mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-13 23:20:41 +00:00
7ccadaaaf9
llvm-svn: 51429
348 lines
11 KiB
C++
348 lines
11 KiB
C++
//===-- llvm/User.h - User class definition ---------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This class defines the interface that one who 'use's a Value must implement.
|
|
// Each instance of the Value class keeps track of what User's have handles
|
|
// to it.
|
|
//
|
|
// * Instructions are the largest class of User's.
|
|
// * Constants may be users of other constants (think arrays and stuff)
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_USER_H
|
|
#define LLVM_USER_H
|
|
|
|
#include "llvm/Value.h"
|
|
|
|
namespace llvm {
|
|
|
|
/*==============================================================================
|
|
|
|
|
|
-----------------------------------------------------------------
|
|
--- Interaction and relationship between User and Use objects ---
|
|
-----------------------------------------------------------------
|
|
|
|
|
|
A subclass of User can choose between incorporating its Use objects
|
|
or refer to them out-of-line by means of a pointer. A mixed variant
|
|
(some Uses inline others hung off) is impractical and breaks the invariant
|
|
that the Use objects belonging to the same User form a contiguous array.
|
|
|
|
We have 2 different layouts in the User (sub)classes:
|
|
|
|
Layout a)
|
|
The Use object(s) are inside (resp. at fixed offset) of the User
|
|
object and there are a fixed number of them.
|
|
|
|
Layout b)
|
|
The Use object(s) are referenced by a pointer to an
|
|
array from the User object and there may be a variable
|
|
number of them.
|
|
|
|
Initially each layout will possess a direct pointer to the
|
|
start of the array of Uses. Though not mandatory for layout a),
|
|
we stick to this redundancy for the sake of simplicity.
|
|
The User object will also store the number of Use objects it
|
|
has. (Theoretically this information can also be calculated
|
|
given the scheme presented below.)
|
|
|
|
Special forms of allocation operators (operator new)
|
|
will enforce the following memory layouts:
|
|
|
|
|
|
# Layout a) will be modelled by prepending the User object
|
|
# by the Use[] array.
|
|
#
|
|
# ...---.---.---.---.-------...
|
|
# | P | P | P | P | User
|
|
# '''---'---'---'---'-------'''
|
|
|
|
|
|
# Layout b) will be modelled by pointing at the Use[] array.
|
|
#
|
|
# .-------...
|
|
# | User
|
|
# '-------'''
|
|
# |
|
|
# v
|
|
# .---.---.---.---...
|
|
# | P | P | P | P |
|
|
# '---'---'---'---'''
|
|
|
|
(In the above figures 'P' stands for the Use** that
|
|
is stored in each Use object in the member Use::Prev)
|
|
|
|
|
|
Since the Use objects will be deprived of the direct pointer to
|
|
their User objects, there must be a fast and exact method to
|
|
recover it. This is accomplished by the following scheme:
|
|
|
|
A bit-encoding in the 2 LSBits of the Use::Prev will allow to find the
|
|
start of the User object:
|
|
|
|
00 --> binary digit 0
|
|
01 --> binary digit 1
|
|
10 --> stop and calc (s)
|
|
11 --> full stop (S)
|
|
|
|
Given a Use*, all we have to do is to walk till we get
|
|
a stop and we either have a User immediately behind or
|
|
we have to walk to the next stop picking up digits
|
|
and calculating the offset:
|
|
|
|
.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
|
|
| 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
|
|
'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
|
|
|+15 |+10 |+6 |+3 |+1
|
|
| | | | |__>
|
|
| | | |__________>
|
|
| | |______________________>
|
|
| |______________________________________>
|
|
|__________________________________________________________>
|
|
|
|
|
|
Only the significant number of bits need to be stored between the
|
|
stops, so that the worst case is 20 memory accesses when there are
|
|
1000 Use objects.
|
|
|
|
The following literate Haskell fragment demonstrates the concept:
|
|
|
|
> import Test.QuickCheck
|
|
>
|
|
> digits :: Int -> [Char] -> [Char]
|
|
> digits 0 acc = '0' : acc
|
|
> digits 1 acc = '1' : acc
|
|
> digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
|
|
>
|
|
> dist :: Int -> [Char] -> [Char]
|
|
> dist 0 [] = ['S']
|
|
> dist 0 acc = acc
|
|
> dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
|
|
> dist n acc = dist (n - 1) $ dist 1 acc
|
|
>
|
|
> takeLast n ss = reverse $ take n $ reverse ss
|
|
>
|
|
> test = takeLast 40 $ dist 20 []
|
|
>
|
|
|
|
Printing <test> gives: "1s100000s11010s10100s1111s1010s110s11s1S"
|
|
|
|
The reverse algorithm computes the
|
|
length of the string just by examining
|
|
a certain prefix:
|
|
|
|
> pref :: [Char] -> Int
|
|
> pref "S" = 1
|
|
> pref ('s':'1':rest) = decode 2 1 rest
|
|
> pref (_:rest) = 1 + pref rest
|
|
>
|
|
> decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
|
|
> decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
|
|
> decode walk acc _ = walk + acc
|
|
>
|
|
|
|
Now, as expected, printing <pref test> gives 40.
|
|
|
|
We can quickCheck this with following property:
|
|
|
|
> testcase = dist 2000 []
|
|
> testcaseLength = length testcase
|
|
>
|
|
> identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
|
|
> where arr = takeLast n testcase
|
|
|
|
As expected <quickCheck identityProp> gives:
|
|
|
|
*Main> quickCheck identityProp
|
|
OK, passed 100 tests.
|
|
|
|
Let's be a bit more exhaustive:
|
|
|
|
>
|
|
> deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
|
|
>
|
|
|
|
And here is the result of <deepCheck identityProp>:
|
|
|
|
*Main> deepCheck identityProp
|
|
OK, passed 500 tests.
|
|
|
|
|
|
To maintain the invariant that the 2 LSBits of each Use** in Use
|
|
never change after being set up, setters of Use::Prev must re-tag the
|
|
new Use** on every modification. Accordingly getters must strip the
|
|
tag bits.
|
|
|
|
For layout b) instead of the User we will find a pointer (User* with LSBit set).
|
|
Following this pointer brings us to the User. A portable trick will ensure
|
|
that the first bytes of User (if interpreted as a pointer) will never have
|
|
the LSBit set.
|
|
|
|
==============================================================================*/
|
|
|
|
/// OperandTraits - Compile-time customization of
|
|
/// operand-related allocators and accessors
|
|
/// for use of the User class
|
|
template <class>
|
|
struct OperandTraits;
|
|
|
|
class User;
|
|
|
|
/// OperandTraits<User> - specialization to User
|
|
template <>
|
|
struct OperandTraits<User> {
|
|
static inline Use *op_begin(User*);
|
|
static inline Use *op_end(User*);
|
|
static inline unsigned operands(const User*);
|
|
template <class U>
|
|
struct Layout {
|
|
typedef U overlay;
|
|
};
|
|
static inline void *allocate(unsigned);
|
|
};
|
|
|
|
class User : public Value {
|
|
User(const User &); // Do not implement
|
|
void *operator new(size_t); // Do not implement
|
|
template <unsigned>
|
|
friend struct HungoffOperandTraits;
|
|
protected:
|
|
/// OperandList - This is a pointer to the array of Users for this operand.
|
|
/// For nodes of fixed arity (e.g. a binary operator) this array will live
|
|
/// prefixed to the derived class. For nodes of resizable variable arity
|
|
/// (e.g. PHINodes, SwitchInst etc.), this memory will be dynamically
|
|
/// allocated and should be destroyed by the classes'
|
|
/// virtual dtor.
|
|
Use *OperandList;
|
|
|
|
/// NumOperands - The number of values used by this User.
|
|
///
|
|
unsigned NumOperands;
|
|
|
|
void *operator new(size_t s, unsigned Us);
|
|
User(const Type *ty, unsigned vty, Use *OpList, unsigned NumOps)
|
|
: Value(ty, vty), OperandList(OpList), NumOperands(NumOps) {}
|
|
Use *allocHungoffUses(unsigned) const;
|
|
void dropHungoffUses(Use *U) {
|
|
if (OperandList == U) {
|
|
OperandList = 0;
|
|
NumOperands = 0;
|
|
}
|
|
Use::zap(U, U->getImpliedUser(), true);
|
|
}
|
|
public:
|
|
~User() {
|
|
Use::zap(OperandList, OperandList + NumOperands);
|
|
}
|
|
/// operator delete - free memory allocated for User and Use objects
|
|
void operator delete(void *Usr);
|
|
/// placement delete - required by std, but never called.
|
|
void operator delete(void*, unsigned) {
|
|
assert(0 && "Constructor throws?");
|
|
}
|
|
template <unsigned Idx> Use &Op() {
|
|
return OperandTraits<User>::op_begin(this)[Idx];
|
|
}
|
|
template <unsigned Idx> const Use &Op() const {
|
|
return OperandTraits<User>::op_begin(const_cast<User*>(this))[Idx];
|
|
}
|
|
Value *getOperand(unsigned i) const {
|
|
assert(i < NumOperands && "getOperand() out of range!");
|
|
return OperandList[i];
|
|
}
|
|
void setOperand(unsigned i, Value *Val) {
|
|
assert(i < NumOperands && "setOperand() out of range!");
|
|
OperandList[i] = Val;
|
|
}
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Operand Iterator interface...
|
|
//
|
|
typedef Use* op_iterator;
|
|
typedef const Use* const_op_iterator;
|
|
|
|
inline op_iterator op_begin() { return OperandList; }
|
|
inline const_op_iterator op_begin() const { return OperandList; }
|
|
inline op_iterator op_end() { return OperandList+NumOperands; }
|
|
inline const_op_iterator op_end() const { return OperandList+NumOperands; }
|
|
|
|
// dropAllReferences() - This function is in charge of "letting go" of all
|
|
// objects that this User refers to. This allows one to
|
|
// 'delete' a whole class at a time, even though there may be circular
|
|
// references... first all references are dropped, and all use counts go to
|
|
// zero. Then everything is delete'd for real. Note that no operations are
|
|
// valid on an object that has "dropped all references", except operator
|
|
// delete.
|
|
//
|
|
void dropAllReferences() {
|
|
Use *OL = OperandList;
|
|
for (unsigned i = 0, e = NumOperands; i != e; ++i)
|
|
OL[i].set(0);
|
|
}
|
|
|
|
/// replaceUsesOfWith - Replaces all references to the "From" definition with
|
|
/// references to the "To" definition.
|
|
///
|
|
void replaceUsesOfWith(Value *From, Value *To);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const User *) { return true; }
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) || isa<Constant>(V);
|
|
}
|
|
};
|
|
|
|
inline Use *OperandTraits<User>::op_begin(User *U) {
|
|
return U->op_begin();
|
|
}
|
|
|
|
inline Use *OperandTraits<User>::op_end(User *U) {
|
|
return U->op_end();
|
|
}
|
|
|
|
inline unsigned OperandTraits<User>::operands(const User *U) {
|
|
return U->getNumOperands();
|
|
}
|
|
|
|
template<> struct simplify_type<User::op_iterator> {
|
|
typedef Value* SimpleType;
|
|
|
|
static SimpleType getSimplifiedValue(const User::op_iterator &Val) {
|
|
return static_cast<SimpleType>(Val->get());
|
|
}
|
|
};
|
|
|
|
template<> struct simplify_type<const User::op_iterator>
|
|
: public simplify_type<User::op_iterator> {};
|
|
|
|
template<> struct simplify_type<User::const_op_iterator> {
|
|
typedef Value* SimpleType;
|
|
|
|
static SimpleType getSimplifiedValue(const User::const_op_iterator &Val) {
|
|
return static_cast<SimpleType>(Val->get());
|
|
}
|
|
};
|
|
|
|
template<> struct simplify_type<const User::const_op_iterator>
|
|
: public simplify_type<User::const_op_iterator> {};
|
|
|
|
|
|
// value_use_iterator::getOperandNo - Requires the definition of the User class.
|
|
template<typename UserTy>
|
|
unsigned value_use_iterator<UserTy>::getOperandNo() const {
|
|
return U - U->getUser()->op_begin();
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|