llvm-mirror/include/llvm/CodeGen/SelectionDAGNodes.h
Dan Gohman f60a8be1d0 Move ArgFlagsTy, OutputArg, and InputArg out of SelectionDAGNodes.h and
into a new header, TargetCallingConv.h.

llvm-svn: 107782
2010-07-07 15:28:42 +00:00

1773 lines
60 KiB
C++

//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG. These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
#include "llvm/Constants.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/System/DataTypes.h"
#include "llvm/Support/DebugLoc.h"
#include <cassert>
namespace llvm {
class SelectionDAG;
class GlobalValue;
class MachineBasicBlock;
class MachineConstantPoolValue;
class SDNode;
class Value;
class MCSymbol;
template <typename T> struct DenseMapInfo;
template <typename T> struct simplify_type;
template <typename T> struct ilist_traits;
void checkForCycles(const SDNode *N);
/// SDVTList - This represents a list of ValueType's that has been intern'd by
/// a SelectionDAG. Instances of this simple value class are returned by
/// SelectionDAG::getVTList(...).
///
struct SDVTList {
const EVT *VTs;
unsigned int NumVTs;
};
namespace ISD {
/// Node predicates
/// isBuildVectorAllOnes - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are ~0 or undef.
bool isBuildVectorAllOnes(const SDNode *N);
/// isBuildVectorAllZeros - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are 0 or undef.
bool isBuildVectorAllZeros(const SDNode *N);
/// isScalarToVector - Return true if the specified node is a
/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
/// element is not an undef.
bool isScalarToVector(const SDNode *N);
} // end llvm:ISD namespace
//===----------------------------------------------------------------------===//
/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation. Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node. This pair
/// of information is represented with the SDValue value type.
///
class SDValue {
SDNode *Node; // The node defining the value we are using.
unsigned ResNo; // Which return value of the node we are using.
public:
SDValue() : Node(0), ResNo(0) {}
SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
/// get the index which selects a specific result in the SDNode
unsigned getResNo() const { return ResNo; }
/// get the SDNode which holds the desired result
SDNode *getNode() const { return Node; }
/// set the SDNode
void setNode(SDNode *N) { Node = N; }
inline SDNode *operator->() const { return Node; }
bool operator==(const SDValue &O) const {
return Node == O.Node && ResNo == O.ResNo;
}
bool operator!=(const SDValue &O) const {
return !operator==(O);
}
bool operator<(const SDValue &O) const {
return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
}
SDValue getValue(unsigned R) const {
return SDValue(Node, R);
}
// isOperandOf - Return true if this node is an operand of N.
bool isOperandOf(SDNode *N) const;
/// getValueType - Return the ValueType of the referenced return value.
///
inline EVT getValueType() const;
/// getValueSizeInBits - Returns the size of the value in bits.
///
unsigned getValueSizeInBits() const {
return getValueType().getSizeInBits();
}
// Forwarding methods - These forward to the corresponding methods in SDNode.
inline unsigned getOpcode() const;
inline unsigned getNumOperands() const;
inline const SDValue &getOperand(unsigned i) const;
inline uint64_t getConstantOperandVal(unsigned i) const;
inline bool isTargetMemoryOpcode() const;
inline bool isTargetOpcode() const;
inline bool isMachineOpcode() const;
inline unsigned getMachineOpcode() const;
inline const DebugLoc getDebugLoc() const;
/// reachesChainWithoutSideEffects - Return true if this operand (which must
/// be a chain) reaches the specified operand without crossing any
/// side-effecting instructions. In practice, this looks through token
/// factors and non-volatile loads. In order to remain efficient, this only
/// looks a couple of nodes in, it does not do an exhaustive search.
bool reachesChainWithoutSideEffects(SDValue Dest,
unsigned Depth = 2) const;
/// use_empty - Return true if there are no nodes using value ResNo
/// of Node.
///
inline bool use_empty() const;
/// hasOneUse - Return true if there is exactly one node using value
/// ResNo of Node.
///
inline bool hasOneUse() const;
};
template<> struct DenseMapInfo<SDValue> {
static inline SDValue getEmptyKey() {
return SDValue((SDNode*)-1, -1U);
}
static inline SDValue getTombstoneKey() {
return SDValue((SDNode*)-1, 0);
}
static unsigned getHashValue(const SDValue &Val) {
return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
(unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
}
static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
return LHS == RHS;
}
};
template <> struct isPodLike<SDValue> { static const bool value = true; };
/// simplify_type specializations - Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDValue> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDValue &Val) {
return static_cast<SimpleType>(Val.getNode());
}
};
template<> struct simplify_type<const SDValue> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDValue &Val) {
return static_cast<SimpleType>(Val.getNode());
}
};
/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
/// which records the SDNode being used and the result number, a
/// pointer to the SDNode using the value, and Next and Prev pointers,
/// which link together all the uses of an SDNode.
///
class SDUse {
/// Val - The value being used.
SDValue Val;
/// User - The user of this value.
SDNode *User;
/// Prev, Next - Pointers to the uses list of the SDNode referred by
/// this operand.
SDUse **Prev, *Next;
SDUse(const SDUse &U); // Do not implement
void operator=(const SDUse &U); // Do not implement
public:
SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
/// Normally SDUse will just implicitly convert to an SDValue that it holds.
operator const SDValue&() const { return Val; }
/// If implicit conversion to SDValue doesn't work, the get() method returns
/// the SDValue.
const SDValue &get() const { return Val; }
/// getUser - This returns the SDNode that contains this Use.
SDNode *getUser() { return User; }
/// getNext - Get the next SDUse in the use list.
SDUse *getNext() const { return Next; }
/// getNode - Convenience function for get().getNode().
SDNode *getNode() const { return Val.getNode(); }
/// getResNo - Convenience function for get().getResNo().
unsigned getResNo() const { return Val.getResNo(); }
/// getValueType - Convenience function for get().getValueType().
EVT getValueType() const { return Val.getValueType(); }
/// operator== - Convenience function for get().operator==
bool operator==(const SDValue &V) const {
return Val == V;
}
/// operator!= - Convenience function for get().operator!=
bool operator!=(const SDValue &V) const {
return Val != V;
}
/// operator< - Convenience function for get().operator<
bool operator<(const SDValue &V) const {
return Val < V;
}
private:
friend class SelectionDAG;
friend class SDNode;
void setUser(SDNode *p) { User = p; }
/// set - Remove this use from its existing use list, assign it the
/// given value, and add it to the new value's node's use list.
inline void set(const SDValue &V);
/// setInitial - like set, but only supports initializing a newly-allocated
/// SDUse with a non-null value.
inline void setInitial(const SDValue &V);
/// setNode - like set, but only sets the Node portion of the value,
/// leaving the ResNo portion unmodified.
inline void setNode(SDNode *N);
void addToList(SDUse **List) {
Next = *List;
if (Next) Next->Prev = &Next;
Prev = List;
*List = this;
}
void removeFromList() {
*Prev = Next;
if (Next) Next->Prev = Prev;
}
};
/// simplify_type specializations - Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDUse> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDUse &Val) {
return static_cast<SimpleType>(Val.getNode());
}
};
template<> struct simplify_type<const SDUse> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDUse &Val) {
return static_cast<SimpleType>(Val.getNode());
}
};
/// SDNode - Represents one node in the SelectionDAG.
///
class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
private:
/// NodeType - The operation that this node performs.
///
int16_t NodeType;
/// OperandsNeedDelete - This is true if OperandList was new[]'d. If true,
/// then they will be delete[]'d when the node is destroyed.
uint16_t OperandsNeedDelete : 1;
/// HasDebugValue - This tracks whether this node has one or more dbg_value
/// nodes corresponding to it.
uint16_t HasDebugValue : 1;
protected:
/// SubclassData - This member is defined by this class, but is not used for
/// anything. Subclasses can use it to hold whatever state they find useful.
/// This field is initialized to zero by the ctor.
uint16_t SubclassData : 14;
private:
/// NodeId - Unique id per SDNode in the DAG.
int NodeId;
/// OperandList - The values that are used by this operation.
///
SDUse *OperandList;
/// ValueList - The types of the values this node defines. SDNode's may
/// define multiple values simultaneously.
const EVT *ValueList;
/// UseList - List of uses for this SDNode.
SDUse *UseList;
/// NumOperands/NumValues - The number of entries in the Operand/Value list.
unsigned short NumOperands, NumValues;
/// debugLoc - source line information.
DebugLoc debugLoc;
/// getValueTypeList - Return a pointer to the specified value type.
static const EVT *getValueTypeList(EVT VT);
friend class SelectionDAG;
friend struct ilist_traits<SDNode>;
public:
//===--------------------------------------------------------------------===//
// Accessors
//
/// getOpcode - Return the SelectionDAG opcode value for this node. For
/// pre-isel nodes (those for which isMachineOpcode returns false), these
/// are the opcode values in the ISD and <target>ISD namespaces. For
/// post-isel opcodes, see getMachineOpcode.
unsigned getOpcode() const { return (unsigned short)NodeType; }
/// isTargetOpcode - Test if this node has a target-specific opcode (in the
/// \<target\>ISD namespace).
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
/// isTargetMemoryOpcode - Test if this node has a target-specific
/// memory-referencing opcode (in the \<target\>ISD namespace and
/// greater than FIRST_TARGET_MEMORY_OPCODE).
bool isTargetMemoryOpcode() const {
return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
}
/// isMachineOpcode - Test if this node has a post-isel opcode, directly
/// corresponding to a MachineInstr opcode.
bool isMachineOpcode() const { return NodeType < 0; }
/// getMachineOpcode - This may only be called if isMachineOpcode returns
/// true. It returns the MachineInstr opcode value that the node's opcode
/// corresponds to.
unsigned getMachineOpcode() const {
assert(isMachineOpcode() && "Not a MachineInstr opcode!");
return ~NodeType;
}
/// getHasDebugValue - get this bit.
bool getHasDebugValue() const { return HasDebugValue; }
/// setHasDebugValue - set this bit.
void setHasDebugValue(bool b) { HasDebugValue = b; }
/// use_empty - Return true if there are no uses of this node.
///
bool use_empty() const { return UseList == NULL; }
/// hasOneUse - Return true if there is exactly one use of this node.
///
bool hasOneUse() const {
return !use_empty() && llvm::next(use_begin()) == use_end();
}
/// use_size - Return the number of uses of this node. This method takes
/// time proportional to the number of uses.
///
size_t use_size() const { return std::distance(use_begin(), use_end()); }
/// getNodeId - Return the unique node id.
///
int getNodeId() const { return NodeId; }
/// setNodeId - Set unique node id.
void setNodeId(int Id) { NodeId = Id; }
/// getDebugLoc - Return the source location info.
const DebugLoc getDebugLoc() const { return debugLoc; }
/// setDebugLoc - Set source location info. Try to avoid this, putting
/// it in the constructor is preferable.
void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
/// use_iterator - This class provides iterator support for SDUse
/// operands that use a specific SDNode.
class use_iterator
: public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
SDUse *Op;
explicit use_iterator(SDUse *op) : Op(op) {
}
friend class SDNode;
public:
typedef std::iterator<std::forward_iterator_tag,
SDUse, ptrdiff_t>::reference reference;
typedef std::iterator<std::forward_iterator_tag,
SDUse, ptrdiff_t>::pointer pointer;
use_iterator(const use_iterator &I) : Op(I.Op) {}
use_iterator() : Op(0) {}
bool operator==(const use_iterator &x) const {
return Op == x.Op;
}
bool operator!=(const use_iterator &x) const {
return !operator==(x);
}
/// atEnd - return true if this iterator is at the end of uses list.
bool atEnd() const { return Op == 0; }
// Iterator traversal: forward iteration only.
use_iterator &operator++() { // Preincrement
assert(Op && "Cannot increment end iterator!");
Op = Op->getNext();
return *this;
}
use_iterator operator++(int) { // Postincrement
use_iterator tmp = *this; ++*this; return tmp;
}
/// Retrieve a pointer to the current user node.
SDNode *operator*() const {
assert(Op && "Cannot dereference end iterator!");
return Op->getUser();
}
SDNode *operator->() const { return operator*(); }
SDUse &getUse() const { return *Op; }
/// getOperandNo - Retrieve the operand # of this use in its user.
///
unsigned getOperandNo() const {
assert(Op && "Cannot dereference end iterator!");
return (unsigned)(Op - Op->getUser()->OperandList);
}
};
/// use_begin/use_end - Provide iteration support to walk over all uses
/// of an SDNode.
use_iterator use_begin() const {
return use_iterator(UseList);
}
static use_iterator use_end() { return use_iterator(0); }
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
/// hasAnyUseOfValue - Return true if there are any use of the indicated
/// value. This method ignores uses of other values defined by this operation.
bool hasAnyUseOfValue(unsigned Value) const;
/// isOnlyUserOf - Return true if this node is the only use of N.
///
bool isOnlyUserOf(SDNode *N) const;
/// isOperandOf - Return true if this node is an operand of N.
///
bool isOperandOf(SDNode *N) const;
/// isPredecessorOf - Return true if this node is a predecessor of N. This
/// node is either an operand of N or it can be reached by recursively
/// traversing up the operands.
/// NOTE: this is an expensive method. Use it carefully.
bool isPredecessorOf(SDNode *N) const;
/// getNumOperands - Return the number of values used by this operation.
///
unsigned getNumOperands() const { return NumOperands; }
/// getConstantOperandVal - Helper method returns the integer value of a
/// ConstantSDNode operand.
uint64_t getConstantOperandVal(unsigned Num) const;
const SDValue &getOperand(unsigned Num) const {
assert(Num < NumOperands && "Invalid child # of SDNode!");
return OperandList[Num];
}
typedef SDUse* op_iterator;
op_iterator op_begin() const { return OperandList; }
op_iterator op_end() const { return OperandList+NumOperands; }
SDVTList getVTList() const {
SDVTList X = { ValueList, NumValues };
return X;
}
/// getFlaggedNode - If this node has a flag operand, return the node
/// to which the flag operand points. Otherwise return NULL.
SDNode *getFlaggedNode() const {
if (getNumOperands() != 0 &&
getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
return getOperand(getNumOperands()-1).getNode();
return 0;
}
// If this is a pseudo op, like copyfromreg, look to see if there is a
// real target node flagged to it. If so, return the target node.
const SDNode *getFlaggedMachineNode() const {
const SDNode *FoundNode = this;
// Climb up flag edges until a machine-opcode node is found, or the
// end of the chain is reached.
while (!FoundNode->isMachineOpcode()) {
const SDNode *N = FoundNode->getFlaggedNode();
if (!N) break;
FoundNode = N;
}
return FoundNode;
}
/// getFlaggedUser - If this node has a flag value with a user, return
/// the user (there is at most one). Otherwise return NULL.
SDNode *getFlaggedUser() const {
for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
if (UI.getUse().get().getValueType() == MVT::Flag)
return *UI;
return 0;
}
/// getNumValues - Return the number of values defined/returned by this
/// operator.
///
unsigned getNumValues() const { return NumValues; }
/// getValueType - Return the type of a specified result.
///
EVT getValueType(unsigned ResNo) const {
assert(ResNo < NumValues && "Illegal result number!");
return ValueList[ResNo];
}
/// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
///
unsigned getValueSizeInBits(unsigned ResNo) const {
return getValueType(ResNo).getSizeInBits();
}
typedef const EVT* value_iterator;
value_iterator value_begin() const { return ValueList; }
value_iterator value_end() const { return ValueList+NumValues; }
/// getOperationName - Return the opcode of this operation for printing.
///
std::string getOperationName(const SelectionDAG *G = 0) const;
static const char* getIndexedModeName(ISD::MemIndexedMode AM);
void print_types(raw_ostream &OS, const SelectionDAG *G) const;
void print_details(raw_ostream &OS, const SelectionDAG *G) const;
void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
/// printrFull - Print a SelectionDAG node and all children down to
/// the leaves. The given SelectionDAG allows target-specific nodes
/// to be printed in human-readable form. Unlike printr, this will
/// print the whole DAG, including children that appear multiple
/// times.
///
void printrFull(raw_ostream &O, const SelectionDAG *G = 0) const;
/// printrWithDepth - Print a SelectionDAG node and children up to
/// depth "depth." The given SelectionDAG allows target-specific
/// nodes to be printed in human-readable form. Unlike printr, this
/// will print children that appear multiple times wherever they are
/// used.
///
void printrWithDepth(raw_ostream &O, const SelectionDAG *G = 0,
unsigned depth = 100) const;
/// dump - Dump this node, for debugging.
void dump() const;
/// dumpr - Dump (recursively) this node and its use-def subgraph.
void dumpr() const;
/// dump - Dump this node, for debugging.
/// The given SelectionDAG allows target-specific nodes to be printed
/// in human-readable form.
void dump(const SelectionDAG *G) const;
/// dumpr - Dump (recursively) this node and its use-def subgraph.
/// The given SelectionDAG allows target-specific nodes to be printed
/// in human-readable form.
void dumpr(const SelectionDAG *G) const;
/// dumprFull - printrFull to dbgs(). The given SelectionDAG allows
/// target-specific nodes to be printed in human-readable form.
/// Unlike dumpr, this will print the whole DAG, including children
/// that appear multiple times.
///
void dumprFull(const SelectionDAG *G = 0) const;
/// dumprWithDepth - printrWithDepth to dbgs(). The given
/// SelectionDAG allows target-specific nodes to be printed in
/// human-readable form. Unlike dumpr, this will print children
/// that appear multiple times wherever they are used.
///
void dumprWithDepth(const SelectionDAG *G = 0, unsigned depth = 100) const;
static bool classof(const SDNode *) { return true; }
/// Profile - Gather unique data for the node.
///
void Profile(FoldingSetNodeID &ID) const;
/// addUse - This method should only be used by the SDUse class.
///
void addUse(SDUse &U) { U.addToList(&UseList); }
protected:
static SDVTList getSDVTList(EVT VT) {
SDVTList Ret = { getValueTypeList(VT), 1 };
return Ret;
}
SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
unsigned NumOps)
: NodeType(Opc), OperandsNeedDelete(true), HasDebugValue(false),
SubclassData(0), NodeId(-1),
OperandList(NumOps ? new SDUse[NumOps] : 0),
ValueList(VTs.VTs), UseList(NULL),
NumOperands(NumOps), NumValues(VTs.NumVTs),
debugLoc(dl) {
for (unsigned i = 0; i != NumOps; ++i) {
OperandList[i].setUser(this);
OperandList[i].setInitial(Ops[i]);
}
checkForCycles(this);
}
/// This constructor adds no operands itself; operands can be
/// set later with InitOperands.
SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
: NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false),
SubclassData(0), NodeId(-1), OperandList(0), ValueList(VTs.VTs),
UseList(NULL), NumOperands(0), NumValues(VTs.NumVTs),
debugLoc(dl) {}
/// InitOperands - Initialize the operands list of this with 1 operand.
void InitOperands(SDUse *Ops, const SDValue &Op0) {
Ops[0].setUser(this);
Ops[0].setInitial(Op0);
NumOperands = 1;
OperandList = Ops;
checkForCycles(this);
}
/// InitOperands - Initialize the operands list of this with 2 operands.
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
Ops[0].setUser(this);
Ops[0].setInitial(Op0);
Ops[1].setUser(this);
Ops[1].setInitial(Op1);
NumOperands = 2;
OperandList = Ops;
checkForCycles(this);
}
/// InitOperands - Initialize the operands list of this with 3 operands.
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
const SDValue &Op2) {
Ops[0].setUser(this);
Ops[0].setInitial(Op0);
Ops[1].setUser(this);
Ops[1].setInitial(Op1);
Ops[2].setUser(this);
Ops[2].setInitial(Op2);
NumOperands = 3;
OperandList = Ops;
checkForCycles(this);
}
/// InitOperands - Initialize the operands list of this with 4 operands.
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
const SDValue &Op2, const SDValue &Op3) {
Ops[0].setUser(this);
Ops[0].setInitial(Op0);
Ops[1].setUser(this);
Ops[1].setInitial(Op1);
Ops[2].setUser(this);
Ops[2].setInitial(Op2);
Ops[3].setUser(this);
Ops[3].setInitial(Op3);
NumOperands = 4;
OperandList = Ops;
checkForCycles(this);
}
/// InitOperands - Initialize the operands list of this with N operands.
void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
for (unsigned i = 0; i != N; ++i) {
Ops[i].setUser(this);
Ops[i].setInitial(Vals[i]);
}
NumOperands = N;
OperandList = Ops;
checkForCycles(this);
}
/// DropOperands - Release the operands and set this node to have
/// zero operands.
void DropOperands();
};
// Define inline functions from the SDValue class.
inline unsigned SDValue::getOpcode() const {
return Node->getOpcode();
}
inline EVT SDValue::getValueType() const {
return Node->getValueType(ResNo);
}
inline unsigned SDValue::getNumOperands() const {
return Node->getNumOperands();
}
inline const SDValue &SDValue::getOperand(unsigned i) const {
return Node->getOperand(i);
}
inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
return Node->getConstantOperandVal(i);
}
inline bool SDValue::isTargetOpcode() const {
return Node->isTargetOpcode();
}
inline bool SDValue::isTargetMemoryOpcode() const {
return Node->isTargetMemoryOpcode();
}
inline bool SDValue::isMachineOpcode() const {
return Node->isMachineOpcode();
}
inline unsigned SDValue::getMachineOpcode() const {
return Node->getMachineOpcode();
}
inline bool SDValue::use_empty() const {
return !Node->hasAnyUseOfValue(ResNo);
}
inline bool SDValue::hasOneUse() const {
return Node->hasNUsesOfValue(1, ResNo);
}
inline const DebugLoc SDValue::getDebugLoc() const {
return Node->getDebugLoc();
}
// Define inline functions from the SDUse class.
inline void SDUse::set(const SDValue &V) {
if (Val.getNode()) removeFromList();
Val = V;
if (V.getNode()) V.getNode()->addUse(*this);
}
inline void SDUse::setInitial(const SDValue &V) {
Val = V;
V.getNode()->addUse(*this);
}
inline void SDUse::setNode(SDNode *N) {
if (Val.getNode()) removeFromList();
Val.setNode(N);
if (N) N->addUse(*this);
}
/// UnarySDNode - This class is used for single-operand SDNodes. This is solely
/// to allow co-allocation of node operands with the node itself.
class UnarySDNode : public SDNode {
SDUse Op;
public:
UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
: SDNode(Opc, dl, VTs) {
InitOperands(&Op, X);
}
};
/// BinarySDNode - This class is used for two-operand SDNodes. This is solely
/// to allow co-allocation of node operands with the node itself.
class BinarySDNode : public SDNode {
SDUse Ops[2];
public:
BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
: SDNode(Opc, dl, VTs) {
InitOperands(Ops, X, Y);
}
};
/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
/// to allow co-allocation of node operands with the node itself.
class TernarySDNode : public SDNode {
SDUse Ops[3];
public:
TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
SDValue Z)
: SDNode(Opc, dl, VTs) {
InitOperands(Ops, X, Y, Z);
}
};
/// HandleSDNode - This class is used to form a handle around another node that
/// is persistant and is updated across invocations of replaceAllUsesWith on its
/// operand. This node should be directly created by end-users and not added to
/// the AllNodes list.
class HandleSDNode : public SDNode {
SDUse Op;
public:
// FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
// fixed.
#if __GNUC__==4 && __GNUC_MINOR__==2 && defined(__APPLE__) && !defined(__llvm__)
explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
#else
explicit HandleSDNode(SDValue X)
#endif
: SDNode(ISD::HANDLENODE, DebugLoc(), getSDVTList(MVT::Other)) {
InitOperands(&Op, X);
}
~HandleSDNode();
const SDValue &getValue() const { return Op; }
};
/// Abstact virtual class for operations for memory operations
class MemSDNode : public SDNode {
private:
// MemoryVT - VT of in-memory value.
EVT MemoryVT;
protected:
/// MMO - Memory reference information.
MachineMemOperand *MMO;
public:
MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
MachineMemOperand *MMO);
MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO);
bool readMem() const { return MMO->isLoad(); }
bool writeMem() const { return MMO->isStore(); }
/// Returns alignment and volatility of the memory access
unsigned getOriginalAlignment() const {
return MMO->getBaseAlignment();
}
unsigned getAlignment() const {
return MMO->getAlignment();
}
/// getRawSubclassData - Return the SubclassData value, which contains an
/// encoding of the volatile flag, as well as bits used by subclasses. This
/// function should only be used to compute a FoldingSetNodeID value.
unsigned getRawSubclassData() const {
return SubclassData;
}
// We access subclass data here so that we can check consistency
// with MachineMemOperand information.
bool isVolatile() const { return (SubclassData >> 5) & 1; }
bool isNonTemporal() const { return (SubclassData >> 6) & 1; }
/// Returns the SrcValue and offset that describes the location of the access
const Value *getSrcValue() const { return MMO->getValue(); }
int64_t getSrcValueOffset() const { return MMO->getOffset(); }
/// getMemoryVT - Return the type of the in-memory value.
EVT getMemoryVT() const { return MemoryVT; }
/// getMemOperand - Return a MachineMemOperand object describing the memory
/// reference performed by operation.
MachineMemOperand *getMemOperand() const { return MMO; }
/// refineAlignment - Update this MemSDNode's MachineMemOperand information
/// to reflect the alignment of NewMMO, if it has a greater alignment.
/// This must only be used when the new alignment applies to all users of
/// this MachineMemOperand.
void refineAlignment(const MachineMemOperand *NewMMO) {
MMO->refineAlignment(NewMMO);
}
const SDValue &getChain() const { return getOperand(0); }
const SDValue &getBasePtr() const {
return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
}
// Methods to support isa and dyn_cast
static bool classof(const MemSDNode *) { return true; }
static bool classof(const SDNode *N) {
// For some targets, we lower some target intrinsics to a MemIntrinsicNode
// with either an intrinsic or a target opcode.
return N->getOpcode() == ISD::LOAD ||
N->getOpcode() == ISD::STORE ||
N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
N->getOpcode() == ISD::ATOMIC_SWAP ||
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
N->isTargetMemoryOpcode();
}
};
/// AtomicSDNode - A SDNode reprenting atomic operations.
///
class AtomicSDNode : public MemSDNode {
SDUse Ops[4];
public:
// Opc: opcode for atomic
// VTL: value type list
// Chain: memory chain for operaand
// Ptr: address to update as a SDValue
// Cmp: compare value
// Swp: swap value
// SrcVal: address to update as a Value (used for MemOperand)
// Align: alignment of memory
AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
SDValue Chain, SDValue Ptr,
SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
: MemSDNode(Opc, dl, VTL, MemVT, MMO) {
assert(readMem() && "Atomic MachineMemOperand is not a load!");
assert(writeMem() && "Atomic MachineMemOperand is not a store!");
InitOperands(Ops, Chain, Ptr, Cmp, Swp);
}
AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
SDValue Chain, SDValue Ptr,
SDValue Val, MachineMemOperand *MMO)
: MemSDNode(Opc, dl, VTL, MemVT, MMO) {
assert(readMem() && "Atomic MachineMemOperand is not a load!");
assert(writeMem() && "Atomic MachineMemOperand is not a store!");
InitOperands(Ops, Chain, Ptr, Val);
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getVal() const { return getOperand(2); }
bool isCompareAndSwap() const {
unsigned Op = getOpcode();
return Op == ISD::ATOMIC_CMP_SWAP;
}
// Methods to support isa and dyn_cast
static bool classof(const AtomicSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
N->getOpcode() == ISD::ATOMIC_SWAP ||
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
}
};
/// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
/// memory and need an associated MachineMemOperand. Its opcode may be
/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a
/// value not less than FIRST_TARGET_MEMORY_OPCODE.
class MemIntrinsicSDNode : public MemSDNode {
public:
MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
const SDValue *Ops, unsigned NumOps,
EVT MemoryVT, MachineMemOperand *MMO)
: MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) {
}
// Methods to support isa and dyn_cast
static bool classof(const MemIntrinsicSDNode *) { return true; }
static bool classof(const SDNode *N) {
// We lower some target intrinsics to their target opcode
// early a node with a target opcode can be of this class
return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
N->getOpcode() == ISD::INTRINSIC_VOID ||
N->isTargetMemoryOpcode();
}
};
/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
/// support for the llvm IR shufflevector instruction. It combines elements
/// from two input vectors into a new input vector, with the selection and
/// ordering of elements determined by an array of integers, referred to as
/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
/// An index of -1 is treated as undef, such that the code generator may put
/// any value in the corresponding element of the result.
class ShuffleVectorSDNode : public SDNode {
SDUse Ops[2];
// The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
// is freed when the SelectionDAG object is destroyed.
const int *Mask;
protected:
friend class SelectionDAG;
ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2,
const int *M)
: SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
InitOperands(Ops, N1, N2);
}
public:
void getMask(SmallVectorImpl<int> &M) const {
EVT VT = getValueType(0);
M.clear();
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
M.push_back(Mask[i]);
}
int getMaskElt(unsigned Idx) const {
assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
return Mask[Idx];
}
bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
int getSplatIndex() const {
assert(isSplat() && "Cannot get splat index for non-splat!");
EVT VT = getValueType(0);
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
if (Mask[i] != -1)
return Mask[i];
}
return -1;
}
static bool isSplatMask(const int *Mask, EVT VT);
static bool classof(const ShuffleVectorSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VECTOR_SHUFFLE;
}
};
class ConstantSDNode : public SDNode {
const ConstantInt *Value;
friend class SelectionDAG;
ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
DebugLoc(), getSDVTList(VT)), Value(val) {
}
public:
const ConstantInt *getConstantIntValue() const { return Value; }
const APInt &getAPIntValue() const { return Value->getValue(); }
uint64_t getZExtValue() const { return Value->getZExtValue(); }
int64_t getSExtValue() const { return Value->getSExtValue(); }
bool isOne() const { return Value->isOne(); }
bool isNullValue() const { return Value->isNullValue(); }
bool isAllOnesValue() const { return Value->isAllOnesValue(); }
static bool classof(const ConstantSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Constant ||
N->getOpcode() == ISD::TargetConstant;
}
};
class ConstantFPSDNode : public SDNode {
const ConstantFP *Value;
friend class SelectionDAG;
ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
: SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
DebugLoc(), getSDVTList(VT)), Value(val) {
}
public:
const APFloat& getValueAPF() const { return Value->getValueAPF(); }
const ConstantFP *getConstantFPValue() const { return Value; }
/// isZero - Return true if the value is positive or negative zero.
bool isZero() const { return Value->isZero(); }
/// isNaN - Return true if the value is a NaN.
bool isNaN() const { return Value->isNaN(); }
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
/// We leave the version with the double argument here because it's just so
/// convenient to write "2.0" and the like. Without this function we'd
/// have to duplicate its logic everywhere it's called.
bool isExactlyValue(double V) const {
bool ignored;
// convert is not supported on this type
if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
return false;
APFloat Tmp(V);
Tmp.convert(Value->getValueAPF().getSemantics(),
APFloat::rmNearestTiesToEven, &ignored);
return isExactlyValue(Tmp);
}
bool isExactlyValue(const APFloat& V) const;
static bool isValueValidForType(EVT VT, const APFloat& Val);
static bool classof(const ConstantFPSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantFP ||
N->getOpcode() == ISD::TargetConstantFP;
}
};
class GlobalAddressSDNode : public SDNode {
const GlobalValue *TheGlobal;
int64_t Offset;
unsigned char TargetFlags;
friend class SelectionDAG;
GlobalAddressSDNode(unsigned Opc, DebugLoc DL, const GlobalValue *GA, EVT VT,
int64_t o, unsigned char TargetFlags);
public:
const GlobalValue *getGlobal() const { return TheGlobal; }
int64_t getOffset() const { return Offset; }
unsigned char getTargetFlags() const { return TargetFlags; }
// Return the address space this GlobalAddress belongs to.
unsigned getAddressSpace() const;
static bool classof(const GlobalAddressSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::GlobalAddress ||
N->getOpcode() == ISD::TargetGlobalAddress ||
N->getOpcode() == ISD::GlobalTLSAddress ||
N->getOpcode() == ISD::TargetGlobalTLSAddress;
}
};
class FrameIndexSDNode : public SDNode {
int FI;
friend class SelectionDAG;
FrameIndexSDNode(int fi, EVT VT, bool isTarg)
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
DebugLoc(), getSDVTList(VT)), FI(fi) {
}
public:
int getIndex() const { return FI; }
static bool classof(const FrameIndexSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::FrameIndex ||
N->getOpcode() == ISD::TargetFrameIndex;
}
};
class JumpTableSDNode : public SDNode {
int JTI;
unsigned char TargetFlags;
friend class SelectionDAG;
JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
: SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
}
public:
int getIndex() const { return JTI; }
unsigned char getTargetFlags() const { return TargetFlags; }
static bool classof(const JumpTableSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::JumpTable ||
N->getOpcode() == ISD::TargetJumpTable;
}
};
class ConstantPoolSDNode : public SDNode {
union {
const Constant *ConstVal;
MachineConstantPoolValue *MachineCPVal;
} Val;
int Offset; // It's a MachineConstantPoolValue if top bit is set.
unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
unsigned char TargetFlags;
friend class SelectionDAG;
ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
unsigned Align, unsigned char TF)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
DebugLoc(),
getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
assert((int)Offset >= 0 && "Offset is too large");
Val.ConstVal = c;
}
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
EVT VT, int o, unsigned Align, unsigned char TF)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
DebugLoc(),
getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
assert((int)Offset >= 0 && "Offset is too large");
Val.MachineCPVal = v;
Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
}
public:
bool isMachineConstantPoolEntry() const {
return (int)Offset < 0;
}
const Constant *getConstVal() const {
assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
return Val.ConstVal;
}
MachineConstantPoolValue *getMachineCPVal() const {
assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
return Val.MachineCPVal;
}
int getOffset() const {
return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
}
// Return the alignment of this constant pool object, which is either 0 (for
// default alignment) or the desired value.
unsigned getAlignment() const { return Alignment; }
unsigned char getTargetFlags() const { return TargetFlags; }
const Type *getType() const;
static bool classof(const ConstantPoolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantPool ||
N->getOpcode() == ISD::TargetConstantPool;
}
};
class BasicBlockSDNode : public SDNode {
MachineBasicBlock *MBB;
friend class SelectionDAG;
/// Debug info is meaningful and potentially useful here, but we create
/// blocks out of order when they're jumped to, which makes it a bit
/// harder. Let's see if we need it first.
explicit BasicBlockSDNode(MachineBasicBlock *mbb)
: SDNode(ISD::BasicBlock, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb) {
}
public:
MachineBasicBlock *getBasicBlock() const { return MBB; }
static bool classof(const BasicBlockSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BasicBlock;
}
};
/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
/// BUILD_VECTORs.
class BuildVectorSDNode : public SDNode {
// These are constructed as SDNodes and then cast to BuildVectorSDNodes.
explicit BuildVectorSDNode(); // Do not implement
public:
/// isConstantSplat - Check if this is a constant splat, and if so, find the
/// smallest element size that splats the vector. If MinSplatBits is
/// nonzero, the element size must be at least that large. Note that the
/// splat element may be the entire vector (i.e., a one element vector).
/// Returns the splat element value in SplatValue. Any undefined bits in
/// that value are zero, and the corresponding bits in the SplatUndef mask
/// are set. The SplatBitSize value is set to the splat element size in
/// bits. HasAnyUndefs is set to true if any bits in the vector are
/// undefined. isBigEndian describes the endianness of the target.
bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
unsigned &SplatBitSize, bool &HasAnyUndefs,
unsigned MinSplatBits = 0, bool isBigEndian = false);
static inline bool classof(const BuildVectorSDNode *) { return true; }
static inline bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BUILD_VECTOR;
}
};
/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
/// used when the SelectionDAG needs to make a simple reference to something
/// in the LLVM IR representation.
///
class SrcValueSDNode : public SDNode {
const Value *V;
friend class SelectionDAG;
/// Create a SrcValue for a general value.
explicit SrcValueSDNode(const Value *v)
: SDNode(ISD::SRCVALUE, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
public:
/// getValue - return the contained Value.
const Value *getValue() const { return V; }
static bool classof(const SrcValueSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::SRCVALUE;
}
};
class MDNodeSDNode : public SDNode {
const MDNode *MD;
friend class SelectionDAG;
explicit MDNodeSDNode(const MDNode *md)
: SDNode(ISD::MDNODE_SDNODE, DebugLoc(), getSDVTList(MVT::Other)), MD(md) {}
public:
const MDNode *getMD() const { return MD; }
static bool classof(const MDNodeSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MDNODE_SDNODE;
}
};
class RegisterSDNode : public SDNode {
unsigned Reg;
friend class SelectionDAG;
RegisterSDNode(unsigned reg, EVT VT)
: SDNode(ISD::Register, DebugLoc(), getSDVTList(VT)), Reg(reg) {
}
public:
unsigned getReg() const { return Reg; }
static bool classof(const RegisterSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Register;
}
};
class BlockAddressSDNode : public SDNode {
const BlockAddress *BA;
unsigned char TargetFlags;
friend class SelectionDAG;
BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
unsigned char Flags)
: SDNode(NodeTy, DebugLoc(), getSDVTList(VT)),
BA(ba), TargetFlags(Flags) {
}
public:
const BlockAddress *getBlockAddress() const { return BA; }
unsigned char getTargetFlags() const { return TargetFlags; }
static bool classof(const BlockAddressSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BlockAddress ||
N->getOpcode() == ISD::TargetBlockAddress;
}
};
class EHLabelSDNode : public SDNode {
SDUse Chain;
MCSymbol *Label;
friend class SelectionDAG;
EHLabelSDNode(DebugLoc dl, SDValue ch, MCSymbol *L)
: SDNode(ISD::EH_LABEL, dl, getSDVTList(MVT::Other)), Label(L) {
InitOperands(&Chain, ch);
}
public:
MCSymbol *getLabel() const { return Label; }
static bool classof(const EHLabelSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::EH_LABEL;
}
};
class ExternalSymbolSDNode : public SDNode {
const char *Symbol;
unsigned char TargetFlags;
friend class SelectionDAG;
ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
: SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
}
public:
const char *getSymbol() const { return Symbol; }
unsigned char getTargetFlags() const { return TargetFlags; }
static bool classof(const ExternalSymbolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ExternalSymbol ||
N->getOpcode() == ISD::TargetExternalSymbol;
}
};
class CondCodeSDNode : public SDNode {
ISD::CondCode Condition;
friend class SelectionDAG;
explicit CondCodeSDNode(ISD::CondCode Cond)
: SDNode(ISD::CONDCODE, DebugLoc(), getSDVTList(MVT::Other)),
Condition(Cond) {
}
public:
ISD::CondCode get() const { return Condition; }
static bool classof(const CondCodeSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::CONDCODE;
}
};
/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
/// future and most targets don't support it.
class CvtRndSatSDNode : public SDNode {
ISD::CvtCode CvtCode;
friend class SelectionDAG;
explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
unsigned NumOps, ISD::CvtCode Code)
: SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
CvtCode(Code) {
assert(NumOps == 5 && "wrong number of operations");
}
public:
ISD::CvtCode getCvtCode() const { return CvtCode; }
static bool classof(const CvtRndSatSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::CONVERT_RNDSAT;
}
};
/// VTSDNode - This class is used to represent EVT's, which are used
/// to parameterize some operations.
class VTSDNode : public SDNode {
EVT ValueType;
friend class SelectionDAG;
explicit VTSDNode(EVT VT)
: SDNode(ISD::VALUETYPE, DebugLoc(), getSDVTList(MVT::Other)),
ValueType(VT) {
}
public:
EVT getVT() const { return ValueType; }
static bool classof(const VTSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VALUETYPE;
}
};
/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
///
class LSBaseSDNode : public MemSDNode {
//! Operand array for load and store
/*!
\note Moving this array to the base class captures more
common functionality shared between LoadSDNode and
StoreSDNode
*/
SDUse Ops[4];
public:
LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
EVT MemVT, MachineMemOperand *MMO)
: MemSDNode(NodeTy, dl, VTs, MemVT, MMO) {
SubclassData |= AM << 2;
assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
InitOperands(Ops, Operands, numOperands);
assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
"Only indexed loads and stores have a non-undef offset operand");
}
const SDValue &getOffset() const {
return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
}
/// getAddressingMode - Return the addressing mode for this load or store:
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
ISD::MemIndexedMode getAddressingMode() const {
return ISD::MemIndexedMode((SubclassData >> 2) & 7);
}
/// isIndexed - Return true if this is a pre/post inc/dec load/store.
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
/// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
static bool classof(const LSBaseSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::LOAD ||
N->getOpcode() == ISD::STORE;
}
};
/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
///
class LoadSDNode : public LSBaseSDNode {
friend class SelectionDAG;
LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
MachineMemOperand *MMO)
: LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
VTs, AM, MemVT, MMO) {
SubclassData |= (unsigned short)ETy;
assert(getExtensionType() == ETy && "LoadExtType encoding error!");
assert(readMem() && "Load MachineMemOperand is not a load!");
assert(!writeMem() && "Load MachineMemOperand is a store!");
}
public:
/// getExtensionType - Return whether this is a plain node,
/// or one of the varieties of value-extending loads.
ISD::LoadExtType getExtensionType() const {
return ISD::LoadExtType(SubclassData & 3);
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getOffset() const { return getOperand(2); }
static bool classof(const LoadSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::LOAD;
}
};
/// StoreSDNode - This class is used to represent ISD::STORE nodes.
///
class StoreSDNode : public LSBaseSDNode {
friend class SelectionDAG;
StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
MachineMemOperand *MMO)
: LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
VTs, AM, MemVT, MMO) {
SubclassData |= (unsigned short)isTrunc;
assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
assert(!readMem() && "Store MachineMemOperand is a load!");
assert(writeMem() && "Store MachineMemOperand is not a store!");
}
public:
/// isTruncatingStore - Return true if the op does a truncation before store.
/// For integers this is the same as doing a TRUNCATE and storing the result.
/// For floats, it is the same as doing an FP_ROUND and storing the result.
bool isTruncatingStore() const { return SubclassData & 1; }
const SDValue &getValue() const { return getOperand(1); }
const SDValue &getBasePtr() const { return getOperand(2); }
const SDValue &getOffset() const { return getOperand(3); }
static bool classof(const StoreSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::STORE;
}
};
/// MachineSDNode - An SDNode that represents everything that will be needed
/// to construct a MachineInstr. These nodes are created during the
/// instruction selection proper phase.
///
class MachineSDNode : public SDNode {
public:
typedef MachineMemOperand **mmo_iterator;
private:
friend class SelectionDAG;
MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs)
: SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {}
/// LocalOperands - Operands for this instruction, if they fit here. If
/// they don't, this field is unused.
SDUse LocalOperands[4];
/// MemRefs - Memory reference descriptions for this instruction.
mmo_iterator MemRefs;
mmo_iterator MemRefsEnd;
public:
mmo_iterator memoperands_begin() const { return MemRefs; }
mmo_iterator memoperands_end() const { return MemRefsEnd; }
bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
/// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
/// list. This does not transfer ownership.
void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
MemRefs = NewMemRefs;
MemRefsEnd = NewMemRefsEnd;
}
static bool classof(const MachineSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->isMachineOpcode();
}
};
class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
SDNode, ptrdiff_t> {
SDNode *Node;
unsigned Operand;
SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
bool operator==(const SDNodeIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
const SDNodeIterator &operator=(const SDNodeIterator &I) {
assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
Operand = I.Operand;
return *this;
}
pointer operator*() const {
return Node->getOperand(Operand).getNode();
}
pointer operator->() const { return operator*(); }
SDNodeIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SDNodeIterator operator++(int) { // Postincrement
SDNodeIterator tmp = *this; ++*this; return tmp;
}
size_t operator-(SDNodeIterator Other) const {
assert(Node == Other.Node &&
"Cannot compare iterators of two different nodes!");
return Operand - Other.Operand;
}
static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
static SDNodeIterator end (SDNode *N) {
return SDNodeIterator(N, N->getNumOperands());
}
unsigned getOperand() const { return Operand; }
const SDNode *getNode() const { return Node; }
};
template <> struct GraphTraits<SDNode*> {
typedef SDNode NodeType;
typedef SDNodeIterator ChildIteratorType;
static inline NodeType *getEntryNode(SDNode *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return SDNodeIterator::begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return SDNodeIterator::end(N);
}
};
/// LargestSDNode - The largest SDNode class.
///
typedef LoadSDNode LargestSDNode;
/// MostAlignedSDNode - The SDNode class with the greatest alignment
/// requirement.
///
typedef GlobalAddressSDNode MostAlignedSDNode;
namespace ISD {
/// isNormalLoad - Returns true if the specified node is a non-extending
/// and unindexed load.
inline bool isNormalLoad(const SDNode *N) {
const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
Ld->getAddressingMode() == ISD::UNINDEXED;
}
/// isNON_EXTLoad - Returns true if the specified node is a non-extending
/// load.
inline bool isNON_EXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
}
/// isEXTLoad - Returns true if the specified node is a EXTLOAD.
///
inline bool isEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
}
/// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
///
inline bool isSEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
}
/// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
///
inline bool isZEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
}
/// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
///
inline bool isUNINDEXEDLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
}
/// isNormalStore - Returns true if the specified node is a non-truncating
/// and unindexed store.
inline bool isNormalStore(const SDNode *N) {
const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
return St && !St->isTruncatingStore() &&
St->getAddressingMode() == ISD::UNINDEXED;
}
/// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
/// store.
inline bool isNON_TRUNCStore(const SDNode *N) {
return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
}
/// isTRUNCStore - Returns true if the specified node is a truncating
/// store.
inline bool isTRUNCStore(const SDNode *N) {
return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
}
/// isUNINDEXEDStore - Returns true if the specified node is an
/// unindexed store.
inline bool isUNINDEXEDStore(const SDNode *N) {
return isa<StoreSDNode>(N) &&
cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
}
}
} // end llvm namespace
#endif