|
|
/// It provides `unique_function`, which works like `std::function` but supports
|
|
/// move-only callable objects.
|
|
///
|
|
/// Future plans:
|
|
/// - Add a `function` that provides const, volatile, and ref-qualified support,
|
|
/// which doesn't work with `std::function`.
|
|
/// - Provide support for specifying multiple signatures to type erase callable
|
|
/// objects with an overload set, such as those produced by generic lambdas.
|
|
/// - Expand to include a copyable utility that directly replaces std::function
|
|
/// but brings the above improvements.
|
|
///
|
|
/// Note that LLVM's utilities are greatly simplified by not supporting
|
|
/// allocators.
|
|
///
|
|
/// If the standard library ever begins to provide comparable facilities we can
|
|
/// consider switching to those.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_FUNCTION_EXTRAS_H
|
|
#define LLVM_ADT_FUNCTION_EXTRAS_H
|
|
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <memory>
|
|
|
|
namespace llvm {
|
|
|
|
template <typename FunctionT> class unique_function;
|
|
|
|
template <typename ReturnT, typename... ParamTs>
|
|
class unique_function<ReturnT(ParamTs...)> {
|
|
static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
|
|
|
|
// MSVC has a bug and ICEs if we give it a particular dependent value
|
|
// expression as part of the `std::conditional` below. To work around this,
|
|
// we build that into a template struct's constexpr bool.
|
|
template <typename T> struct IsSizeLessThanThresholdT {
|
|
static constexpr bool value = sizeof(T) <= (2 * sizeof(void *));
|
|
};
|
|
|
|
// Provide a type function to map parameters that won't observe extra copies
|
|
// or moves and which are small enough to likely pass in register to values
|
|
// and all other types to l-value reference types. We use this to compute the
|
|
// types used in our erased call utility to minimize copies and moves unless
|
|
// doing so would force things unnecessarily into memory.
|
|
//
|
|
// The heuristic used is related to common ABI register passing conventions.
|
|
// It doesn't have to be exact though, and in one way it is more strict
|
|
// because we want to still be able to observe either moves *or* copies.
|
|
template <typename T>
|
|
using AdjustedParamT = typename std::conditional<
|
|
!std::is_reference<T>::value &&
|
|
llvm::is_trivially_copy_constructible<T>::value &&
|
|
llvm::is_trivially_move_constructible<T>::value &&
|
|
IsSizeLessThanThresholdT<T>::value,
|
|
T, T &>::type;
|
|
|
|
// The type of the erased function pointer we use as a callback to dispatch to
|
|
// the stored callable when it is trivial to move and destroy.
|
|
using CallPtrT = ReturnT (*)(void *CallableAddr,
|
|
AdjustedParamT<ParamTs>... Params);
|
|
using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
|
|
using DestroyPtrT = void (*)(void *CallableAddr);
|
|
|
|
/// A struct to hold a single trivial callback with sufficient alignment for
|
|
/// our bitpacking.
|
|
struct alignas(8) TrivialCallback {
|
|
CallPtrT CallPtr;
|
|
};
|
|
|
|
/// A struct we use to aggregate three callbacks when we need full set of
|
|
/// operations.
|
|
struct alignas(8) NonTrivialCallbacks {
|
|
CallPtrT CallPtr;
|
|
MovePtrT MovePtr;
|
|
DestroyPtrT DestroyPtr;
|
|
};
|
|
|
|
// Create a pointer union between either a pointer to a static trivial call
|
|
// pointer in a struct or a pointer to a static struct of the call, move, and
|
|
// destroy pointers.
|
|
using CallbackPointerUnionT =
|
|
PointerUnion<TrivialCallback *, NonTrivialCallbacks *>;
|
|
|
|
// The main storage buffer. This will either have a pointer to out-of-line
|
|
// storage or an inline buffer storing the callable.
|
|
union StorageUnionT {
|
|
// For out-of-line storage we keep a pointer to the underlying storage and
|
|
// the size. This is enough to deallocate the memory.
|
|
struct OutOfLineStorageT {
|
|
void *StoragePtr;
|
|
size_t Size;
|
|
size_t Alignment;
|
|
} OutOfLineStorage;
|
|
static_assert(
|
|
sizeof(OutOfLineStorageT) <= InlineStorageSize,
|
|
"Should always use all of the out-of-line storage for inline storage!");
|
|
|
|
// For in-line storage, we just provide an aligned character buffer. We
|
|
// provide three pointers worth of storage here.
|
|
typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type
|
|
InlineStorage;
|
|
} StorageUnion;
|
|
|
|
// A compressed pointer to either our dispatching callback or our table of
|
|
// dispatching callbacks and the flag for whether the callable itself is
|
|
// stored inline or not.
|
|
PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
|
|
|
|
bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
|
|
|
|
bool isTrivialCallback() const {
|
|
return CallbackAndInlineFlag.getPointer().template is<TrivialCallback *>();
|
|
}
|
|
|
|
CallPtrT getTrivialCallback() const {
|
|
return CallbackAndInlineFlag.getPointer().template get<TrivialCallback *>()->CallPtr;
|
|
}
|
|
|
|
NonTrivialCallbacks *getNonTrivialCallbacks() const {
|
|
return CallbackAndInlineFlag.getPointer()
|
|
.template get<NonTrivialCallbacks *>();
|
|
}
|
|
|
|
void *getInlineStorage() { return &StorageUnion.InlineStorage; }
|
|
|
|
void *getOutOfLineStorage() {
|
|
return StorageUnion.OutOfLineStorage.StoragePtr;
|
|
}
|
|
size_t getOutOfLineStorageSize() const {
|
|
return StorageUnion.OutOfLineStorage.Size;
|
|
}
|
|
size_t getOutOfLineStorageAlignment() const {
|
|
return StorageUnion.OutOfLineStorage.Alignment;
|
|
}
|
|
|
|
void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
|
|
StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
|
|
}
|
|
|
|
template <typename CallableT>
|
|
static ReturnT CallImpl(void *CallableAddr, AdjustedParamT<ParamTs>... Params) {
|
|
return (*reinterpret_cast<CallableT *>(CallableAddr))(
|
|
std::forward<ParamTs>(Params)...);
|
|
}
|
|
|
|
template <typename CallableT>
|
|
static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
|
|
new (LHSCallableAddr)
|
|
CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
|
|
}
|
|
|
|
template <typename CallableT>
|
|
static void DestroyImpl(void *CallableAddr) noexcept {
|
|
reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
|
|
}
|
|
|
|
public:
|
|
unique_function() = default;
|
|
unique_function(std::nullptr_t /*null_callable*/) {}
|
|
|
|
~unique_function() {
|
|
if (!CallbackAndInlineFlag.getPointer())
|
|
return;
|
|
|
|
// Cache this value so we don't re-check it after type-erased operations.
|
|
bool IsInlineStorage = isInlineStorage();
|
|
|
|
if (!isTrivialCallback())
|
|
getNonTrivialCallbacks()->DestroyPtr(
|
|
IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
|
|
|
|
if (!IsInlineStorage)
|
|
deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
|
|
getOutOfLineStorageAlignment());
|
|
}
|
|
|
|
unique_function(unique_function &&RHS) noexcept {
|
|
// Copy the callback and inline flag.
|
|
CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
|
|
|
|
// If the RHS is empty, just copying the above is sufficient.
|
|
if (!RHS)
|
|
return;
|
|
|
|
if (!isInlineStorage()) {
|
|
// The out-of-line case is easiest to move.
|
|
StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
|
|
} else if (isTrivialCallback()) {
|
|
// Move is trivial, just memcpy the bytes across.
|
|
memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
|
|
} else {
|
|
// Non-trivial move, so dispatch to a type-erased implementation.
|
|
getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
|
|
RHS.getInlineStorage());
|
|
}
|
|
|
|
// Clear the old callback and inline flag to get back to as-if-null.
|
|
RHS.CallbackAndInlineFlag = {};
|
|
|
|
#ifndef NDEBUG
|
|
// In debug builds, we also scribble across the rest of the storage.
|
|
memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
|
|
#endif
|
|
}
|
|
|
|
unique_function &operator=(unique_function &&RHS) noexcept {
|
|
if (this == &RHS)
|
|
return *this;
|
|
|
|
// Because we don't try to provide any exception safety guarantees we can
|
|
// implement move assignment very simply by first destroying the current
|
|
// object and then move-constructing over top of it.
|
|
this->~unique_function();
|
|
new (this) unique_function(std::move(RHS));
|
|
return *this;
|
|
}
|
|
|
|
template <typename CallableT> unique_function(CallableT Callable) {
|
|
bool IsInlineStorage = true;
|
|
void *CallableAddr = getInlineStorage();
|
|
if (sizeof(CallableT) > InlineStorageSize ||
|
|
alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
|
|
IsInlineStorage = false;
|
|
// Allocate out-of-line storage. FIXME: Use an explicit alignment
|
|
// parameter in C++17 mode.
|
|
auto Size = sizeof(CallableT);
|
|
auto Alignment = alignof(CallableT);
|
|
CallableAddr = allocate_buffer(Size, Alignment);
|
|
setOutOfLineStorage(CallableAddr, Size, Alignment);
|
|
}
|
|
|
|
// Now move into the storage.
|
|
new (CallableAddr) CallableT(std::move(Callable));
|
|
|
|
// See if we can create a trivial callback. We need the callable to be
|
|
// trivially moved and trivially destroyed so that we don't have to store
|
|
// type erased callbacks for those operations.
|
|
//
|
|
// FIXME: We should use constexpr if here and below to avoid instantiating
|
|
// the non-trivial static objects when unnecessary. While the linker should
|
|
// remove them, it is still wasteful.
|
|
if (llvm::is_trivially_move_constructible<CallableT>::value &&
|
|
std::is_trivially_destructible<CallableT>::value) {
|
|
// We need to create a nicely aligned object. We use a static variable
|
|
// for this because it is a trivial struct.
|
|
static TrivialCallback Callback = { &CallImpl<CallableT> };
|
|
|
|
CallbackAndInlineFlag = {&Callback, IsInlineStorage};
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we need to point at an object that contains all the different
|
|
// type erased behaviors needed. Create a static instance of the struct type
|
|
// here and then use a pointer to that.
|
|
static NonTrivialCallbacks Callbacks = {
|
|
&CallImpl<CallableT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
|
|
|
|
CallbackAndInlineFlag = {&Callbacks, IsInlineStorage};
|
|
}
|
|
|
|
ReturnT operator()(ParamTs... Params) {
|
|
void *CallableAddr =
|
|
isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
|
|
|
|
return (isTrivialCallback()
|
|
? getTrivialCallback()
|
|
: getNonTrivialCallbacks()->CallPtr)(CallableAddr, Params...);
|
|
}
|
|
|
|
explicit operator bool() const {
|
|
return (bool)CallbackAndInlineFlag.getPointer();
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_ADT_FUNCTION_H
|