llvm-mirror/include/llvm/Support/BinaryStreamWriter.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

183 lines
7.3 KiB
C++

//===- BinaryStreamWriter.h - Writes objects to a BinaryStream ---*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_BINARYSTREAMWRITER_H
#define LLVM_SUPPORT_BINARYSTREAMWRITER_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/BinaryStreamArray.h"
#include "llvm/Support/BinaryStreamError.h"
#include "llvm/Support/BinaryStreamRef.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include <cstdint>
#include <type_traits>
#include <utility>
namespace llvm {
/// Provides write only access to a subclass of `WritableBinaryStream`.
/// Provides bounds checking and helpers for writing certain common data types
/// such as null-terminated strings, integers in various flavors of endianness,
/// etc. Can be subclassed to provide reading and writing of custom datatypes,
/// although no methods are overridable.
class BinaryStreamWriter {
public:
BinaryStreamWriter() = default;
explicit BinaryStreamWriter(WritableBinaryStreamRef Ref);
explicit BinaryStreamWriter(WritableBinaryStream &Stream);
explicit BinaryStreamWriter(MutableArrayRef<uint8_t> Data,
llvm::support::endianness Endian);
BinaryStreamWriter(const BinaryStreamWriter &Other)
: Stream(Other.Stream), Offset(Other.Offset) {}
BinaryStreamWriter &operator=(const BinaryStreamWriter &Other) {
Stream = Other.Stream;
Offset = Other.Offset;
return *this;
}
virtual ~BinaryStreamWriter() {}
/// Write the bytes specified in \p Buffer to the underlying stream.
/// On success, updates the offset so that subsequent writes will occur
/// at the next unwritten position.
///
/// \returns a success error code if the data was successfully written,
/// otherwise returns an appropriate error code.
Error writeBytes(ArrayRef<uint8_t> Buffer);
/// Write the integer \p Value to the underlying stream in the
/// specified endianness. On success, updates the offset so that
/// subsequent writes occur at the next unwritten position.
///
/// \returns a success error code if the data was successfully written,
/// otherwise returns an appropriate error code.
template <typename T> Error writeInteger(T Value) {
static_assert(std::is_integral<T>::value,
"Cannot call writeInteger with non-integral value!");
uint8_t Buffer[sizeof(T)];
llvm::support::endian::write<T, llvm::support::unaligned>(
Buffer, Value, Stream.getEndian());
return writeBytes(Buffer);
}
/// Similar to writeInteger
template <typename T> Error writeEnum(T Num) {
static_assert(std::is_enum<T>::value,
"Cannot call writeEnum with non-Enum type");
using U = typename std::underlying_type<T>::type;
return writeInteger<U>(static_cast<U>(Num));
}
/// Write the string \p Str to the underlying stream followed by a null
/// terminator. On success, updates the offset so that subsequent writes
/// occur at the next unwritten position. \p Str need not be null terminated
/// on input.
///
/// \returns a success error code if the data was successfully written,
/// otherwise returns an appropriate error code.
Error writeCString(StringRef Str);
/// Write the string \p Str to the underlying stream without a null
/// terminator. On success, updates the offset so that subsequent writes
/// occur at the next unwritten position.
///
/// \returns a success error code if the data was successfully written,
/// otherwise returns an appropriate error code.
Error writeFixedString(StringRef Str);
/// Efficiently reads all data from \p Ref, and writes it to this stream.
/// This operation will not invoke any copies of the source data, regardless
/// of the source stream's implementation.
///
/// \returns a success error code if the data was successfully written,
/// otherwise returns an appropriate error code.
Error writeStreamRef(BinaryStreamRef Ref);
/// Efficiently reads \p Size bytes from \p Ref, and writes it to this stream.
/// This operation will not invoke any copies of the source data, regardless
/// of the source stream's implementation.
///
/// \returns a success error code if the data was successfully written,
/// otherwise returns an appropriate error code.
Error writeStreamRef(BinaryStreamRef Ref, uint32_t Size);
/// Writes the object \p Obj to the underlying stream, as if by using memcpy.
/// It is up to the caller to ensure that type of \p Obj can be safely copied
/// in this fashion, as no checks are made to ensure that this is safe.
///
/// \returns a success error code if the data was successfully written,
/// otherwise returns an appropriate error code.
template <typename T> Error writeObject(const T &Obj) {
static_assert(!std::is_pointer<T>::value,
"writeObject should not be used with pointers, to write "
"the pointed-to value dereference the pointer before calling "
"writeObject");
return writeBytes(
ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(&Obj), sizeof(T)));
}
/// Writes an array of objects of type T to the underlying stream, as if by
/// using memcpy. It is up to the caller to ensure that type of \p Obj can
/// be safely copied in this fashion, as no checks are made to ensure that
/// this is safe.
///
/// \returns a success error code if the data was successfully written,
/// otherwise returns an appropriate error code.
template <typename T> Error writeArray(ArrayRef<T> Array) {
if (Array.empty())
return Error::success();
if (Array.size() > UINT32_MAX / sizeof(T))
return make_error<BinaryStreamError>(
stream_error_code::invalid_array_size);
return writeBytes(
ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Array.data()),
Array.size() * sizeof(T)));
}
/// Writes all data from the array \p Array to the underlying stream.
///
/// \returns a success error code if the data was successfully written,
/// otherwise returns an appropriate error code.
template <typename T, typename U>
Error writeArray(VarStreamArray<T, U> Array) {
return writeStreamRef(Array.getUnderlyingStream());
}
/// Writes all elements from the array \p Array to the underlying stream.
///
/// \returns a success error code if the data was successfully written,
/// otherwise returns an appropriate error code.
template <typename T> Error writeArray(FixedStreamArray<T> Array) {
return writeStreamRef(Array.getUnderlyingStream());
}
/// Splits the Writer into two Writers at a given offset.
std::pair<BinaryStreamWriter, BinaryStreamWriter> split(uint32_t Off) const;
void setOffset(uint32_t Off) { Offset = Off; }
uint32_t getOffset() const { return Offset; }
uint32_t getLength() const { return Stream.getLength(); }
uint32_t bytesRemaining() const { return getLength() - getOffset(); }
Error padToAlignment(uint32_t Align);
protected:
WritableBinaryStreamRef Stream;
uint32_t Offset = 0;
};
} // end namespace llvm
#endif // LLVM_SUPPORT_BINARYSTREAMWRITER_H