mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-02-13 08:54:59 +00:00
![Chandler Carruth](/assets/img/avatar_default.png)
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
1212 lines
44 KiB
C++
1212 lines
44 KiB
C++
//===- LoopVectorizationLegality.cpp --------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides loop vectorization legality analysis. Original code
|
|
// resided in LoopVectorize.cpp for a long time.
|
|
//
|
|
// At this point, it is implemented as a utility class, not as an analysis
|
|
// pass. It should be easy to create an analysis pass around it if there
|
|
// is a need (but D45420 needs to happen first).
|
|
//
|
|
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define LV_NAME "loop-vectorize"
|
|
#define DEBUG_TYPE LV_NAME
|
|
|
|
static cl::opt<bool>
|
|
EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
|
|
cl::desc("Enable if-conversion during vectorization."));
|
|
|
|
static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
|
|
"pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
|
|
cl::desc("The maximum allowed number of runtime memory checks with a "
|
|
"vectorize(enable) pragma."));
|
|
|
|
static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
|
|
"vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
|
|
cl::desc("The maximum number of SCEV checks allowed."));
|
|
|
|
static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
|
|
"pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
|
|
cl::desc("The maximum number of SCEV checks allowed with a "
|
|
"vectorize(enable) pragma"));
|
|
|
|
/// Maximum vectorization interleave count.
|
|
static const unsigned MaxInterleaveFactor = 16;
|
|
|
|
namespace llvm {
|
|
|
|
OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
|
|
StringRef RemarkName,
|
|
Loop *TheLoop,
|
|
Instruction *I) {
|
|
Value *CodeRegion = TheLoop->getHeader();
|
|
DebugLoc DL = TheLoop->getStartLoc();
|
|
|
|
if (I) {
|
|
CodeRegion = I->getParent();
|
|
// If there is no debug location attached to the instruction, revert back to
|
|
// using the loop's.
|
|
if (I->getDebugLoc())
|
|
DL = I->getDebugLoc();
|
|
}
|
|
|
|
OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
|
|
R << "loop not vectorized: ";
|
|
return R;
|
|
}
|
|
|
|
bool LoopVectorizeHints::Hint::validate(unsigned Val) {
|
|
switch (Kind) {
|
|
case HK_WIDTH:
|
|
return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
|
|
case HK_UNROLL:
|
|
return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
|
|
case HK_FORCE:
|
|
return (Val <= 1);
|
|
case HK_ISVECTORIZED:
|
|
return (Val == 0 || Val == 1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
|
|
bool InterleaveOnlyWhenForced,
|
|
OptimizationRemarkEmitter &ORE)
|
|
: Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
|
|
Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
|
|
Force("vectorize.enable", FK_Undefined, HK_FORCE),
|
|
IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
|
|
// Populate values with existing loop metadata.
|
|
getHintsFromMetadata();
|
|
|
|
// force-vector-interleave overrides DisableInterleaving.
|
|
if (VectorizerParams::isInterleaveForced())
|
|
Interleave.Value = VectorizerParams::VectorizationInterleave;
|
|
|
|
if (IsVectorized.Value != 1)
|
|
// If the vectorization width and interleaving count are both 1 then
|
|
// consider the loop to have been already vectorized because there's
|
|
// nothing more that we can do.
|
|
IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
|
|
LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
|
|
<< "LV: Interleaving disabled by the pass manager\n");
|
|
}
|
|
|
|
bool LoopVectorizeHints::allowVectorization(
|
|
Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
|
|
if (getForce() == LoopVectorizeHints::FK_Disabled) {
|
|
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
|
|
emitRemarkWithHints();
|
|
return false;
|
|
}
|
|
|
|
if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
|
|
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
|
|
emitRemarkWithHints();
|
|
return false;
|
|
}
|
|
|
|
if (getIsVectorized() == 1) {
|
|
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
|
|
// FIXME: Add interleave.disable metadata. This will allow
|
|
// vectorize.disable to be used without disabling the pass and errors
|
|
// to differentiate between disabled vectorization and a width of 1.
|
|
ORE.emit([&]() {
|
|
return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
|
|
"AllDisabled", L->getStartLoc(),
|
|
L->getHeader())
|
|
<< "loop not vectorized: vectorization and interleaving are "
|
|
"explicitly disabled, or the loop has already been "
|
|
"vectorized";
|
|
});
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void LoopVectorizeHints::emitRemarkWithHints() const {
|
|
using namespace ore;
|
|
|
|
ORE.emit([&]() {
|
|
if (Force.Value == LoopVectorizeHints::FK_Disabled)
|
|
return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
|
|
TheLoop->getStartLoc(),
|
|
TheLoop->getHeader())
|
|
<< "loop not vectorized: vectorization is explicitly disabled";
|
|
else {
|
|
OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
|
|
TheLoop->getStartLoc(), TheLoop->getHeader());
|
|
R << "loop not vectorized";
|
|
if (Force.Value == LoopVectorizeHints::FK_Enabled) {
|
|
R << " (Force=" << NV("Force", true);
|
|
if (Width.Value != 0)
|
|
R << ", Vector Width=" << NV("VectorWidth", Width.Value);
|
|
if (Interleave.Value != 0)
|
|
R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
|
|
R << ")";
|
|
}
|
|
return R;
|
|
}
|
|
});
|
|
}
|
|
|
|
const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
|
|
if (getWidth() == 1)
|
|
return LV_NAME;
|
|
if (getForce() == LoopVectorizeHints::FK_Disabled)
|
|
return LV_NAME;
|
|
if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
|
|
return LV_NAME;
|
|
return OptimizationRemarkAnalysis::AlwaysPrint;
|
|
}
|
|
|
|
void LoopVectorizeHints::getHintsFromMetadata() {
|
|
MDNode *LoopID = TheLoop->getLoopID();
|
|
if (!LoopID)
|
|
return;
|
|
|
|
// First operand should refer to the loop id itself.
|
|
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
|
|
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
|
|
|
|
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
|
|
const MDString *S = nullptr;
|
|
SmallVector<Metadata *, 4> Args;
|
|
|
|
// The expected hint is either a MDString or a MDNode with the first
|
|
// operand a MDString.
|
|
if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
|
|
if (!MD || MD->getNumOperands() == 0)
|
|
continue;
|
|
S = dyn_cast<MDString>(MD->getOperand(0));
|
|
for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
|
|
Args.push_back(MD->getOperand(i));
|
|
} else {
|
|
S = dyn_cast<MDString>(LoopID->getOperand(i));
|
|
assert(Args.size() == 0 && "too many arguments for MDString");
|
|
}
|
|
|
|
if (!S)
|
|
continue;
|
|
|
|
// Check if the hint starts with the loop metadata prefix.
|
|
StringRef Name = S->getString();
|
|
if (Args.size() == 1)
|
|
setHint(Name, Args[0]);
|
|
}
|
|
}
|
|
|
|
void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
|
|
if (!Name.startswith(Prefix()))
|
|
return;
|
|
Name = Name.substr(Prefix().size(), StringRef::npos);
|
|
|
|
const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
|
|
if (!C)
|
|
return;
|
|
unsigned Val = C->getZExtValue();
|
|
|
|
Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
|
|
for (auto H : Hints) {
|
|
if (Name == H->Name) {
|
|
if (H->validate(Val))
|
|
H->Value = Val;
|
|
else
|
|
LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name,
|
|
unsigned V) const {
|
|
LLVMContext &Context = TheLoop->getHeader()->getContext();
|
|
Metadata *MDs[] = {
|
|
MDString::get(Context, Name),
|
|
ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
|
|
return MDNode::get(Context, MDs);
|
|
}
|
|
|
|
bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node,
|
|
ArrayRef<Hint> HintTypes) {
|
|
MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
|
|
if (!Name)
|
|
return false;
|
|
|
|
for (auto H : HintTypes)
|
|
if (Name->getString().endswith(H.Name))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
|
|
if (HintTypes.empty())
|
|
return;
|
|
|
|
// Reserve the first element to LoopID (see below).
|
|
SmallVector<Metadata *, 4> MDs(1);
|
|
// If the loop already has metadata, then ignore the existing operands.
|
|
MDNode *LoopID = TheLoop->getLoopID();
|
|
if (LoopID) {
|
|
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
|
|
MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
|
|
// If node in update list, ignore old value.
|
|
if (!matchesHintMetadataName(Node, HintTypes))
|
|
MDs.push_back(Node);
|
|
}
|
|
}
|
|
|
|
// Now, add the missing hints.
|
|
for (auto H : HintTypes)
|
|
MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
|
|
|
|
// Replace current metadata node with new one.
|
|
LLVMContext &Context = TheLoop->getHeader()->getContext();
|
|
MDNode *NewLoopID = MDNode::get(Context, MDs);
|
|
// Set operand 0 to refer to the loop id itself.
|
|
NewLoopID->replaceOperandWith(0, NewLoopID);
|
|
|
|
TheLoop->setLoopID(NewLoopID);
|
|
}
|
|
|
|
bool LoopVectorizationRequirements::doesNotMeet(
|
|
Function *F, Loop *L, const LoopVectorizeHints &Hints) {
|
|
const char *PassName = Hints.vectorizeAnalysisPassName();
|
|
bool Failed = false;
|
|
if (UnsafeAlgebraInst && !Hints.allowReordering()) {
|
|
ORE.emit([&]() {
|
|
return OptimizationRemarkAnalysisFPCommute(
|
|
PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
|
|
UnsafeAlgebraInst->getParent())
|
|
<< "loop not vectorized: cannot prove it is safe to reorder "
|
|
"floating-point operations";
|
|
});
|
|
Failed = true;
|
|
}
|
|
|
|
// Test if runtime memcheck thresholds are exceeded.
|
|
bool PragmaThresholdReached =
|
|
NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
|
|
bool ThresholdReached =
|
|
NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
|
|
if ((ThresholdReached && !Hints.allowReordering()) ||
|
|
PragmaThresholdReached) {
|
|
ORE.emit([&]() {
|
|
return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
|
|
L->getStartLoc(),
|
|
L->getHeader())
|
|
<< "loop not vectorized: cannot prove it is safe to reorder "
|
|
"memory operations";
|
|
});
|
|
LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
|
|
Failed = true;
|
|
}
|
|
|
|
return Failed;
|
|
}
|
|
|
|
// Return true if the inner loop \p Lp is uniform with regard to the outer loop
|
|
// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
|
|
// executing the inner loop will execute the same iterations). This check is
|
|
// very constrained for now but it will be relaxed in the future. \p Lp is
|
|
// considered uniform if it meets all the following conditions:
|
|
// 1) it has a canonical IV (starting from 0 and with stride 1),
|
|
// 2) its latch terminator is a conditional branch and,
|
|
// 3) its latch condition is a compare instruction whose operands are the
|
|
// canonical IV and an OuterLp invariant.
|
|
// This check doesn't take into account the uniformity of other conditions not
|
|
// related to the loop latch because they don't affect the loop uniformity.
|
|
//
|
|
// NOTE: We decided to keep all these checks and its associated documentation
|
|
// together so that we can easily have a picture of the current supported loop
|
|
// nests. However, some of the current checks don't depend on \p OuterLp and
|
|
// would be redundantly executed for each \p Lp if we invoked this function for
|
|
// different candidate outer loops. This is not the case for now because we
|
|
// don't currently have the infrastructure to evaluate multiple candidate outer
|
|
// loops and \p OuterLp will be a fixed parameter while we only support explicit
|
|
// outer loop vectorization. It's also very likely that these checks go away
|
|
// before introducing the aforementioned infrastructure. However, if this is not
|
|
// the case, we should move the \p OuterLp independent checks to a separate
|
|
// function that is only executed once for each \p Lp.
|
|
static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
|
|
assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
|
|
|
|
// If Lp is the outer loop, it's uniform by definition.
|
|
if (Lp == OuterLp)
|
|
return true;
|
|
assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
|
|
|
|
// 1.
|
|
PHINode *IV = Lp->getCanonicalInductionVariable();
|
|
if (!IV) {
|
|
LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
|
|
return false;
|
|
}
|
|
|
|
// 2.
|
|
BasicBlock *Latch = Lp->getLoopLatch();
|
|
auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
|
|
if (!LatchBr || LatchBr->isUnconditional()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
|
|
return false;
|
|
}
|
|
|
|
// 3.
|
|
auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
|
|
if (!LatchCmp) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
|
|
return false;
|
|
}
|
|
|
|
Value *CondOp0 = LatchCmp->getOperand(0);
|
|
Value *CondOp1 = LatchCmp->getOperand(1);
|
|
Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
|
|
if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
|
|
!(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
|
|
LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Return true if \p Lp and all its nested loops are uniform with regard to \p
|
|
// OuterLp.
|
|
static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
|
|
if (!isUniformLoop(Lp, OuterLp))
|
|
return false;
|
|
|
|
// Check if nested loops are uniform.
|
|
for (Loop *SubLp : *Lp)
|
|
if (!isUniformLoopNest(SubLp, OuterLp))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check whether it is safe to if-convert this phi node.
|
|
///
|
|
/// Phi nodes with constant expressions that can trap are not safe to if
|
|
/// convert.
|
|
static bool canIfConvertPHINodes(BasicBlock *BB) {
|
|
for (PHINode &Phi : BB->phis()) {
|
|
for (Value *V : Phi.incoming_values())
|
|
if (auto *C = dyn_cast<Constant>(V))
|
|
if (C->canTrap())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
|
|
if (Ty->isPointerTy())
|
|
return DL.getIntPtrType(Ty);
|
|
|
|
// It is possible that char's or short's overflow when we ask for the loop's
|
|
// trip count, work around this by changing the type size.
|
|
if (Ty->getScalarSizeInBits() < 32)
|
|
return Type::getInt32Ty(Ty->getContext());
|
|
|
|
return Ty;
|
|
}
|
|
|
|
static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
|
|
Ty0 = convertPointerToIntegerType(DL, Ty0);
|
|
Ty1 = convertPointerToIntegerType(DL, Ty1);
|
|
if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
|
|
return Ty0;
|
|
return Ty1;
|
|
}
|
|
|
|
/// Check that the instruction has outside loop users and is not an
|
|
/// identified reduction variable.
|
|
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
|
|
SmallPtrSetImpl<Value *> &AllowedExit) {
|
|
// Reductions, Inductions and non-header phis are allowed to have exit users. All
|
|
// other instructions must not have external users.
|
|
if (!AllowedExit.count(Inst))
|
|
// Check that all of the users of the loop are inside the BB.
|
|
for (User *U : Inst->users()) {
|
|
Instruction *UI = cast<Instruction>(U);
|
|
// This user may be a reduction exit value.
|
|
if (!TheLoop->contains(UI)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
|
|
const ValueToValueMap &Strides =
|
|
getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
|
|
|
|
int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
|
|
if (Stride == 1 || Stride == -1)
|
|
return Stride;
|
|
return 0;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isUniform(Value *V) {
|
|
return LAI->isUniform(V);
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeOuterLoop() {
|
|
assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
|
|
// Store the result and return it at the end instead of exiting early, in case
|
|
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
|
|
bool Result = true;
|
|
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
|
|
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
// Check whether the BB terminator is a BranchInst. Any other terminator is
|
|
// not supported yet.
|
|
auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!Br) {
|
|
LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
|
|
ORE->emit(createMissedAnalysis("CFGNotUnderstood")
|
|
<< "loop control flow is not understood by vectorizer");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Check whether the BranchInst is a supported one. Only unconditional
|
|
// branches, conditional branches with an outer loop invariant condition or
|
|
// backedges are supported.
|
|
if (Br && Br->isConditional() &&
|
|
!TheLoop->isLoopInvariant(Br->getCondition()) &&
|
|
!LI->isLoopHeader(Br->getSuccessor(0)) &&
|
|
!LI->isLoopHeader(Br->getSuccessor(1))) {
|
|
LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
|
|
ORE->emit(createMissedAnalysis("CFGNotUnderstood")
|
|
<< "loop control flow is not understood by vectorizer");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check whether inner loops are uniform. At this point, we only support
|
|
// simple outer loops scenarios with uniform nested loops.
|
|
if (!isUniformLoopNest(TheLoop /*loop nest*/,
|
|
TheLoop /*context outer loop*/)) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "LV: Not vectorizing: Outer loop contains divergent loops.\n");
|
|
ORE->emit(createMissedAnalysis("CFGNotUnderstood")
|
|
<< "loop control flow is not understood by vectorizer");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Check whether we are able to set up outer loop induction.
|
|
if (!setupOuterLoopInductions()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Not vectorizing: Unsupported outer loop Phi(s).\n");
|
|
ORE->emit(createMissedAnalysis("UnsupportedPhi")
|
|
<< "Unsupported outer loop Phi(s)");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
void LoopVectorizationLegality::addInductionPhi(
|
|
PHINode *Phi, const InductionDescriptor &ID,
|
|
SmallPtrSetImpl<Value *> &AllowedExit) {
|
|
Inductions[Phi] = ID;
|
|
|
|
// In case this induction also comes with casts that we know we can ignore
|
|
// in the vectorized loop body, record them here. All casts could be recorded
|
|
// here for ignoring, but suffices to record only the first (as it is the
|
|
// only one that may bw used outside the cast sequence).
|
|
const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
|
|
if (!Casts.empty())
|
|
InductionCastsToIgnore.insert(*Casts.begin());
|
|
|
|
Type *PhiTy = Phi->getType();
|
|
const DataLayout &DL = Phi->getModule()->getDataLayout();
|
|
|
|
// Get the widest type.
|
|
if (!PhiTy->isFloatingPointTy()) {
|
|
if (!WidestIndTy)
|
|
WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
|
|
else
|
|
WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
|
|
}
|
|
|
|
// Int inductions are special because we only allow one IV.
|
|
if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
|
|
ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
|
|
isa<Constant>(ID.getStartValue()) &&
|
|
cast<Constant>(ID.getStartValue())->isNullValue()) {
|
|
|
|
// Use the phi node with the widest type as induction. Use the last
|
|
// one if there are multiple (no good reason for doing this other
|
|
// than it is expedient). We've checked that it begins at zero and
|
|
// steps by one, so this is a canonical induction variable.
|
|
if (!PrimaryInduction || PhiTy == WidestIndTy)
|
|
PrimaryInduction = Phi;
|
|
}
|
|
|
|
// Both the PHI node itself, and the "post-increment" value feeding
|
|
// back into the PHI node may have external users.
|
|
// We can allow those uses, except if the SCEVs we have for them rely
|
|
// on predicates that only hold within the loop, since allowing the exit
|
|
// currently means re-using this SCEV outside the loop (see PR33706 for more
|
|
// details).
|
|
if (PSE.getUnionPredicate().isAlwaysTrue()) {
|
|
AllowedExit.insert(Phi);
|
|
AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
|
|
}
|
|
|
|
bool LoopVectorizationLegality::setupOuterLoopInductions() {
|
|
BasicBlock *Header = TheLoop->getHeader();
|
|
|
|
// Returns true if a given Phi is a supported induction.
|
|
auto isSupportedPhi = [&](PHINode &Phi) -> bool {
|
|
InductionDescriptor ID;
|
|
if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
|
|
ID.getKind() == InductionDescriptor::IK_IntInduction) {
|
|
addInductionPhi(&Phi, ID, AllowedExit);
|
|
return true;
|
|
} else {
|
|
// Bail out for any Phi in the outer loop header that is not a supported
|
|
// induction.
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "LV: Found unsupported PHI for outer loop vectorization.\n");
|
|
return false;
|
|
}
|
|
};
|
|
|
|
if (llvm::all_of(Header->phis(), isSupportedPhi))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeInstrs() {
|
|
BasicBlock *Header = TheLoop->getHeader();
|
|
|
|
// Look for the attribute signaling the absence of NaNs.
|
|
Function &F = *Header->getParent();
|
|
HasFunNoNaNAttr =
|
|
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
|
|
|
|
// For each block in the loop.
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
// Scan the instructions in the block and look for hazards.
|
|
for (Instruction &I : *BB) {
|
|
if (auto *Phi = dyn_cast<PHINode>(&I)) {
|
|
Type *PhiTy = Phi->getType();
|
|
// Check that this PHI type is allowed.
|
|
if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
|
|
!PhiTy->isPointerTy()) {
|
|
ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
|
|
<< "loop control flow is not understood by vectorizer");
|
|
LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
|
|
return false;
|
|
}
|
|
|
|
// If this PHINode is not in the header block, then we know that we
|
|
// can convert it to select during if-conversion. No need to check if
|
|
// the PHIs in this block are induction or reduction variables.
|
|
if (BB != Header) {
|
|
// Non-header phi nodes that have outside uses can be vectorized. Add
|
|
// them to the list of allowed exits.
|
|
// Unsafe cyclic dependencies with header phis are identified during
|
|
// legalization for reduction, induction and first order
|
|
// recurrences.
|
|
continue;
|
|
}
|
|
|
|
// We only allow if-converted PHIs with exactly two incoming values.
|
|
if (Phi->getNumIncomingValues() != 2) {
|
|
ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
|
|
<< "control flow not understood by vectorizer");
|
|
LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
|
|
return false;
|
|
}
|
|
|
|
RecurrenceDescriptor RedDes;
|
|
if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
|
|
DT)) {
|
|
if (RedDes.hasUnsafeAlgebra())
|
|
Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
|
|
AllowedExit.insert(RedDes.getLoopExitInstr());
|
|
Reductions[Phi] = RedDes;
|
|
continue;
|
|
}
|
|
|
|
// TODO: Instead of recording the AllowedExit, it would be good to record the
|
|
// complementary set: NotAllowedExit. These include (but may not be
|
|
// limited to):
|
|
// 1. Reduction phis as they represent the one-before-last value, which
|
|
// is not available when vectorized
|
|
// 2. Induction phis and increment when SCEV predicates cannot be used
|
|
// outside the loop - see addInductionPhi
|
|
// 3. Non-Phis with outside uses when SCEV predicates cannot be used
|
|
// outside the loop - see call to hasOutsideLoopUser in the non-phi
|
|
// handling below
|
|
// 4. FirstOrderRecurrence phis that can possibly be handled by
|
|
// extraction.
|
|
// By recording these, we can then reason about ways to vectorize each
|
|
// of these NotAllowedExit.
|
|
InductionDescriptor ID;
|
|
if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
|
|
addInductionPhi(Phi, ID, AllowedExit);
|
|
if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
|
|
Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
|
|
continue;
|
|
}
|
|
|
|
if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
|
|
SinkAfter, DT)) {
|
|
FirstOrderRecurrences.insert(Phi);
|
|
continue;
|
|
}
|
|
|
|
// As a last resort, coerce the PHI to a AddRec expression
|
|
// and re-try classifying it a an induction PHI.
|
|
if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
|
|
addInductionPhi(Phi, ID, AllowedExit);
|
|
continue;
|
|
}
|
|
|
|
ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
|
|
<< "value that could not be identified as "
|
|
"reduction is used outside the loop");
|
|
LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
|
|
return false;
|
|
} // end of PHI handling
|
|
|
|
// We handle calls that:
|
|
// * Are debug info intrinsics.
|
|
// * Have a mapping to an IR intrinsic.
|
|
// * Have a vector version available.
|
|
auto *CI = dyn_cast<CallInst>(&I);
|
|
if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
|
|
!isa<DbgInfoIntrinsic>(CI) &&
|
|
!(CI->getCalledFunction() && TLI &&
|
|
TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
|
|
// If the call is a recognized math libary call, it is likely that
|
|
// we can vectorize it given loosened floating-point constraints.
|
|
LibFunc Func;
|
|
bool IsMathLibCall =
|
|
TLI && CI->getCalledFunction() &&
|
|
CI->getType()->isFloatingPointTy() &&
|
|
TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
|
|
TLI->hasOptimizedCodeGen(Func);
|
|
|
|
if (IsMathLibCall) {
|
|
// TODO: Ideally, we should not use clang-specific language here,
|
|
// but it's hard to provide meaningful yet generic advice.
|
|
// Also, should this be guarded by allowExtraAnalysis() and/or be part
|
|
// of the returned info from isFunctionVectorizable()?
|
|
ORE->emit(createMissedAnalysis("CantVectorizeLibcall", CI)
|
|
<< "library call cannot be vectorized. "
|
|
"Try compiling with -fno-math-errno, -ffast-math, "
|
|
"or similar flags");
|
|
} else {
|
|
ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
|
|
<< "call instruction cannot be vectorized");
|
|
}
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Found a non-intrinsic callsite.\n");
|
|
return false;
|
|
}
|
|
|
|
// Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
|
|
// second argument is the same (i.e. loop invariant)
|
|
if (CI && hasVectorInstrinsicScalarOpd(
|
|
getVectorIntrinsicIDForCall(CI, TLI), 1)) {
|
|
auto *SE = PSE.getSE();
|
|
if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
|
|
ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
|
|
<< "intrinsic instruction cannot be vectorized");
|
|
LLVM_DEBUG(dbgs()
|
|
<< "LV: Found unvectorizable intrinsic " << *CI << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check that the instruction return type is vectorizable.
|
|
// Also, we can't vectorize extractelement instructions.
|
|
if ((!VectorType::isValidElementType(I.getType()) &&
|
|
!I.getType()->isVoidTy()) ||
|
|
isa<ExtractElementInst>(I)) {
|
|
ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
|
|
<< "instruction return type cannot be vectorized");
|
|
LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that the stored type is vectorizable.
|
|
if (auto *ST = dyn_cast<StoreInst>(&I)) {
|
|
Type *T = ST->getValueOperand()->getType();
|
|
if (!VectorType::isValidElementType(T)) {
|
|
ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
|
|
<< "store instruction cannot be vectorized");
|
|
return false;
|
|
}
|
|
|
|
// FP instructions can allow unsafe algebra, thus vectorizable by
|
|
// non-IEEE-754 compliant SIMD units.
|
|
// This applies to floating-point math operations and calls, not memory
|
|
// operations, shuffles, or casts, as they don't change precision or
|
|
// semantics.
|
|
} else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
|
|
!I.isFast()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
|
|
Hints->setPotentiallyUnsafe();
|
|
}
|
|
|
|
// Reduction instructions are allowed to have exit users.
|
|
// All other instructions must not have external users.
|
|
if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
|
|
// We can safely vectorize loops where instructions within the loop are
|
|
// used outside the loop only if the SCEV predicates within the loop is
|
|
// same as outside the loop. Allowing the exit means reusing the SCEV
|
|
// outside the loop.
|
|
if (PSE.getUnionPredicate().isAlwaysTrue()) {
|
|
AllowedExit.insert(&I);
|
|
continue;
|
|
}
|
|
ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
|
|
<< "value cannot be used outside the loop");
|
|
return false;
|
|
}
|
|
} // next instr.
|
|
}
|
|
|
|
if (!PrimaryInduction) {
|
|
LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
|
|
if (Inductions.empty()) {
|
|
ORE->emit(createMissedAnalysis("NoInductionVariable")
|
|
<< "loop induction variable could not be identified");
|
|
return false;
|
|
} else if (!WidestIndTy) {
|
|
ORE->emit(createMissedAnalysis("NoIntegerInductionVariable")
|
|
<< "integer loop induction variable could not be identified");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Now we know the widest induction type, check if our found induction
|
|
// is the same size. If it's not, unset it here and InnerLoopVectorizer
|
|
// will create another.
|
|
if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
|
|
PrimaryInduction = nullptr;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeMemory() {
|
|
LAI = &(*GetLAA)(*TheLoop);
|
|
const OptimizationRemarkAnalysis *LAR = LAI->getReport();
|
|
if (LAR) {
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
|
|
"loop not vectorized: ", *LAR);
|
|
});
|
|
}
|
|
if (!LAI->canVectorizeMemory())
|
|
return false;
|
|
|
|
if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
|
|
ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
|
|
<< "write to a loop invariant address could not "
|
|
"be vectorized");
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Non vectorizable stores to a uniform address\n");
|
|
return false;
|
|
}
|
|
Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
|
|
PSE.addPredicate(LAI->getPSE().getUnionPredicate());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
|
|
Value *In0 = const_cast<Value *>(V);
|
|
PHINode *PN = dyn_cast_or_null<PHINode>(In0);
|
|
if (!PN)
|
|
return false;
|
|
|
|
return Inductions.count(PN);
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
|
|
auto *Inst = dyn_cast<Instruction>(V);
|
|
return (Inst && InductionCastsToIgnore.count(Inst));
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
|
|
return isInductionPhi(V) || isCastedInductionVariable(V);
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
|
|
return FirstOrderRecurrences.count(Phi);
|
|
}
|
|
|
|
bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
|
|
return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
|
|
}
|
|
|
|
bool LoopVectorizationLegality::blockCanBePredicated(
|
|
BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
|
|
const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
|
|
|
|
for (Instruction &I : *BB) {
|
|
// Check that we don't have a constant expression that can trap as operand.
|
|
for (Value *Operand : I.operands()) {
|
|
if (auto *C = dyn_cast<Constant>(Operand))
|
|
if (C->canTrap())
|
|
return false;
|
|
}
|
|
// We might be able to hoist the load.
|
|
if (I.mayReadFromMemory()) {
|
|
auto *LI = dyn_cast<LoadInst>(&I);
|
|
if (!LI)
|
|
return false;
|
|
if (!SafePtrs.count(LI->getPointerOperand())) {
|
|
// !llvm.mem.parallel_loop_access implies if-conversion safety.
|
|
// Otherwise, record that the load needs (real or emulated) masking
|
|
// and let the cost model decide.
|
|
if (!IsAnnotatedParallel)
|
|
MaskedOp.insert(LI);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (I.mayWriteToMemory()) {
|
|
auto *SI = dyn_cast<StoreInst>(&I);
|
|
if (!SI)
|
|
return false;
|
|
// Predicated store requires some form of masking:
|
|
// 1) masked store HW instruction,
|
|
// 2) emulation via load-blend-store (only if safe and legal to do so,
|
|
// be aware on the race conditions), or
|
|
// 3) element-by-element predicate check and scalar store.
|
|
MaskedOp.insert(SI);
|
|
continue;
|
|
}
|
|
if (I.mayThrow())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
|
|
if (!EnableIfConversion) {
|
|
ORE->emit(createMissedAnalysis("IfConversionDisabled")
|
|
<< "if-conversion is disabled");
|
|
return false;
|
|
}
|
|
|
|
assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
|
|
|
|
// A list of pointers that we can safely read and write to.
|
|
SmallPtrSet<Value *, 8> SafePointes;
|
|
|
|
// Collect safe addresses.
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
if (blockNeedsPredication(BB))
|
|
continue;
|
|
|
|
for (Instruction &I : *BB)
|
|
if (auto *Ptr = getLoadStorePointerOperand(&I))
|
|
SafePointes.insert(Ptr);
|
|
}
|
|
|
|
// Collect the blocks that need predication.
|
|
BasicBlock *Header = TheLoop->getHeader();
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
// We don't support switch statements inside loops.
|
|
if (!isa<BranchInst>(BB->getTerminator())) {
|
|
ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
|
|
<< "loop contains a switch statement");
|
|
return false;
|
|
}
|
|
|
|
// We must be able to predicate all blocks that need to be predicated.
|
|
if (blockNeedsPredication(BB)) {
|
|
if (!blockCanBePredicated(BB, SafePointes)) {
|
|
ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
|
|
<< "control flow cannot be substituted for a select");
|
|
return false;
|
|
}
|
|
} else if (BB != Header && !canIfConvertPHINodes(BB)) {
|
|
ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
|
|
<< "control flow cannot be substituted for a select");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We can if-convert this loop.
|
|
return true;
|
|
}
|
|
|
|
// Helper function to canVectorizeLoopNestCFG.
|
|
bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
|
|
bool UseVPlanNativePath) {
|
|
assert((UseVPlanNativePath || Lp->empty()) &&
|
|
"VPlan-native path is not enabled.");
|
|
|
|
// TODO: ORE should be improved to show more accurate information when an
|
|
// outer loop can't be vectorized because a nested loop is not understood or
|
|
// legal. Something like: "outer_loop_location: loop not vectorized:
|
|
// (inner_loop_location) loop control flow is not understood by vectorizer".
|
|
|
|
// Store the result and return it at the end instead of exiting early, in case
|
|
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
|
|
bool Result = true;
|
|
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
|
|
|
|
// We must have a loop in canonical form. Loops with indirectbr in them cannot
|
|
// be canonicalized.
|
|
if (!Lp->getLoopPreheader()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
|
|
ORE->emit(createMissedAnalysis("CFGNotUnderstood")
|
|
<< "loop control flow is not understood by vectorizer");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// We must have a single backedge.
|
|
if (Lp->getNumBackEdges() != 1) {
|
|
ORE->emit(createMissedAnalysis("CFGNotUnderstood")
|
|
<< "loop control flow is not understood by vectorizer");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// We must have a single exiting block.
|
|
if (!Lp->getExitingBlock()) {
|
|
ORE->emit(createMissedAnalysis("CFGNotUnderstood")
|
|
<< "loop control flow is not understood by vectorizer");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// We only handle bottom-tested loops, i.e. loop in which the condition is
|
|
// checked at the end of each iteration. With that we can assume that all
|
|
// instructions in the loop are executed the same number of times.
|
|
if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
|
|
ORE->emit(createMissedAnalysis("CFGNotUnderstood")
|
|
<< "loop control flow is not understood by vectorizer");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
|
|
Loop *Lp, bool UseVPlanNativePath) {
|
|
// Store the result and return it at the end instead of exiting early, in case
|
|
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
|
|
bool Result = true;
|
|
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
|
|
if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Recursively check whether the loop control flow of nested loops is
|
|
// understood.
|
|
for (Loop *SubLp : *Lp)
|
|
if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
|
|
// Store the result and return it at the end instead of exiting early, in case
|
|
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
|
|
bool Result = true;
|
|
|
|
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
|
|
// Check whether the loop-related control flow in the loop nest is expected by
|
|
// vectorizer.
|
|
if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// We need to have a loop header.
|
|
LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
|
|
<< '\n');
|
|
|
|
// Specific checks for outer loops. We skip the remaining legal checks at this
|
|
// point because they don't support outer loops.
|
|
if (!TheLoop->empty()) {
|
|
assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
|
|
|
|
if (!canVectorizeOuterLoop()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
|
|
// TODO: Implement DoExtraAnalysis when subsequent legal checks support
|
|
// outer loops.
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
|
|
return Result;
|
|
}
|
|
|
|
assert(TheLoop->empty() && "Inner loop expected.");
|
|
// Check if we can if-convert non-single-bb loops.
|
|
unsigned NumBlocks = TheLoop->getNumBlocks();
|
|
if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Check if we can vectorize the instructions and CFG in this loop.
|
|
if (!canVectorizeInstrs()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Go over each instruction and look at memory deps.
|
|
if (!canVectorizeMemory()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
|
|
<< (LAI->getRuntimePointerChecking()->Need
|
|
? " (with a runtime bound check)"
|
|
: "")
|
|
<< "!\n");
|
|
|
|
unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
|
|
if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
|
|
SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
|
|
|
|
if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
|
|
ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
|
|
<< "Too many SCEV assumptions need to be made and checked "
|
|
<< "at runtime");
|
|
LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Okay! We've done all the tests. If any have failed, return false. Otherwise
|
|
// we can vectorize, and at this point we don't have any other mem analysis
|
|
// which may limit our maximum vectorization factor, so just return true with
|
|
// no restrictions.
|
|
return Result;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canFoldTailByMasking() {
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
|
|
|
|
if (!PrimaryInduction) {
|
|
ORE->emit(createMissedAnalysis("NoPrimaryInduction")
|
|
<< "Missing a primary induction variable in the loop, which is "
|
|
<< "needed in order to fold tail by masking as required.");
|
|
LLVM_DEBUG(dbgs() << "LV: No primary induction, cannot fold tail by "
|
|
<< "masking.\n");
|
|
return false;
|
|
}
|
|
|
|
// TODO: handle reductions when tail is folded by masking.
|
|
if (!Reductions.empty()) {
|
|
ORE->emit(createMissedAnalysis("ReductionFoldingTailByMasking")
|
|
<< "Cannot fold tail by masking in the presence of reductions.");
|
|
LLVM_DEBUG(dbgs() << "LV: Loop has reductions, cannot fold tail by "
|
|
<< "masking.\n");
|
|
return false;
|
|
}
|
|
|
|
// TODO: handle outside users when tail is folded by masking.
|
|
for (auto *AE : AllowedExit) {
|
|
// Check that all users of allowed exit values are inside the loop.
|
|
for (User *U : AE->users()) {
|
|
Instruction *UI = cast<Instruction>(U);
|
|
if (TheLoop->contains(UI))
|
|
continue;
|
|
ORE->emit(createMissedAnalysis("LiveOutFoldingTailByMasking")
|
|
<< "Cannot fold tail by masking in the presence of live outs.");
|
|
LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop has an "
|
|
<< "outside user for : " << *UI << '\n');
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// The list of pointers that we can safely read and write to remains empty.
|
|
SmallPtrSet<Value *, 8> SafePointers;
|
|
|
|
// Check and mark all blocks for predication, including those that ordinarily
|
|
// do not need predication such as the header block.
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
if (!blockCanBePredicated(BB, SafePointers)) {
|
|
ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
|
|
<< "control flow cannot be substituted for a select");
|
|
LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as required.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
|
|
return true;
|
|
}
|
|
|
|
} // namespace llvm
|