mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-27 14:07:32 +00:00
0db103b4b3
llvm-svn: 13120
631 lines
23 KiB
C++
631 lines
23 KiB
C++
//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the pass that transforms the X86 machine instructions into
|
|
// actual executable machine code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "jit"
|
|
#include "X86TargetMachine.h"
|
|
#include "X86.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Function.h"
|
|
#include "Support/Debug.h"
|
|
#include "Support/Statistic.h"
|
|
#include "Config/alloca.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<>
|
|
NumEmitted("x86-emitter", "Number of machine instructions emitted");
|
|
|
|
class JITResolver {
|
|
MachineCodeEmitter &MCE;
|
|
|
|
// LazyCodeGenMap - Keep track of call sites for functions that are to be
|
|
// lazily resolved.
|
|
std::map<unsigned, Function*> LazyCodeGenMap;
|
|
|
|
// LazyResolverMap - Keep track of the lazy resolver created for a
|
|
// particular function so that we can reuse them if necessary.
|
|
std::map<Function*, unsigned> LazyResolverMap;
|
|
public:
|
|
JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
|
|
unsigned getLazyResolver(Function *F);
|
|
unsigned addFunctionReference(unsigned Address, Function *F);
|
|
|
|
private:
|
|
unsigned emitStubForFunction(Function *F);
|
|
static void CompilationCallback();
|
|
unsigned resolveFunctionReference(unsigned RetAddr);
|
|
};
|
|
|
|
static JITResolver &getResolver(MachineCodeEmitter &MCE) {
|
|
static JITResolver *TheJITResolver = 0;
|
|
if (TheJITResolver == 0)
|
|
TheJITResolver = new JITResolver(MCE);
|
|
return *TheJITResolver;
|
|
}
|
|
}
|
|
|
|
|
|
void *X86JITInfo::getJITStubForFunction(Function *F, MachineCodeEmitter &MCE) {
|
|
return (void*)((unsigned long)getResolver(MCE).getLazyResolver(F));
|
|
}
|
|
|
|
void X86JITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
|
|
char *OldByte = (char *) Old;
|
|
*OldByte++ = 0xE9; // Emit JMP opcode.
|
|
int32_t *OldWord = (int32_t *) OldByte;
|
|
int32_t NewAddr = (intptr_t) New;
|
|
int32_t OldAddr = (intptr_t) OldWord;
|
|
*OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
|
|
}
|
|
|
|
/// addFunctionReference - This method is called when we need to emit the
|
|
/// address of a function that has not yet been emitted, so we don't know the
|
|
/// address. Instead, we emit a call to the CompilationCallback method, and
|
|
/// keep track of where we are.
|
|
///
|
|
unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
|
|
LazyCodeGenMap[Address] = F;
|
|
return (intptr_t)&JITResolver::CompilationCallback;
|
|
}
|
|
|
|
unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
|
|
std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
|
|
assert(I != LazyCodeGenMap.end() && "Not in map!");
|
|
Function *F = I->second;
|
|
LazyCodeGenMap.erase(I);
|
|
return MCE.forceCompilationOf(F);
|
|
}
|
|
|
|
unsigned JITResolver::getLazyResolver(Function *F) {
|
|
std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
|
|
if (I != LazyResolverMap.end() && I->first == F) return I->second;
|
|
|
|
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
|
|
|
|
unsigned Stub = emitStubForFunction(F);
|
|
LazyResolverMap.insert(I, std::make_pair(F, Stub));
|
|
return Stub;
|
|
}
|
|
|
|
void JITResolver::CompilationCallback() {
|
|
unsigned *StackPtr = (unsigned*)__builtin_frame_address(0);
|
|
unsigned RetAddr = (unsigned)(intptr_t)__builtin_return_address(0);
|
|
assert(StackPtr[1] == RetAddr &&
|
|
"Could not find return address on the stack!");
|
|
|
|
// It's a stub if there is an interrupt marker after the call...
|
|
bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD;
|
|
|
|
// FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame
|
|
// pointer elimination has been performed. Having a variable sized alloca
|
|
// disables frame pointer elimination currently, even if it's dead. This is a
|
|
// gross hack.
|
|
alloca(10+isStub);
|
|
// FIXME FIXME FIXME FIXME
|
|
|
|
// The call instruction should have pushed the return value onto the stack...
|
|
RetAddr -= 4; // Backtrack to the reference itself...
|
|
|
|
#if 0
|
|
DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
|
|
<< " ESP=0x" << (unsigned)StackPtr << std::dec
|
|
<< ": Resolving call to function: "
|
|
<< TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
|
|
#endif
|
|
|
|
// Sanity check to make sure this really is a call instruction...
|
|
assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
|
|
|
|
JITResolver &JR = getResolver(*(MachineCodeEmitter*)0);
|
|
unsigned NewVal = JR.resolveFunctionReference(RetAddr);
|
|
|
|
// Rewrite the call target... so that we don't fault every time we execute
|
|
// the call.
|
|
*(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4;
|
|
|
|
if (isStub) {
|
|
// If this is a stub, rewrite the call into an unconditional branch
|
|
// instruction so that two return addresses are not pushed onto the stack
|
|
// when the requested function finally gets called. This also makes the
|
|
// 0xCD byte (interrupt) dead, so the marker doesn't effect anything.
|
|
((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9;
|
|
}
|
|
|
|
// Change the return address to reexecute the call instruction...
|
|
StackPtr[1] -= 5;
|
|
}
|
|
|
|
/// emitStubForFunction - This method is used by the JIT when it needs to emit
|
|
/// the address of a function for a function whose code has not yet been
|
|
/// generated. In order to do this, it generates a stub which jumps to the lazy
|
|
/// function compiler, which will eventually get fixed to call the function
|
|
/// directly.
|
|
///
|
|
unsigned JITResolver::emitStubForFunction(Function *F) {
|
|
MCE.startFunctionStub(*F, 6);
|
|
MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
|
|
|
|
unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
|
|
MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
|
|
|
|
MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
|
|
return (intptr_t)MCE.finishFunctionStub(*F);
|
|
}
|
|
|
|
|
|
namespace {
|
|
class Emitter : public MachineFunctionPass {
|
|
const X86InstrInfo *II;
|
|
MachineCodeEmitter &MCE;
|
|
std::map<const BasicBlock*, unsigned> BasicBlockAddrs;
|
|
std::vector<std::pair<const BasicBlock*, unsigned> > BBRefs;
|
|
public:
|
|
explicit Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {}
|
|
Emitter(MachineCodeEmitter &mce, const X86InstrInfo& ii)
|
|
: II(&ii), MCE(mce) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 Machine Code Emitter";
|
|
}
|
|
|
|
void emitInstruction(const MachineInstr &MI);
|
|
|
|
private:
|
|
void emitBasicBlock(const MachineBasicBlock &MBB);
|
|
|
|
void emitPCRelativeBlockAddress(const BasicBlock *BB);
|
|
void emitMaybePCRelativeValue(unsigned Address, bool isPCRelative);
|
|
void emitGlobalAddressForCall(GlobalValue *GV);
|
|
void emitGlobalAddressForPtr(GlobalValue *GV);
|
|
|
|
void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
|
|
void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
|
|
void emitConstant(unsigned Val, unsigned Size);
|
|
|
|
void emitMemModRMByte(const MachineInstr &MI,
|
|
unsigned Op, unsigned RegOpcodeField);
|
|
|
|
};
|
|
}
|
|
|
|
// This function is required by Printer.cpp to workaround gas bugs
|
|
void llvm::X86::emitInstruction(MachineCodeEmitter& mce,
|
|
const X86InstrInfo& ii,
|
|
const MachineInstr& mi)
|
|
{
|
|
Emitter(mce, ii).emitInstruction(mi);
|
|
}
|
|
|
|
/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
|
|
/// machine code emitted. This uses a MachineCodeEmitter object to handle
|
|
/// actually outputting the machine code and resolving things like the address
|
|
/// of functions. This method should returns true if machine code emission is
|
|
/// not supported.
|
|
///
|
|
bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
|
|
MachineCodeEmitter &MCE) {
|
|
PM.add(new Emitter(MCE));
|
|
// Delete machine code for this function
|
|
PM.add(createMachineCodeDeleter());
|
|
return false;
|
|
}
|
|
|
|
bool Emitter::runOnMachineFunction(MachineFunction &MF) {
|
|
II = &((X86TargetMachine&)MF.getTarget()).getInstrInfo();
|
|
|
|
MCE.startFunction(MF);
|
|
MCE.emitConstantPool(MF.getConstantPool());
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
|
emitBasicBlock(*I);
|
|
MCE.finishFunction(MF);
|
|
|
|
// Resolve all forward branches now...
|
|
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
|
|
unsigned Location = BasicBlockAddrs[BBRefs[i].first];
|
|
unsigned Ref = BBRefs[i].second;
|
|
MCE.emitWordAt (Location-Ref-4, (unsigned*)(intptr_t)Ref);
|
|
}
|
|
BBRefs.clear();
|
|
BasicBlockAddrs.clear();
|
|
return false;
|
|
}
|
|
|
|
void Emitter::emitBasicBlock(const MachineBasicBlock &MBB) {
|
|
if (uint64_t Addr = MCE.getCurrentPCValue())
|
|
BasicBlockAddrs[MBB.getBasicBlock()] = Addr;
|
|
|
|
for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
|
|
emitInstruction(*I);
|
|
}
|
|
|
|
|
|
/// emitPCRelativeBlockAddress - This method emits the PC relative address of
|
|
/// the specified basic block, or if the basic block hasn't been emitted yet
|
|
/// (because this is a forward branch), it keeps track of the information
|
|
/// necessary to resolve this address later (and emits a dummy value).
|
|
///
|
|
void Emitter::emitPCRelativeBlockAddress(const BasicBlock *BB) {
|
|
// FIXME: Emit backward branches directly
|
|
BBRefs.push_back(std::make_pair(BB, MCE.getCurrentPCValue()));
|
|
MCE.emitWord(0); // Emit a dummy value
|
|
}
|
|
|
|
/// emitMaybePCRelativeValue - Emit a 32-bit address which may be PC relative.
|
|
///
|
|
void Emitter::emitMaybePCRelativeValue(unsigned Address, bool isPCRelative) {
|
|
if (isPCRelative)
|
|
MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
|
|
else
|
|
MCE.emitWord(Address);
|
|
}
|
|
|
|
/// emitGlobalAddressForCall - Emit the specified address to the code stream
|
|
/// assuming this is part of a function call, which is PC relative.
|
|
///
|
|
void Emitter::emitGlobalAddressForCall(GlobalValue *GV) {
|
|
// Get the address from the backend...
|
|
unsigned Address = MCE.getGlobalValueAddress(GV);
|
|
|
|
if (Address == 0) {
|
|
// FIXME: this is JIT specific!
|
|
Address = getResolver(MCE).addFunctionReference(MCE.getCurrentPCValue(),
|
|
cast<Function>(GV));
|
|
}
|
|
emitMaybePCRelativeValue(Address, true);
|
|
}
|
|
|
|
/// emitGlobalAddress - Emit the specified address to the code stream assuming
|
|
/// this is part of a "take the address of a global" instruction, which is not
|
|
/// PC relative.
|
|
///
|
|
void Emitter::emitGlobalAddressForPtr(GlobalValue *GV) {
|
|
// Get the address from the backend...
|
|
unsigned Address = MCE.getGlobalValueAddress(GV);
|
|
|
|
// If the machine code emitter doesn't know what the address IS yet, we have
|
|
// to take special measures.
|
|
//
|
|
if (Address == 0) {
|
|
// FIXME: this is JIT specific!
|
|
Address = getResolver(MCE).getLazyResolver((Function*)GV);
|
|
}
|
|
|
|
emitMaybePCRelativeValue(Address, false);
|
|
}
|
|
|
|
|
|
|
|
/// N86 namespace - Native X86 Register numbers... used by X86 backend.
|
|
///
|
|
namespace N86 {
|
|
enum {
|
|
EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
|
|
};
|
|
}
|
|
|
|
|
|
// getX86RegNum - This function maps LLVM register identifiers to their X86
|
|
// specific numbering, which is used in various places encoding instructions.
|
|
//
|
|
static unsigned getX86RegNum(unsigned RegNo) {
|
|
switch(RegNo) {
|
|
case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
|
|
case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
|
|
case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
|
|
case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
|
|
case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
|
|
case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
|
|
case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
|
|
case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
|
|
|
|
case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
|
|
case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
|
|
return RegNo-X86::ST0;
|
|
default:
|
|
assert(MRegisterInfo::isVirtualRegister(RegNo) &&
|
|
"Unknown physical register!");
|
|
assert(0 && "Register allocator hasn't allocated reg correctly yet!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
|
|
unsigned RM) {
|
|
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
|
|
return RM | (RegOpcode << 3) | (Mod << 6);
|
|
}
|
|
|
|
void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
|
|
MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
|
|
}
|
|
|
|
void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
|
|
// SIB byte is in the same format as the ModRMByte...
|
|
MCE.emitByte(ModRMByte(SS, Index, Base));
|
|
}
|
|
|
|
void Emitter::emitConstant(unsigned Val, unsigned Size) {
|
|
// Output the constant in little endian byte order...
|
|
for (unsigned i = 0; i != Size; ++i) {
|
|
MCE.emitByte(Val & 255);
|
|
Val >>= 8;
|
|
}
|
|
}
|
|
|
|
static bool isDisp8(int Value) {
|
|
return Value == (signed char)Value;
|
|
}
|
|
|
|
void Emitter::emitMemModRMByte(const MachineInstr &MI,
|
|
unsigned Op, unsigned RegOpcodeField) {
|
|
const MachineOperand &Disp = MI.getOperand(Op+3);
|
|
if (MI.getOperand(Op).isConstantPoolIndex()) {
|
|
// Emit a direct address reference [disp32] where the displacement of the
|
|
// constant pool entry is controlled by the MCE.
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
|
|
unsigned Index = MI.getOperand(Op).getConstantPoolIndex();
|
|
unsigned Address = MCE.getConstantPoolEntryAddress(Index);
|
|
MCE.emitWord(Address+Disp.getImmedValue());
|
|
return;
|
|
}
|
|
|
|
const MachineOperand &BaseReg = MI.getOperand(Op);
|
|
const MachineOperand &Scale = MI.getOperand(Op+1);
|
|
const MachineOperand &IndexReg = MI.getOperand(Op+2);
|
|
|
|
// Is a SIB byte needed?
|
|
if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
|
|
if (BaseReg.getReg() == 0) { // Just a displacement?
|
|
// Emit special case [disp32] encoding
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
|
|
emitConstant(Disp.getImmedValue(), 4);
|
|
} else {
|
|
unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
|
|
if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
|
|
// Emit simple indirect register encoding... [EAX] f.e.
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
|
|
} else if (isDisp8(Disp.getImmedValue())) {
|
|
// Emit the disp8 encoding... [REG+disp8]
|
|
MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
|
|
emitConstant(Disp.getImmedValue(), 1);
|
|
} else {
|
|
// Emit the most general non-SIB encoding: [REG+disp32]
|
|
MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
|
|
emitConstant(Disp.getImmedValue(), 4);
|
|
}
|
|
}
|
|
|
|
} else { // We need a SIB byte, so start by outputting the ModR/M byte first
|
|
assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
|
|
|
|
bool ForceDisp32 = false;
|
|
bool ForceDisp8 = false;
|
|
if (BaseReg.getReg() == 0) {
|
|
// If there is no base register, we emit the special case SIB byte with
|
|
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
|
|
ForceDisp32 = true;
|
|
} else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) {
|
|
// Emit no displacement ModR/M byte
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
|
|
} else if (isDisp8(Disp.getImmedValue())) {
|
|
// Emit the disp8 encoding...
|
|
MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
|
|
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
|
|
} else {
|
|
// Emit the normal disp32 encoding...
|
|
MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
|
|
}
|
|
|
|
// Calculate what the SS field value should be...
|
|
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
|
|
unsigned SS = SSTable[Scale.getImmedValue()];
|
|
|
|
if (BaseReg.getReg() == 0) {
|
|
// Handle the SIB byte for the case where there is no base. The
|
|
// displacement has already been output.
|
|
assert(IndexReg.getReg() && "Index register must be specified!");
|
|
emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
|
|
} else {
|
|
unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
|
|
unsigned IndexRegNo;
|
|
if (IndexReg.getReg())
|
|
IndexRegNo = getX86RegNum(IndexReg.getReg());
|
|
else
|
|
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
|
|
emitSIBByte(SS, IndexRegNo, BaseRegNo);
|
|
}
|
|
|
|
// Do we need to output a displacement?
|
|
if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) {
|
|
if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
|
|
emitConstant(Disp.getImmedValue(), 1);
|
|
else
|
|
emitConstant(Disp.getImmedValue(), 4);
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned sizeOfImm(const TargetInstrDescriptor &Desc) {
|
|
switch (Desc.TSFlags & X86II::ImmMask) {
|
|
case X86II::Imm8: return 1;
|
|
case X86II::Imm16: return 2;
|
|
case X86II::Imm32: return 4;
|
|
default: assert(0 && "Immediate size not set!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static unsigned sizeOfPtr(const TargetInstrDescriptor &Desc) {
|
|
switch (Desc.TSFlags & X86II::MemMask) {
|
|
case X86II::Mem8: return 1;
|
|
case X86II::Mem16: return 2;
|
|
case X86II::Mem32: return 4;
|
|
case X86II::Mem64: return 8;
|
|
case X86II::Mem80: return 10;
|
|
case X86II::Mem128: return 16;
|
|
default: assert(0 && "Memory size not set!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void Emitter::emitInstruction(const MachineInstr &MI) {
|
|
NumEmitted++; // Keep track of the # of mi's emitted
|
|
|
|
unsigned Opcode = MI.getOpcode();
|
|
const TargetInstrDescriptor &Desc = II->get(Opcode);
|
|
|
|
// Emit the repeat opcode prefix as needed.
|
|
if ((Desc.TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
|
|
|
|
// Emit instruction prefixes if necessary
|
|
if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size...
|
|
|
|
switch (Desc.TSFlags & X86II::Op0Mask) {
|
|
case X86II::TB:
|
|
MCE.emitByte(0x0F); // Two-byte opcode prefix
|
|
break;
|
|
case X86II::REP: break; // already handled.
|
|
case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
|
|
case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
|
|
MCE.emitByte(0xD8+
|
|
(((Desc.TSFlags & X86II::Op0Mask)-X86II::D8)
|
|
>> X86II::Op0Shift));
|
|
break; // Two-byte opcode prefix
|
|
default: assert(0 && "Invalid prefix!");
|
|
case 0: break; // No prefix!
|
|
}
|
|
|
|
unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode);
|
|
switch (Desc.TSFlags & X86II::FormMask) {
|
|
default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
|
|
case X86II::Pseudo:
|
|
if (Opcode != X86::IMPLICIT_USE &&
|
|
Opcode != X86::IMPLICIT_DEF &&
|
|
Opcode != X86::FP_REG_KILL)
|
|
std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI;
|
|
break;
|
|
|
|
case X86II::RawFrm:
|
|
MCE.emitByte(BaseOpcode);
|
|
if (MI.getNumOperands() == 1) {
|
|
const MachineOperand &MO = MI.getOperand(0);
|
|
if (MO.isPCRelativeDisp()) {
|
|
// Conditional branch... FIXME: this should use an MBB destination!
|
|
emitPCRelativeBlockAddress(cast<BasicBlock>(MO.getVRegValue()));
|
|
} else if (MO.isGlobalAddress()) {
|
|
assert(MO.isPCRelative() && "Call target is not PC Relative?");
|
|
emitGlobalAddressForCall(MO.getGlobal());
|
|
} else if (MO.isExternalSymbol()) {
|
|
unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName());
|
|
assert(Address && "Unknown external symbol!");
|
|
emitMaybePCRelativeValue(Address, MO.isPCRelative());
|
|
} else if (MO.isImmediate()) {
|
|
emitConstant(MO.getImmedValue(), sizeOfImm(Desc));
|
|
} else {
|
|
assert(0 && "Unknown RawFrm operand!");
|
|
}
|
|
}
|
|
break;
|
|
|
|
case X86II::AddRegFrm:
|
|
MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
|
|
if (MI.getNumOperands() == 2) {
|
|
const MachineOperand &MO1 = MI.getOperand(1);
|
|
if (Value *V = MO1.getVRegValueOrNull()) {
|
|
assert(sizeOfImm(Desc) == 4 && "Don't know how to emit non-pointer values!");
|
|
emitGlobalAddressForPtr(cast<GlobalValue>(V));
|
|
} else if (MO1.isGlobalAddress()) {
|
|
assert(sizeOfImm(Desc) == 4 && "Don't know how to emit non-pointer values!");
|
|
assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?");
|
|
emitGlobalAddressForPtr(MO1.getGlobal());
|
|
} else if (MO1.isExternalSymbol()) {
|
|
assert(sizeOfImm(Desc) == 4 && "Don't know how to emit non-pointer values!");
|
|
|
|
unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName());
|
|
assert(Address && "Unknown external symbol!");
|
|
emitMaybePCRelativeValue(Address, MO1.isPCRelative());
|
|
} else {
|
|
emitConstant(MO1.getImmedValue(), sizeOfImm(Desc));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case X86II::MRMDestReg: {
|
|
MCE.emitByte(BaseOpcode);
|
|
emitRegModRMByte(MI.getOperand(0).getReg(),
|
|
getX86RegNum(MI.getOperand(1).getReg()));
|
|
if (MI.getNumOperands() == 3)
|
|
emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc));
|
|
break;
|
|
}
|
|
case X86II::MRMDestMem:
|
|
MCE.emitByte(BaseOpcode);
|
|
emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
|
|
break;
|
|
|
|
case X86II::MRMSrcReg:
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
emitRegModRMByte(MI.getOperand(1).getReg(),
|
|
getX86RegNum(MI.getOperand(0).getReg()));
|
|
if (MI.getNumOperands() == 3)
|
|
emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc));
|
|
break;
|
|
|
|
case X86II::MRMSrcMem:
|
|
MCE.emitByte(BaseOpcode);
|
|
emitMemModRMByte(MI, 1, getX86RegNum(MI.getOperand(0).getReg()));
|
|
if (MI.getNumOperands() == 2+4)
|
|
emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc));
|
|
break;
|
|
|
|
case X86II::MRM0r: case X86II::MRM1r:
|
|
case X86II::MRM2r: case X86II::MRM3r:
|
|
case X86II::MRM4r: case X86II::MRM5r:
|
|
case X86II::MRM6r: case X86II::MRM7r:
|
|
MCE.emitByte(BaseOpcode);
|
|
emitRegModRMByte(MI.getOperand(0).getReg(),
|
|
(Desc.TSFlags & X86II::FormMask)-X86II::MRM0r);
|
|
|
|
if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) {
|
|
emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), sizeOfImm(Desc));
|
|
}
|
|
break;
|
|
|
|
case X86II::MRM0m: case X86II::MRM1m:
|
|
case X86II::MRM2m: case X86II::MRM3m:
|
|
case X86II::MRM4m: case X86II::MRM5m:
|
|
case X86II::MRM6m: case X86II::MRM7m:
|
|
MCE.emitByte(BaseOpcode);
|
|
emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRM0m);
|
|
|
|
if (MI.getNumOperands() == 5) {
|
|
if (MI.getOperand(4).isImmediate())
|
|
emitConstant(MI.getOperand(4).getImmedValue(), sizeOfImm(Desc));
|
|
else if (MI.getOperand(4).isGlobalAddress())
|
|
emitGlobalAddressForPtr(MI.getOperand(4).getGlobal());
|
|
else
|
|
assert(0 && "Unknown operand!");
|
|
}
|
|
break;
|
|
}
|
|
}
|