llvm-mirror/lib/Target/WebAssembly/WebAssemblyTargetMachine.cpp
Heejin Ahn a681962bae [WebAssembly] Rename StoreResults to MemIntrinsicResults
Summary:
StoreResults pass does not optimize store instructions anymore because
store instructions don't return results values anymore. Now this pass is
used solely for memory intrinsics, so update the pass name accordingly
and fix outdated pass descriptions as well.

This patch does not change any meaningful behavior, but not marked as
NFC because it changes a comment check line in a test case.

Reviewers: dschuff

Subscribers: mgorny, sbc100, jgravelle-google, sunfiish, llvm-commits

Differential Revision: https://reviews.llvm.org/D56093

llvm-svn: 350669
2019-01-08 22:35:18 +00:00

350 lines
13 KiB
C++

//===- WebAssemblyTargetMachine.cpp - Define TargetMachine for WebAssembly -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the WebAssembly-specific subclass of TargetMachine.
///
//===----------------------------------------------------------------------===//
#include "WebAssemblyTargetMachine.h"
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "WebAssembly.h"
#include "WebAssemblyTargetObjectFile.h"
#include "WebAssemblyTargetTransformInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
using namespace llvm;
#define DEBUG_TYPE "wasm"
// Emscripten's asm.js-style exception handling
static cl::opt<bool> EnableEmException(
"enable-emscripten-cxx-exceptions",
cl::desc("WebAssembly Emscripten-style exception handling"),
cl::init(false));
// Emscripten's asm.js-style setjmp/longjmp handling
static cl::opt<bool> EnableEmSjLj(
"enable-emscripten-sjlj",
cl::desc("WebAssembly Emscripten-style setjmp/longjmp handling"),
cl::init(false));
extern "C" void LLVMInitializeWebAssemblyTarget() {
// Register the target.
RegisterTargetMachine<WebAssemblyTargetMachine> X(
getTheWebAssemblyTarget32());
RegisterTargetMachine<WebAssemblyTargetMachine> Y(
getTheWebAssemblyTarget64());
// Register backend passes
auto &PR = *PassRegistry::getPassRegistry();
initializeWebAssemblyAddMissingPrototypesPass(PR);
initializeWebAssemblyLowerEmscriptenEHSjLjPass(PR);
initializeLowerGlobalDtorsPass(PR);
initializeFixFunctionBitcastsPass(PR);
initializeOptimizeReturnedPass(PR);
initializeWebAssemblyArgumentMovePass(PR);
initializeWebAssemblySetP2AlignOperandsPass(PR);
initializeWebAssemblyEHRestoreStackPointerPass(PR);
initializeWebAssemblyReplacePhysRegsPass(PR);
initializeWebAssemblyPrepareForLiveIntervalsPass(PR);
initializeWebAssemblyOptimizeLiveIntervalsPass(PR);
initializeWebAssemblyMemIntrinsicResultsPass(PR);
initializeWebAssemblyRegStackifyPass(PR);
initializeWebAssemblyRegColoringPass(PR);
initializeWebAssemblyExplicitLocalsPass(PR);
initializeWebAssemblyFixIrreducibleControlFlowPass(PR);
initializeWebAssemblyLateEHPreparePass(PR);
initializeWebAssemblyExceptionInfoPass(PR);
initializeWebAssemblyCFGSortPass(PR);
initializeWebAssemblyCFGStackifyPass(PR);
initializeWebAssemblyLowerBrUnlessPass(PR);
initializeWebAssemblyRegNumberingPass(PR);
initializeWebAssemblyPeepholePass(PR);
initializeWebAssemblyCallIndirectFixupPass(PR);
}
//===----------------------------------------------------------------------===//
// WebAssembly Lowering public interface.
//===----------------------------------------------------------------------===//
static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
if (!RM.hasValue()) {
// Default to static relocation model. This should always be more optimial
// than PIC since the static linker can determine all global addresses and
// assume direct function calls.
return Reloc::Static;
}
return *RM;
}
/// Create an WebAssembly architecture model.
///
WebAssemblyTargetMachine::WebAssemblyTargetMachine(
const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
const TargetOptions &Options, Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
: LLVMTargetMachine(T,
TT.isArch64Bit() ? "e-m:e-p:64:64-i64:64-n32:64-S128"
: "e-m:e-p:32:32-i64:64-n32:64-S128",
TT, CPU, FS, Options, getEffectiveRelocModel(RM),
getEffectiveCodeModel(CM, CodeModel::Large), OL),
TLOF(new WebAssemblyTargetObjectFile()) {
// WebAssembly type-checks instructions, but a noreturn function with a return
// type that doesn't match the context will cause a check failure. So we lower
// LLVM 'unreachable' to ISD::TRAP and then lower that to WebAssembly's
// 'unreachable' instructions which is meant for that case.
this->Options.TrapUnreachable = true;
// WebAssembly treats each function as an independent unit. Force
// -ffunction-sections, effectively, so that we can emit them independently.
this->Options.FunctionSections = true;
this->Options.DataSections = true;
this->Options.UniqueSectionNames = true;
initAsmInfo();
// Note that we don't use setRequiresStructuredCFG(true). It disables
// optimizations than we're ok with, and want, such as critical edge
// splitting and tail merging.
}
WebAssemblyTargetMachine::~WebAssemblyTargetMachine() {}
const WebAssemblySubtarget *
WebAssemblyTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
? CPUAttr.getValueAsString().str()
: TargetCPU;
std::string FS = !FSAttr.hasAttribute(Attribute::None)
? FSAttr.getValueAsString().str()
: TargetFS;
auto &I = SubtargetMap[CPU + FS];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = llvm::make_unique<WebAssemblySubtarget>(TargetTriple, CPU, FS, *this);
}
return I.get();
}
namespace {
class StripThreadLocal final : public ModulePass {
// The default thread model for wasm is single, where thread-local variables
// are identical to regular globals and should be treated the same. So this
// pass just converts all GlobalVariables to NotThreadLocal
static char ID;
public:
StripThreadLocal() : ModulePass(ID) {}
bool runOnModule(Module &M) override {
for (auto &GV : M.globals())
GV.setThreadLocalMode(GlobalValue::ThreadLocalMode::NotThreadLocal);
return true;
}
};
char StripThreadLocal::ID = 0;
/// WebAssembly Code Generator Pass Configuration Options.
class WebAssemblyPassConfig final : public TargetPassConfig {
public:
WebAssemblyPassConfig(WebAssemblyTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
WebAssemblyTargetMachine &getWebAssemblyTargetMachine() const {
return getTM<WebAssemblyTargetMachine>();
}
FunctionPass *createTargetRegisterAllocator(bool) override;
void addIRPasses() override;
bool addInstSelector() override;
void addPostRegAlloc() override;
bool addGCPasses() override { return false; }
void addPreEmitPass() override;
};
} // end anonymous namespace
TargetTransformInfo
WebAssemblyTargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(WebAssemblyTTIImpl(this, F));
}
TargetPassConfig *
WebAssemblyTargetMachine::createPassConfig(PassManagerBase &PM) {
return new WebAssemblyPassConfig(*this, PM);
}
FunctionPass *WebAssemblyPassConfig::createTargetRegisterAllocator(bool) {
return nullptr; // No reg alloc
}
//===----------------------------------------------------------------------===//
// The following functions are called from lib/CodeGen/Passes.cpp to modify
// the CodeGen pass sequence.
//===----------------------------------------------------------------------===//
void WebAssemblyPassConfig::addIRPasses() {
if (TM->Options.ThreadModel == ThreadModel::Single) {
// In "single" mode, atomics get lowered to non-atomics.
addPass(createLowerAtomicPass());
addPass(new StripThreadLocal());
} else {
// Expand some atomic operations. WebAssemblyTargetLowering has hooks which
// control specifically what gets lowered.
addPass(createAtomicExpandPass());
}
// Add signatures to prototype-less function declarations
addPass(createWebAssemblyAddMissingPrototypes());
// Lower .llvm.global_dtors into .llvm_global_ctors with __cxa_atexit calls.
addPass(createWebAssemblyLowerGlobalDtors());
// Fix function bitcasts, as WebAssembly requires caller and callee signatures
// to match.
addPass(createWebAssemblyFixFunctionBitcasts());
// Optimize "returned" function attributes.
if (getOptLevel() != CodeGenOpt::None)
addPass(createWebAssemblyOptimizeReturned());
// If exception handling is not enabled and setjmp/longjmp handling is
// enabled, we lower invokes into calls and delete unreachable landingpad
// blocks. Lowering invokes when there is no EH support is done in
// TargetPassConfig::addPassesToHandleExceptions, but this runs after this
// function and SjLj handling expects all invokes to be lowered before.
if (!EnableEmException &&
TM->Options.ExceptionModel == ExceptionHandling::None) {
addPass(createLowerInvokePass());
// The lower invoke pass may create unreachable code. Remove it in order not
// to process dead blocks in setjmp/longjmp handling.
addPass(createUnreachableBlockEliminationPass());
}
// Handle exceptions and setjmp/longjmp if enabled.
if (EnableEmException || EnableEmSjLj)
addPass(createWebAssemblyLowerEmscriptenEHSjLj(EnableEmException,
EnableEmSjLj));
TargetPassConfig::addIRPasses();
}
bool WebAssemblyPassConfig::addInstSelector() {
(void)TargetPassConfig::addInstSelector();
addPass(
createWebAssemblyISelDag(getWebAssemblyTargetMachine(), getOptLevel()));
// Run the argument-move pass immediately after the ScheduleDAG scheduler
// so that we can fix up the ARGUMENT instructions before anything else
// sees them in the wrong place.
addPass(createWebAssemblyArgumentMove());
// Set the p2align operands. This information is present during ISel, however
// it's inconvenient to collect. Collect it now, and update the immediate
// operands.
addPass(createWebAssemblySetP2AlignOperands());
return false;
}
void WebAssemblyPassConfig::addPostRegAlloc() {
// TODO: The following CodeGen passes don't currently support code containing
// virtual registers. Consider removing their restrictions and re-enabling
// them.
// These functions all require the NoVRegs property.
disablePass(&MachineCopyPropagationID);
disablePass(&PostRAMachineSinkingID);
disablePass(&PostRASchedulerID);
disablePass(&FuncletLayoutID);
disablePass(&StackMapLivenessID);
disablePass(&LiveDebugValuesID);
disablePass(&PatchableFunctionID);
disablePass(&ShrinkWrapID);
TargetPassConfig::addPostRegAlloc();
}
void WebAssemblyPassConfig::addPreEmitPass() {
TargetPassConfig::addPreEmitPass();
// Restore __stack_pointer global after an exception is thrown.
addPass(createWebAssemblyEHRestoreStackPointer());
// Now that we have a prologue and epilogue and all frame indices are
// rewritten, eliminate SP and FP. This allows them to be stackified,
// colored, and numbered with the rest of the registers.
addPass(createWebAssemblyReplacePhysRegs());
// Rewrite pseudo call_indirect instructions as real instructions.
// This needs to run before register stackification, because we change the
// order of the arguments.
addPass(createWebAssemblyCallIndirectFixup());
// Eliminate multiple-entry loops.
addPass(createWebAssemblyFixIrreducibleControlFlow());
// Do various transformations for exception handling.
addPass(createWebAssemblyLateEHPrepare());
if (getOptLevel() != CodeGenOpt::None) {
// LiveIntervals isn't commonly run this late. Re-establish preconditions.
addPass(createWebAssemblyPrepareForLiveIntervals());
// Depend on LiveIntervals and perform some optimizations on it.
addPass(createWebAssemblyOptimizeLiveIntervals());
// Prepare memory intrinsic calls for register stackifying.
addPass(createWebAssemblyMemIntrinsicResults());
// Mark registers as representing wasm's value stack. This is a key
// code-compression technique in WebAssembly. We run this pass (and
// MemIntrinsicResults above) very late, so that it sees as much code as
// possible, including code emitted by PEI and expanded by late tail
// duplication.
addPass(createWebAssemblyRegStackify());
// Run the register coloring pass to reduce the total number of registers.
// This runs after stackification so that it doesn't consider registers
// that become stackified.
addPass(createWebAssemblyRegColoring());
}
// Insert explicit local.get and local.set operators.
addPass(createWebAssemblyExplicitLocals());
// Sort the blocks of the CFG into topological order, a prerequisite for
// BLOCK and LOOP markers.
addPass(createWebAssemblyCFGSort());
// Insert BLOCK and LOOP markers.
addPass(createWebAssemblyCFGStackify());
// Lower br_unless into br_if.
addPass(createWebAssemblyLowerBrUnless());
// Perform the very last peephole optimizations on the code.
if (getOptLevel() != CodeGenOpt::None)
addPass(createWebAssemblyPeephole());
// Create a mapping from LLVM CodeGen virtual registers to wasm registers.
addPass(createWebAssemblyRegNumbering());
}