llvm-mirror/include/llvm/ADT/FunctionExtras.h
Chandler Carruth a37bbe946c [Support] Fix llvm::unique_function when building with GCC 4.9 by
introducing llvm::trivially_{copy,move}_constructible type traits.

This uses a completely portable implementation of these traits provided
by Richard Smith. You can see it on compiler explorer in all its glory:

  https://godbolt.org/g/QEDZjW

I have transcribed it, clang-formatted it, added some comments, and made
the tests fit into a unittest file.

I have also switched llvm::unique_function over to use these new, much
more portable traits. =D

Hopefully this will fix the build bot breakage from my prior commit.

llvm-svn: 336161
2018-07-03 01:18:21 +00:00

275 lines
10 KiB
C++

//===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides a collection of function (or more generally, callable)
/// type erasure utilities supplementing those provided by the standard library
/// in `<function>`.
///
/// It provides `unique_function`, which works like `std::function` but supports
/// move-only callable objects.
///
/// Future plans:
/// - Add a `function` that provides const, volatile, and ref-qualified support,
/// which doesn't work with `std::function`.
/// - Provide support for specifying multiple signatures to type erase callable
/// objects with an overload set, such as those produced by generic lambdas.
/// - Expand to include a copyable utility that directly replaces std::function
/// but brings the above improvements.
///
/// Note that LLVM's utilities are greatly simplified by not supporting
/// allocators.
///
/// If the standard library ever begins to provide comparable facilities we can
/// consider switching to those.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_FUNCTION_EXTRAS_H
#define LLVM_ADT_FUNCTION_EXTRAS_H
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/Support/type_traits.h"
#include <memory>
namespace llvm {
template <typename FunctionT> class unique_function;
template <typename ReturnT, typename... ParamTs>
class unique_function<ReturnT(ParamTs...)> {
static constexpr int InlineStorageSize = sizeof(void *) * 3;
// Provide a type function to map parameters that won't observe extra copies
// or moves and which are small enough to likely pass in register to values
// and all other types to l-value reference types. We use this to compute the
// types used in our erased call utility to minimize copies and moves unless
// doing so would force things unnecessarily into memory.
//
// The heuristic used is related to common ABI register passing conventions.
// It doesn't have to be exact though, and in one way it is more strict
// because we want to still be able to observe either moves *or* copies.
template <typename T>
using AdjustedParamT = typename std::conditional<
!std::is_reference<T>::value &&
llvm::is_trivially_copy_constructible<T>::value &&
llvm::is_trivially_move_constructible<T>::value &&
sizeof(T) <= (2 * sizeof(void *)),
T, T &>::type;
// The type of the erased function pointer we use as a callback to dispatch to
// the stored callable when it is trivial to move and destroy.
using CallPtrT = ReturnT (*)(void *CallableAddr,
AdjustedParamT<ParamTs>... Params);
using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
using DestroyPtrT = void (*)(void *CallableAddr);
/// A struct we use to aggregate three callbacks when we need full set of
/// operations.
struct NonTrivialCallbacks {
CallPtrT CallPtr;
MovePtrT MovePtr;
DestroyPtrT DestroyPtr;
};
// Now we can create a pointer union between either a direct, trivial call
// pointer and a pointer to a static struct of the call, move, and destroy
// pointers. We do this to keep the footprint in this object a single pointer
// while supporting all the necessary type-erased operation.
using CallbackPointerUnionT = PointerUnion<CallPtrT, NonTrivialCallbacks *>;
// The main storage buffer. This will either have a pointer to out-of-line
// storage or an inline buffer storing the callable.
union StorageUnionT {
// For out-of-line storage we keep a pointer to the underlying storage and
// the size. This is enough to deallocate the memory.
struct OutOfLineStorageT {
void *StoragePtr;
size_t Size;
size_t Alignment;
} OutOfLineStorage;
static_assert(
sizeof(OutOfLineStorageT) <= InlineStorageSize,
"Should always use all of the out-of-line storage for inline storage!");
// For in-line storage, we just provide an aligned character buffer. We
// provide three pointers worth of storage here.
typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type
InlineStorage;
} StorageUnion;
// A compressed pointer to either our dispatching callback or our table of
// dispatching callbacks and the flag for whether the callable itself is
// stored inline or not.
PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
bool isTrivialCallback() const {
return CallbackAndInlineFlag.getPointer().template is<CallPtrT>();
}
CallPtrT getTrivialCallback() const {
return CallbackAndInlineFlag.getPointer().template get<CallPtrT>();
}
NonTrivialCallbacks *getNonTrivialCallbacks() const {
return CallbackAndInlineFlag.getPointer()
.template get<NonTrivialCallbacks *>();
}
void *getInlineStorage() { return &StorageUnion.InlineStorage; }
void *getOutOfLineStorage() {
return StorageUnion.OutOfLineStorage.StoragePtr;
}
size_t getOutOfLineStorageSize() const {
return StorageUnion.OutOfLineStorage.Size;
}
size_t getOutOfLineStorageAlignment() const {
return StorageUnion.OutOfLineStorage.Alignment;
}
void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
}
template <typename CallableT>
static ReturnT CallImpl(void *CallableAddr,
AdjustedParamT<ParamTs>... Params) {
return (*reinterpret_cast<CallableT *>(CallableAddr))(
std::forward<ParamTs>(Params)...);
}
template <typename CallableT>
static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
new (LHSCallableAddr)
CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
}
template <typename CallableT>
static void DestroyImpl(void *CallableAddr) noexcept {
reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
}
public:
unique_function() = default;
unique_function(std::nullptr_t /*null_callable*/) {}
~unique_function() {
if (!CallbackAndInlineFlag.getPointer())
return;
// Cache this value so we don't re-check it after type-erased operations.
bool IsInlineStorage = isInlineStorage();
if (!isTrivialCallback())
getNonTrivialCallbacks()->DestroyPtr(
IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
if (!IsInlineStorage)
deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
getOutOfLineStorageAlignment());
}
unique_function(unique_function &&RHS) noexcept {
// Copy the callback and inline flag.
CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
// If the RHS is empty, just copying the above is sufficient.
if (!RHS)
return;
if (!isInlineStorage()) {
// The out-of-line case is easiest to move.
StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
} else if (isTrivialCallback()) {
// Move is trivial, just memcpy the bytes across.
memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
} else {
// Non-trivial move, so dispatch to a type-erased implementation.
getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
RHS.getInlineStorage());
}
// Clear the old callback and inline flag to get back to as-if-null.
RHS.CallbackAndInlineFlag = {};
#ifndef NDEBUG
// In debug builds, we also scribble across the rest of the storage.
memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
#endif
}
unique_function &operator=(unique_function &&RHS) noexcept {
if (this == &RHS)
return *this;
// Because we don't try to provide any exception safety guarantees we can
// implement move assignment very simply by first destroying the current
// object and then move-constructing over top of it.
this->~unique_function();
new (this) unique_function(std::move(RHS));
return *this;
}
template <typename CallableT> unique_function(CallableT Callable) {
bool IsInlineStorage = true;
void *CallableAddr = getInlineStorage();
if (sizeof(CallableT) > InlineStorageSize ||
alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
IsInlineStorage = false;
// Allocate out-of-line storage. FIXME: Use an explicit alignment
// parameter in C++17 mode.
auto Size = sizeof(CallableT);
auto Alignment = alignof(CallableT);
CallableAddr = allocate_buffer(Size, Alignment);
setOutOfLineStorage(CallableAddr, Size, Alignment);
}
// Now move into the storage.
new (CallableAddr) CallableT(std::move(Callable));
// See if we can create a trivial callback.
// FIXME: we should use constexpr if here and below to avoid instantiating
// the non-trivial static objects when unnecessary. While the linker should
// remove them, it is still wasteful.
if (std::is_trivially_move_constructible<CallableT>::value &&
std::is_trivially_destructible<CallableT>::value) {
CallbackAndInlineFlag = {&CallImpl<CallableT>, IsInlineStorage};
return;
}
// Otherwise, we need to point at an object with a vtable that contains all
// the different type erased behaviors needed. Create a static instance of
// the derived type here and then use a pointer to that.
static NonTrivialCallbacks Callbacks = {
&CallImpl<CallableT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
CallbackAndInlineFlag = {&Callbacks, IsInlineStorage};
}
ReturnT operator()(ParamTs... Params) {
void *CallableAddr =
isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
return (isTrivialCallback()
? getTrivialCallback()
: getNonTrivialCallbacks()->CallPtr)(CallableAddr, Params...);
}
explicit operator bool() const {
return (bool)CallbackAndInlineFlag.getPointer();
}
};
} // end namespace llvm
#endif // LLVM_ADT_FUNCTION_H