mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-05 02:07:56 +00:00
a409c074c8
llvm-svn: 85746 |
||
---|---|---|
.. | ||
Alpha | ||
ARM | ||
Blackfin | ||
CBackend | ||
CellSPU | ||
CppBackend | ||
Mips | ||
MSIL | ||
MSP430 | ||
PIC16 | ||
PowerPC | ||
Sparc | ||
SystemZ | ||
X86 | ||
XCore | ||
CMakeLists.txt | ||
Makefile | ||
README.txt | ||
SubtargetFeature.cpp | ||
Target.cpp | ||
TargetData.cpp | ||
TargetELFWriterInfo.cpp | ||
TargetFrameInfo.cpp | ||
TargetInstrInfo.cpp | ||
TargetIntrinsicInfo.cpp | ||
TargetLoweringObjectFile.cpp | ||
TargetMachine.cpp | ||
TargetMachOWriterInfo.cpp | ||
TargetRegisterInfo.cpp | ||
TargetSubtarget.cpp |
Target Independent Opportunities: //===---------------------------------------------------------------------===// With the recent changes to make the implicit def/use set explicit in machineinstrs, we should change the target descriptions for 'call' instructions so that the .td files don't list all the call-clobbered registers as implicit defs. Instead, these should be added by the code generator (e.g. on the dag). This has a number of uses: 1. PPC32/64 and X86 32/64 can avoid having multiple copies of call instructions for their different impdef sets. 2. Targets with multiple calling convs (e.g. x86) which have different clobber sets don't need copies of call instructions. 3. 'Interprocedural register allocation' can be done to reduce the clobber sets of calls. //===---------------------------------------------------------------------===// Make the PPC branch selector target independant //===---------------------------------------------------------------------===// Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't safe in general, even on darwin. See the libm implementation of hypot for examples (which special case when x/y are exactly zero to get signed zeros etc right). //===---------------------------------------------------------------------===// Solve this DAG isel folding deficiency: int X, Y; void fn1(void) { X = X | (Y << 3); } compiles to fn1: movl Y, %eax shll $3, %eax orl X, %eax movl %eax, X ret The problem is the store's chain operand is not the load X but rather a TokenFactor of the load X and load Y, which prevents the folding. There are two ways to fix this: 1. The dag combiner can start using alias analysis to realize that y/x don't alias, making the store to X not dependent on the load from Y. 2. The generated isel could be made smarter in the case it can't disambiguate the pointers. Number 1 is the preferred solution. This has been "fixed" by a TableGen hack. But that is a short term workaround which will be removed once the proper fix is made. //===---------------------------------------------------------------------===// On targets with expensive 64-bit multiply, we could LSR this: for (i = ...; ++i) { x = 1ULL << i; into: long long tmp = 1; for (i = ...; ++i, tmp+=tmp) x = tmp; This would be a win on ppc32, but not x86 or ppc64. //===---------------------------------------------------------------------===// Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0) //===---------------------------------------------------------------------===// Reassociate should turn: X*X*X*X -> t=(X*X) (t*t) to eliminate a multiply. //===---------------------------------------------------------------------===// Interesting? testcase for add/shift/mul reassoc: int bar(int x, int y) { return x*x*x+y+x*x*x*x*x*y*y*y*y; } int foo(int z, int n) { return bar(z, n) + bar(2*z, 2*n); } Reassociate should handle the example in GCC PR16157. //===---------------------------------------------------------------------===// These two functions should generate the same code on big-endian systems: int g(int *j,int *l) { return memcmp(j,l,4); } int h(int *j, int *l) { return *j - *l; } this could be done in SelectionDAGISel.cpp, along with other special cases, for 1,2,4,8 bytes. //===---------------------------------------------------------------------===// It would be nice to revert this patch: http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html And teach the dag combiner enough to simplify the code expanded before legalize. It seems plausible that this knowledge would let it simplify other stuff too. //===---------------------------------------------------------------------===// For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal to the type size. It works but can be overly conservative as the alignment of specific vector types are target dependent. //===---------------------------------------------------------------------===// We should produce an unaligned load from code like this: v4sf example(float *P) { return (v4sf){P[0], P[1], P[2], P[3] }; } //===---------------------------------------------------------------------===// Add support for conditional increments, and other related patterns. Instead of: movl 136(%esp), %eax cmpl $0, %eax je LBB16_2 #cond_next LBB16_1: #cond_true incl _foo LBB16_2: #cond_next emit: movl _foo, %eax cmpl $1, %edi sbbl $-1, %eax movl %eax, _foo //===---------------------------------------------------------------------===// Combine: a = sin(x), b = cos(x) into a,b = sincos(x). Expand these to calls of sin/cos and stores: double sincos(double x, double *sin, double *cos); float sincosf(float x, float *sin, float *cos); long double sincosl(long double x, long double *sin, long double *cos); Doing so could allow SROA of the destination pointers. See also: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687 This is now easily doable with MRVs. We could even make an intrinsic for this if anyone cared enough about sincos. //===---------------------------------------------------------------------===// Turn this into a single byte store with no load (the other 3 bytes are unmodified): define void @test(i32* %P) { %tmp = load i32* %P %tmp14 = or i32 %tmp, 3305111552 %tmp15 = and i32 %tmp14, 3321888767 store i32 %tmp15, i32* %P ret void } //===---------------------------------------------------------------------===// dag/inst combine "clz(x)>>5 -> x==0" for 32-bit x. Compile: int bar(int x) { int t = __builtin_clz(x); return -(t>>5); } to: _bar: addic r3,r3,-1 subfe r3,r3,r3 blr //===---------------------------------------------------------------------===// quantum_sigma_x in 462.libquantum contains the following loop: for(i=0; i<reg->size; i++) { /* Flip the target bit of each basis state */ reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target); } Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just so cool to turn it into something like: long long Res = ((MAX_UNSIGNED) 1 << target); if (target < 32) { for(i=0; i<reg->size; i++) reg->node[i].state ^= Res & 0xFFFFFFFFULL; } else { for(i=0; i<reg->size; i++) reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL } ... which would only do one 32-bit XOR per loop iteration instead of two. It would also be nice to recognize the reg->size doesn't alias reg->node[i], but alas. //===---------------------------------------------------------------------===// This should be optimized to one 'and' and one 'or', from PR4216: define i32 @test_bitfield(i32 %bf.prev.low) nounwind ssp { entry: %bf.prev.lo.cleared10 = or i32 %bf.prev.low, 32962 ; <i32> [#uses=1] %0 = and i32 %bf.prev.low, -65536 ; <i32> [#uses=1] %1 = and i32 %bf.prev.lo.cleared10, 40186 ; <i32> [#uses=1] %2 = or i32 %1, %0 ; <i32> [#uses=1] ret i32 %2 } //===---------------------------------------------------------------------===// This isn't recognized as bswap by instcombine (yes, it really is bswap): unsigned long reverse(unsigned v) { unsigned t; t = v ^ ((v << 16) | (v >> 16)); t &= ~0xff0000; v = (v << 24) | (v >> 8); return v ^ (t >> 8); } //===---------------------------------------------------------------------===// These idioms should be recognized as popcount (see PR1488): unsigned countbits_slow(unsigned v) { unsigned c; for (c = 0; v; v >>= 1) c += v & 1; return c; } unsigned countbits_fast(unsigned v){ unsigned c; for (c = 0; v; c++) v &= v - 1; // clear the least significant bit set return c; } BITBOARD = unsigned long long int PopCnt(register BITBOARD a) { register int c=0; while(a) { c++; a &= a - 1; } return c; } unsigned int popcount(unsigned int input) { unsigned int count = 0; for (unsigned int i = 0; i < 4 * 8; i++) count += (input >> i) & i; return count; } //===---------------------------------------------------------------------===// These should turn into single 16-bit (unaligned?) loads on little/big endian processors. unsigned short read_16_le(const unsigned char *adr) { return adr[0] | (adr[1] << 8); } unsigned short read_16_be(const unsigned char *adr) { return (adr[0] << 8) | adr[1]; } //===---------------------------------------------------------------------===// -instcombine should handle this transform: icmp pred (sdiv X / C1 ), C2 when X, C1, and C2 are unsigned. Similarly for udiv and signed operands. Currently InstCombine avoids this transform but will do it when the signs of the operands and the sign of the divide match. See the FIXME in InstructionCombining.cpp in the visitSetCondInst method after the switch case for Instruction::UDiv (around line 4447) for more details. The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of this construct. //===---------------------------------------------------------------------===// viterbi speeds up *significantly* if the various "history" related copy loops are turned into memcpy calls at the source level. We need a "loops to memcpy" pass. //===---------------------------------------------------------------------===// Consider: typedef unsigned U32; typedef unsigned long long U64; int test (U32 *inst, U64 *regs) { U64 effective_addr2; U32 temp = *inst; int r1 = (temp >> 20) & 0xf; int b2 = (temp >> 16) & 0xf; effective_addr2 = temp & 0xfff; if (b2) effective_addr2 += regs[b2]; b2 = (temp >> 12) & 0xf; if (b2) effective_addr2 += regs[b2]; effective_addr2 &= regs[4]; if ((effective_addr2 & 3) == 0) return 1; return 0; } Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems, we don't eliminate the computation of the top half of effective_addr2 because we don't have whole-function selection dags. On x86, this means we use one extra register for the function when effective_addr2 is declared as U64 than when it is declared U32. //===---------------------------------------------------------------------===// LSR should know what GPR types a target has. This code: volatile short X, Y; // globals void foo(int N) { int i; for (i = 0; i < N; i++) { X = i; Y = i*4; } } produces two near identical IV's (after promotion) on PPC/ARM: LBB1_2: ldr r3, LCPI1_0 ldr r3, [r3] strh r2, [r3] ldr r3, LCPI1_1 ldr r3, [r3] strh r1, [r3] add r1, r1, #4 add r2, r2, #1 <- [0,+,1] sub r0, r0, #1 <- [0,-,1] cmp r0, #0 bne LBB1_2 LSR should reuse the "+" IV for the exit test. //===---------------------------------------------------------------------===// Tail call elim should be more aggressive, checking to see if the call is followed by an uncond branch to an exit block. ; This testcase is due to tail-duplication not wanting to copy the return ; instruction into the terminating blocks because there was other code ; optimized out of the function after the taildup happened. ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call define i32 @t4(i32 %a) { entry: %tmp.1 = and i32 %a, 1 ; <i32> [#uses=1] %tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1] br i1 %tmp.2, label %then.0, label %else.0 then.0: ; preds = %entry %tmp.5 = add i32 %a, -1 ; <i32> [#uses=1] %tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1] br label %return else.0: ; preds = %entry %tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1] br i1 %tmp.7, label %then.1, label %return then.1: ; preds = %else.0 %tmp.11 = add i32 %a, -2 ; <i32> [#uses=1] %tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1] br label %return return: ; preds = %then.1, %else.0, %then.0 %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ], [ %tmp.9, %then.1 ] ret i32 %result.0 } //===---------------------------------------------------------------------===// Tail recursion elimination is not transforming this function, because it is returning n, which fails the isDynamicConstant check in the accumulator recursion checks. long long fib(const long long n) { switch(n) { case 0: case 1: return n; default: return fib(n-1) + fib(n-2); } } //===---------------------------------------------------------------------===// Tail recursion elimination should handle: int pow2m1(int n) { if (n == 0) return 0; return 2 * pow2m1 (n - 1) + 1; } Also, multiplies can be turned into SHL's, so they should be handled as if they were associative. "return foo() << 1" can be tail recursion eliminated. //===---------------------------------------------------------------------===// Argument promotion should promote arguments for recursive functions, like this: ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val define internal i32 @foo(i32* %x) { entry: %tmp = load i32* %x ; <i32> [#uses=0] %tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1] ret i32 %tmp.foo } define i32 @bar(i32* %x) { entry: %tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1] ret i32 %tmp3 } //===---------------------------------------------------------------------===// "basicaa" should know how to look through "or" instructions that act like add instructions. For example in this code, the x*4+1 is turned into x*4 | 1, and basicaa can't analyze the array subscript, leading to duplicated loads in the generated code: void test(int X, int Y, int a[]) { int i; for (i=2; i<1000; i+=4) { a[i+0] = a[i-1+0]*a[i-2+0]; a[i+1] = a[i-1+1]*a[i-2+1]; a[i+2] = a[i-1+2]*a[i-2+2]; a[i+3] = a[i-1+3]*a[i-2+3]; } } BasicAA also doesn't do this for add. It needs to know that &A[i+1] != &A[i]. //===---------------------------------------------------------------------===// We should investigate an instruction sinking pass. Consider this silly example in pic mode: #include <assert.h> void foo(int x) { assert(x); //... } we compile this to: _foo: subl $28, %esp call "L1$pb" "L1$pb": popl %eax cmpl $0, 32(%esp) je LBB1_2 # cond_true LBB1_1: # return # ... addl $28, %esp ret LBB1_2: # cond_true ... The PIC base computation (call+popl) is only used on one path through the code, but is currently always computed in the entry block. It would be better to sink the picbase computation down into the block for the assertion, as it is the only one that uses it. This happens for a lot of code with early outs. Another example is loads of arguments, which are usually emitted into the entry block on targets like x86. If not used in all paths through a function, they should be sunk into the ones that do. In this case, whole-function-isel would also handle this. //===---------------------------------------------------------------------===// Investigate lowering of sparse switch statements into perfect hash tables: http://burtleburtle.net/bob/hash/perfect.html //===---------------------------------------------------------------------===// We should turn things like "load+fabs+store" and "load+fneg+store" into the corresponding integer operations. On a yonah, this loop: double a[256]; void foo() { int i, b; for (b = 0; b < 10000000; b++) for (i = 0; i < 256; i++) a[i] = -a[i]; } is twice as slow as this loop: long long a[256]; void foo() { int i, b; for (b = 0; b < 10000000; b++) for (i = 0; i < 256; i++) a[i] ^= (1ULL << 63); } and I suspect other processors are similar. On X86 in particular this is a big win because doing this with integers allows the use of read/modify/write instructions. //===---------------------------------------------------------------------===// DAG Combiner should try to combine small loads into larger loads when profitable. For example, we compile this C++ example: struct THotKey { short Key; bool Control; bool Shift; bool Alt; }; extern THotKey m_HotKey; THotKey GetHotKey () { return m_HotKey; } into (-O3 -fno-exceptions -static -fomit-frame-pointer): __Z9GetHotKeyv: pushl %esi movl 8(%esp), %eax movb _m_HotKey+3, %cl movb _m_HotKey+4, %dl movb _m_HotKey+2, %ch movw _m_HotKey, %si movw %si, (%eax) movb %ch, 2(%eax) movb %cl, 3(%eax) movb %dl, 4(%eax) popl %esi ret $4 GCC produces: __Z9GetHotKeyv: movl _m_HotKey, %edx movl 4(%esp), %eax movl %edx, (%eax) movzwl _m_HotKey+4, %edx movw %dx, 4(%eax) ret $4 The LLVM IR contains the needed alignment info, so we should be able to merge the loads and stores into 4-byte loads: %struct.THotKey = type { i16, i8, i8, i8 } define void @_Z9GetHotKeyv(%struct.THotKey* sret %agg.result) nounwind { ... %tmp2 = load i16* getelementptr (@m_HotKey, i32 0, i32 0), align 8 %tmp5 = load i8* getelementptr (@m_HotKey, i32 0, i32 1), align 2 %tmp8 = load i8* getelementptr (@m_HotKey, i32 0, i32 2), align 1 %tmp11 = load i8* getelementptr (@m_HotKey, i32 0, i32 3), align 2 Alternatively, we should use a small amount of base-offset alias analysis to make it so the scheduler doesn't need to hold all the loads in regs at once. //===---------------------------------------------------------------------===// We should add an FRINT node to the DAG to model targets that have legal implementations of ceil/floor/rint. //===---------------------------------------------------------------------===// Consider: int test() { long long input[8] = {1,1,1,1,1,1,1,1}; foo(input); } We currently compile this into a memcpy from a global array since the initializer is fairly large and not memset'able. This is good, but the memcpy gets lowered to load/stores in the code generator. This is also ok, except that the codegen lowering for memcpy doesn't handle the case when the source is a constant global. This gives us atrocious code like this: call "L1$pb" "L1$pb": popl %eax movl _C.0.1444-"L1$pb"+32(%eax), %ecx movl %ecx, 40(%esp) movl _C.0.1444-"L1$pb"+20(%eax), %ecx movl %ecx, 28(%esp) movl _C.0.1444-"L1$pb"+36(%eax), %ecx movl %ecx, 44(%esp) movl _C.0.1444-"L1$pb"+44(%eax), %ecx movl %ecx, 52(%esp) movl _C.0.1444-"L1$pb"+40(%eax), %ecx movl %ecx, 48(%esp) movl _C.0.1444-"L1$pb"+12(%eax), %ecx movl %ecx, 20(%esp) movl _C.0.1444-"L1$pb"+4(%eax), %ecx ... instead of: movl $1, 16(%esp) movl $0, 20(%esp) movl $1, 24(%esp) movl $0, 28(%esp) movl $1, 32(%esp) movl $0, 36(%esp) ... //===---------------------------------------------------------------------===// http://llvm.org/PR717: The following code should compile into "ret int undef". Instead, LLVM produces "ret int 0": int f() { int x = 4; int y; if (x == 3) y = 0; return y; } //===---------------------------------------------------------------------===// The loop unroller should partially unroll loops (instead of peeling them) when code growth isn't too bad and when an unroll count allows simplification of some code within the loop. One trivial example is: #include <stdio.h> int main() { int nRet = 17; int nLoop; for ( nLoop = 0; nLoop < 1000; nLoop++ ) { if ( nLoop & 1 ) nRet += 2; else nRet -= 1; } return nRet; } Unrolling by 2 would eliminate the '&1' in both copies, leading to a net reduction in code size. The resultant code would then also be suitable for exit value computation. //===---------------------------------------------------------------------===// We miss a bunch of rotate opportunities on various targets, including ppc, x86, etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate matching code in dag combine doesn't look through truncates aggressively enough. Here are some testcases reduces from GCC PR17886: unsigned long long f(unsigned long long x, int y) { return (x << y) | (x >> 64-y); } unsigned f2(unsigned x, int y){ return (x << y) | (x >> 32-y); } unsigned long long f3(unsigned long long x){ int y = 9; return (x << y) | (x >> 64-y); } unsigned f4(unsigned x){ int y = 10; return (x << y) | (x >> 32-y); } unsigned long long f5(unsigned long long x, unsigned long long y) { return (x << 8) | ((y >> 48) & 0xffull); } unsigned long long f6(unsigned long long x, unsigned long long y, int z) { switch(z) { case 1: return (x << 8) | ((y >> 48) & 0xffull); case 2: return (x << 16) | ((y >> 40) & 0xffffull); case 3: return (x << 24) | ((y >> 32) & 0xffffffull); case 4: return (x << 32) | ((y >> 24) & 0xffffffffull); default: return (x << 40) | ((y >> 16) & 0xffffffffffull); } } On X86-64, we only handle f2/f3/f4 right. On x86-32, a few of these generate truly horrible code, instead of using shld and friends. On ARM, we end up with calls to L___lshrdi3/L___ashldi3 in f, which is badness. PPC64 misses f, f5 and f6. CellSPU aborts in isel. //===---------------------------------------------------------------------===// We do a number of simplifications in simplify libcalls to strength reduce standard library functions, but we don't currently merge them together. For example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only be done safely if "b" isn't modified between the strlen and memcpy of course. //===---------------------------------------------------------------------===// Reassociate should turn things like: int factorial(int X) { return X*X*X*X*X*X*X*X; } into llvm.powi calls, allowing the code generator to produce balanced multiplication trees. //===---------------------------------------------------------------------===// We generate a horrible libcall for llvm.powi. For example, we compile: #include <cmath> double f(double a) { return std::pow(a, 4); } into: __Z1fd: subl $12, %esp movsd 16(%esp), %xmm0 movsd %xmm0, (%esp) movl $4, 8(%esp) call L___powidf2$stub addl $12, %esp ret GCC produces: __Z1fd: subl $12, %esp movsd 16(%esp), %xmm0 mulsd %xmm0, %xmm0 mulsd %xmm0, %xmm0 movsd %xmm0, (%esp) fldl (%esp) addl $12, %esp ret //===---------------------------------------------------------------------===// We compile this program: (from GCC PR11680) http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487 Into code that runs the same speed in fast/slow modes, but both modes run 2x slower than when compile with GCC (either 4.0 or 4.2): $ llvm-g++ perf.cpp -O3 -fno-exceptions $ time ./a.out fast 1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w $ g++ perf.cpp -O3 -fno-exceptions $ time ./a.out fast 0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w It looks like we are making the same inlining decisions, so this may be raw codegen badness or something else (haven't investigated). //===---------------------------------------------------------------------===// We miss some instcombines for stuff like this: void bar (void); void foo (unsigned int a) { /* This one is equivalent to a >= (3 << 2). */ if ((a >> 2) >= 3) bar (); } A few other related ones are in GCC PR14753. //===---------------------------------------------------------------------===// Divisibility by constant can be simplified (according to GCC PR12849) from being a mulhi to being a mul lo (cheaper). Testcase: void bar(unsigned n) { if (n % 3 == 0) true(); } I think this basically amounts to a dag combine to simplify comparisons against multiply hi's into a comparison against the mullo. //===---------------------------------------------------------------------===// Better mod/ref analysis for scanf would allow us to eliminate the vtable and a bunch of other stuff from this example (see PR1604): #include <cstdio> struct test { int val; virtual ~test() {} }; int main() { test t; std::scanf("%d", &t.val); std::printf("%d\n", t.val); } //===---------------------------------------------------------------------===// Instcombine will merge comparisons like (x >= 10) && (x < 20) by producing (x - 10) u< 10, but only when the comparisons have matching sign. This could be converted with a similiar technique. (PR1941) define i1 @test(i8 %x) { %A = icmp uge i8 %x, 5 %B = icmp slt i8 %x, 20 %C = and i1 %A, %B ret i1 %C } //===---------------------------------------------------------------------===// These functions perform the same computation, but produce different assembly. define i8 @select(i8 %x) readnone nounwind { %A = icmp ult i8 %x, 250 %B = select i1 %A, i8 0, i8 1 ret i8 %B } define i8 @addshr(i8 %x) readnone nounwind { %A = zext i8 %x to i9 %B = add i9 %A, 6 ;; 256 - 250 == 6 %C = lshr i9 %B, 8 %D = trunc i9 %C to i8 ret i8 %D } //===---------------------------------------------------------------------===// From gcc bug 24696: int f (unsigned long a, unsigned long b, unsigned long c) { return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0); } int f (unsigned long a, unsigned long b, unsigned long c) { return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0); } Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// From GCC Bug 20192: #define PMD_MASK (~((1UL << 23) - 1)) void clear_pmd_range(unsigned long start, unsigned long end) { if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK)) f(); } The expression should optimize to something like "!((start|end)&~PMD_MASK). Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// From GCC Bug 15241: unsigned int foo (unsigned int a, unsigned int b) { if (a <= 7 && b <= 7) baz (); } Should combine to "(a|b) <= 7". Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// From GCC Bug 3756: int pn (int n) { return (n >= 0 ? 1 : -1); } Should combine to (n >> 31) | 1. Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts | llc". //===---------------------------------------------------------------------===// From GCC Bug 28685: int test(int a, int b) { int lt = a < b; int eq = a == b; return (lt || eq); } Should combine to "a <= b". Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts | llc". //===---------------------------------------------------------------------===// void a(int variable) { if (variable == 4 || variable == 6) bar(); } This should optimize to "if ((variable | 2) == 6)". Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts | llc". //===---------------------------------------------------------------------===// unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return i;} unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;} These should combine to the same thing. Currently, the first function produces better code on X86. //===---------------------------------------------------------------------===// From GCC Bug 15784: #define abs(x) x>0?x:-x int f(int x, int y) { return (abs(x)) >= 0; } This should optimize to x == INT_MIN. (With -fwrapv.) Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// From GCC Bug 14753: void rotate_cst (unsigned int a) { a = (a << 10) | (a >> 22); if (a == 123) bar (); } void minus_cst (unsigned int a) { unsigned int tem; tem = 20 - a; if (tem == 5) bar (); } void mask_gt (unsigned int a) { /* This is equivalent to a > 15. */ if ((a & ~7) > 8) bar (); } void rshift_gt (unsigned int a) { /* This is equivalent to a > 23. */ if ((a >> 2) > 5) bar (); } All should simplify to a single comparison. All of these are currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// From GCC Bug 32605: int c(int* x) {return (char*)x+2 == (char*)x;} Should combine to 0. Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it). //===---------------------------------------------------------------------===// int a(unsigned char* b) {return *b > 99;} There's an unnecessary zext in the generated code with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;} Should be combined to "((b >> 1) | b) & 1". Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);} Should combine to "x | (y & 3)". Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// unsigned a(unsigned a) {return ((a | 1) & 3) | (a & -4);} Should combine to "a | 1". Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);} Should fold to "(~a & c) | (a & b)". Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// int a(int a,int b) {return (~(a|b))|a;} Should fold to "a|~b". Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// int a(int a, int b) {return (a&&b) || (a&&!b);} Should fold to "a". Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// int a(int a, int b, int c) {return (a&&b) || (!a&&c);} Should fold to "a ? b : c", or at least something sane. Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);} Should fold to a && (b || c). Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// int a(int x) {return x | ((x & 8) ^ 8);} Should combine to x | 8. Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// int a(int x) {return x ^ ((x & 8) ^ 8);} Should also combine to x | 8. Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// int a(int x) {return (x & 8) == 0 ? -1 : -9;} Should combine to (x | -9) ^ 8. Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// int a(int x) {return (x & 8) == 0 ? -9 : -1;} Should combine to x | -9. Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// int a(int x) {return ((x | -9) ^ 8) & x;} Should combine to x & -9. Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;} Should combine to "a * 0x88888888 >> 31". Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// unsigned a(char* x) {if ((*x & 32) == 0) return b();} There's an unnecessary zext in the generated code with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// unsigned a(unsigned long long x) {return 40 * (x >> 1);} Should combine to "20 * (((unsigned)x) & -2)". Currently not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". //===---------------------------------------------------------------------===// This was noticed in the entryblock for grokdeclarator in 403.gcc: %tmp = icmp eq i32 %decl_context, 4 %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context %tmp1 = icmp eq i32 %decl_context_addr.0, 1 %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0 tmp1 should be simplified to something like: (!tmp || decl_context == 1) This allows recursive simplifications, tmp1 is used all over the place in the function, e.g. by: %tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1] %tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1] %or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1] later. //===---------------------------------------------------------------------===// Store sinking: This code: void f (int n, int *cond, int *res) { int i; *res = 0; for (i = 0; i < n; i++) if (*cond) *res ^= 234; /* (*) */ } On this function GVN hoists the fully redundant value of *res, but nothing moves the store out. This gives us this code: bb: ; preds = %bb2, %entry %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ] %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ] %1 = load i32* %cond, align 4 %2 = icmp eq i32 %1, 0 br i1 %2, label %bb2, label %bb1 bb1: ; preds = %bb %3 = xor i32 %.rle, 234 store i32 %3, i32* %res, align 4 br label %bb2 bb2: ; preds = %bb, %bb1 %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ] %indvar.next = add i32 %i.05, 1 %exitcond = icmp eq i32 %indvar.next, %n br i1 %exitcond, label %return, label %bb DSE should sink partially dead stores to get the store out of the loop. Here's another partial dead case: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395 //===---------------------------------------------------------------------===// Scalar PRE hoists the mul in the common block up to the else: int test (int a, int b, int c, int g) { int d, e; if (a) d = b * c; else d = b - c; e = b * c + g; return d + e; } It would be better to do the mul once to reduce codesize above the if. This is GCC PR38204. //===---------------------------------------------------------------------===// GCC PR37810 is an interesting case where we should sink load/store reload into the if block and outside the loop, so we don't reload/store it on the non-call path. for () { *P += 1; if () call(); else ... -> tmp = *P for () { tmp += 1; if () { *P = tmp; call(); tmp = *P; } else ... } *P = tmp; We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but we don't sink the store. We need partially dead store sinking. //===---------------------------------------------------------------------===// [PHI TRANSLATE GEPs] GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack leading to excess stack traffic. This could be handled by GVN with some crazy symbolic phi translation. The code we get looks like (g is on the stack): bb2: ; preds = %bb1 .. %9 = getelementptr %struct.f* %g, i32 0, i32 0 store i32 %8, i32* %9, align bel %bb3 bb3: ; preds = %bb1, %bb2, %bb %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ] %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ] %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0 %11 = load i32* %10, align 4 %11 is fully redundant, an in BB2 it should have the value %8. GCC PR33344 is a similar case. //===---------------------------------------------------------------------===// There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the GCC testsuite. There are many pre testcases as ssa-pre-*.c //===---------------------------------------------------------------------===// There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the GCC testsuite. For example, predcom-1.c is: for (i = 2; i < 1000; i++) fib[i] = (fib[i-1] + fib[i - 2]) & 0xffff; which compiles into: bb1: ; preds = %bb1, %bb1.thread %indvar = phi i32 [ 0, %bb1.thread ], [ %0, %bb1 ] %i.0.reg2mem.0 = add i32 %indvar, 2 %0 = add i32 %indvar, 1 ; <i32> [#uses=3] %1 = getelementptr [1000 x i32]* @fib, i32 0, i32 %0 %2 = load i32* %1, align 4 ; <i32> [#uses=1] %3 = getelementptr [1000 x i32]* @fib, i32 0, i32 %indvar %4 = load i32* %3, align 4 ; <i32> [#uses=1] %5 = add i32 %4, %2 ; <i32> [#uses=1] %6 = and i32 %5, 65535 ; <i32> [#uses=1] %7 = getelementptr [1000 x i32]* @fib, i32 0, i32 %i.0.reg2mem.0 store i32 %6, i32* %7, align 4 %exitcond = icmp eq i32 %0, 998 ; <i1> [#uses=1] br i1 %exitcond, label %return, label %bb1 This is basically: LOAD fib[i+1] LOAD fib[i] STORE fib[i+2] instead of handling this as a loop or other xform, all we'd need to do is teach load PRE to phi translate the %0 add (i+1) into the predecessor as (i'+1+1) = (i'+2) (where i' is the previous iteration of i). This would find the store which feeds it. predcom-2.c is apparently the same as predcom-1.c predcom-3.c is very similar but needs loads feeding each other instead of store->load. predcom-4.c seems the same as the rest. //===---------------------------------------------------------------------===// Other simple load PRE cases: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=35287 [LPRE crit edge splitting] http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34677 (licm does this, LPRE crit edge) llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | opt -mem2reg -simplifycfg -gvn | llvm-dis http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16799 [BITCAST PHI TRANS] //===---------------------------------------------------------------------===// Type based alias analysis: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705 //===---------------------------------------------------------------------===// A/B get pinned to the stack because we turn an if/then into a select instead of PRE'ing the load/store. This may be fixable in instcombine: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=37892 struct X { int i; }; int foo (int x) { struct X a; struct X b; struct X *p; a.i = 1; b.i = 2; if (x) p = &a; else p = &b; return p->i; } //===---------------------------------------------------------------------===// Interesting missed case because of control flow flattening (should be 2 loads): http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | opt -mem2reg -gvn -instcombine | llvm-dis we miss it because we need 1) GEP PHI TRAN, 2) CRIT EDGE 3) MULTIPLE DIFFERENT VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS //===---------------------------------------------------------------------===// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633 We could eliminate the branch condition here, loading from null is undefined: struct S { int w, x, y, z; }; struct T { int r; struct S s; }; void bar (struct S, int); void foo (int a, struct T b) { struct S *c = 0; if (a) c = &b.s; bar (*c, a); } //===---------------------------------------------------------------------===// simplifylibcalls should do several optimizations for strspn/strcspn: strcspn(x, "") -> strlen(x) strcspn("", x) -> 0 strspn("", x) -> 0 strspn(x, "") -> strlen(x) strspn(x, "a") -> strchr(x, 'a')-x strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn): size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2, int __reject3) { register size_t __result = 0; while (__s[__result] != '\0' && __s[__result] != __reject1 && __s[__result] != __reject2 && __s[__result] != __reject3) ++__result; return __result; } This should turn into a switch on the character. See PR3253 for some notes on codegen. 456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn. //===---------------------------------------------------------------------===// "gas" uses this idiom: else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string)) .. else if (strchr ("<>", *intel_parser.op_string) Those should be turned into a switch. //===---------------------------------------------------------------------===// 252.eon contains this interesting code: %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0 %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind %strlen = call i32 @strlen(i8* %3072) ; uses = 1 %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen call void @llvm.memcpy.i32(i8* %endptr, i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1) %3074 = call i32 @strlen(i8* %endptr) nounwind readonly This is interesting for a couple reasons. First, in this: %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind %strlen = call i32 @strlen(i8* %3072) The strlen could be replaced with: %strlen = sub %3072, %3073, because the strcpy call returns a pointer to the end of the string. Based on that, the endptr GEP just becomes equal to 3073, which eliminates a strlen call and GEP. Second, the memcpy+strlen strlen can be replaced with: %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly Because the destination was just copied into the specified memory buffer. This, in turn, can be constant folded to "4". In other code, it contains: %endptr6978 = bitcast i8* %endptr69 to i32* store i32 7107374, i32* %endptr6978, align 1 %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly Which could also be constant folded. Whatever is producing this should probably be fixed to leave this as a memcpy from a string. Further, eon also has an interesting partially redundant strlen call: bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit %682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2] %683 = load i8** %682, align 4 ; <i8*> [#uses=4] %684 = load i8* %683, align 1 ; <i8> [#uses=1] %685 = icmp eq i8 %684, 0 ; <i1> [#uses=1] br i1 %685, label %bb10, label %bb9 bb9: ; preds = %bb8 %686 = call i32 @strlen(i8* %683) nounwind readonly %687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1] br i1 %687, label %bb10, label %bb11 bb10: ; preds = %bb9, %bb8 %688 = call i32 @strlen(i8* %683) nounwind readonly This could be eliminated by doing the strlen once in bb8, saving code size and improving perf on the bb8->9->10 path. //===---------------------------------------------------------------------===// I see an interesting fully redundant call to strlen left in 186.crafty:InputMove which looks like: %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0 bb62: ; preds = %bb55, %bb53 %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ] %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1 %172 = add i32 %171, -1 ; <i32> [#uses=1] %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172 ... no stores ... br i1 %or.cond, label %bb65, label %bb72 bb65: ; preds = %bb62 store i8 0, i8* %173, align 1 br label %bb72 bb72: ; preds = %bb65, %bb62 %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ] %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1 Note that on the bb62->bb72 path, that the %177 strlen call is partially redundant with the %171 call. At worst, we could shove the %177 strlen call up into the bb65 block moving it out of the bb62->bb72 path. However, note that bb65 stores to the string, zeroing out the last byte. This means that on that path the value of %177 is actually just %171-1. A sub is cheaper than a strlen! This pattern repeats several times, basically doing: A = strlen(P); P[A-1] = 0; B = strlen(P); where it is "obvious" that B = A-1. //===---------------------------------------------------------------------===// 186.crafty contains this interesting pattern: %77 = call i8* @strstr(i8* getelementptr ([6 x i8]* @"\01LC5", i32 0, i32 0), i8* %30) %phitmp648 = icmp eq i8* %77, getelementptr ([6 x i8]* @"\01LC5", i32 0, i32 0) br i1 %phitmp648, label %bb70, label %bb76 bb70: ; preds = %OptionMatch.exit91, %bb69 %78 = call i32 @strlen(i8* %30) nounwind readonly align 1 ; <i32> [#uses=1] This is basically: cststr = "abcdef"; if (strstr(cststr, P) == cststr) { x = strlen(P); ... The strstr call would be significantly cheaper written as: cststr = "abcdef"; if (memcmp(P, str, strlen(P))) x = strlen(P); This is memcmp+strlen instead of strstr. This also makes the strlen fully redundant. //===---------------------------------------------------------------------===// 186.crafty also contains this code: %1906 = call i32 @strlen(i8* getelementptr ([32 x i8]* @pgn_event, i32 0,i32 0)) %1907 = getelementptr [32 x i8]* @pgn_event, i32 0, i32 %1906 %1908 = call i8* @strcpy(i8* %1907, i8* %1905) nounwind align 1 %1909 = call i32 @strlen(i8* getelementptr ([32 x i8]* @pgn_event, i32 0,i32 0)) %1910 = getelementptr [32 x i8]* @pgn_event, i32 0, i32 %1909 The last strlen is computable as 1908-@pgn_event, which means 1910=1908. //===---------------------------------------------------------------------===// 186.crafty has this interesting pattern with the "out.4543" variable: call void @llvm.memcpy.i32( i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0), i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1) %101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind It is basically doing: memcpy(globalarray, "string"); printf(..., globalarray); Anyway, by knowing that printf just reads the memory and forward substituting the string directly into the printf, this eliminates reads from globalarray. Since this pattern occurs frequently in crafty (due to the "DisplayTime" and other similar functions) there are many stores to "out". Once all the printfs stop using "out", all that is left is the memcpy's into it. This should allow globalopt to remove the "stored only" global. //===---------------------------------------------------------------------===// This code: define inreg i32 @foo(i8* inreg %p) nounwind { %tmp0 = load i8* %p %tmp1 = ashr i8 %tmp0, 5 %tmp2 = sext i8 %tmp1 to i32 ret i32 %tmp2 } could be dagcombine'd to a sign-extending load with a shift. For example, on x86 this currently gets this: movb (%eax), %al sarb $5, %al movsbl %al, %eax while it could get this: movsbl (%eax), %eax sarl $5, %eax //===---------------------------------------------------------------------===// GCC PR31029: int test(int x) { return 1-x == x; } // --> return false int test2(int x) { return 2-x == x; } // --> return x == 1 ? Always foldable for odd constants, what is the rule for even? //===---------------------------------------------------------------------===// PR 3381: GEP to field of size 0 inside a struct could be turned into GEP for next field in struct (which is at same address). For example: store of float into { {{}}, float } could be turned into a store to the float directly. //===---------------------------------------------------------------------===// #include <math.h> double foo(double a) { return sin(a); } This compiles into this on x86-64 Linux: foo: subq $8, %rsp call sin addq $8, %rsp ret vs: foo: jmp sin //===---------------------------------------------------------------------===// The arg promotion pass should make use of nocapture to make its alias analysis stuff much more precise. //===---------------------------------------------------------------------===// The following functions should be optimized to use a select instead of a branch (from gcc PR40072): char char_int(int m) {if(m>7) return 0; return m;} int int_char(char m) {if(m>7) return 0; return m;} //===---------------------------------------------------------------------===// IPSCCP is propagating elements of first class aggregates, but is not propagating the entire aggregate itself. This leads it to miss opportunities, for example in test/Transforms/SCCP/ipsccp-basic.ll:test5b. //===---------------------------------------------------------------------===// int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; } Generates this: define i32 @func(i32 %a, i32 %b) nounwind readnone ssp { entry: %0 = and i32 %a, 128 ; <i32> [#uses=1] %1 = icmp eq i32 %0, 0 ; <i1> [#uses=1] %2 = or i32 %b, 128 ; <i32> [#uses=1] %3 = and i32 %b, -129 ; <i32> [#uses=1] %b_addr.0 = select i1 %1, i32 %3, i32 %2 ; <i32> [#uses=1] ret i32 %b_addr.0 } However, it's functionally equivalent to: b = (b & ~0x80) | (a & 0x80); Which generates this: define i32 @func(i32 %a, i32 %b) nounwind readnone ssp { entry: %0 = and i32 %b, -129 ; <i32> [#uses=1] %1 = and i32 %a, 128 ; <i32> [#uses=1] %2 = or i32 %0, %1 ; <i32> [#uses=1] ret i32 %2 } This can be generalized for other forms: b = (b & ~0x80) | (a & 0x40) << 1; //===---------------------------------------------------------------------===// These two functions produce different code. They shouldn't: #include <stdint.h> uint8_t p1(uint8_t b, uint8_t a) { b = (b & ~0xc0) | (a & 0xc0); return (b); } uint8_t p2(uint8_t b, uint8_t a) { b = (b & ~0x40) | (a & 0x40); b = (b & ~0x80) | (a & 0x80); return (b); } define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp { entry: %0 = and i8 %b, 63 ; <i8> [#uses=1] %1 = and i8 %a, -64 ; <i8> [#uses=1] %2 = or i8 %1, %0 ; <i8> [#uses=1] ret i8 %2 } define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp { entry: %0 = and i8 %b, 63 ; <i8> [#uses=1] %.masked = and i8 %a, 64 ; <i8> [#uses=1] %1 = and i8 %a, -128 ; <i8> [#uses=1] %2 = or i8 %1, %0 ; <i8> [#uses=1] %3 = or i8 %2, %.masked ; <i8> [#uses=1] ret i8 %3 } //===---------------------------------------------------------------------===//