mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-04-15 06:01:20 +00:00

to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
1662 lines
63 KiB
C++
1662 lines
63 KiB
C++
//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// Generic dominator tree construction - This file provides routines to
|
|
/// construct immediate dominator information for a flow-graph based on the
|
|
/// Semi-NCA algorithm described in this dissertation:
|
|
///
|
|
/// Linear-Time Algorithms for Dominators and Related Problems
|
|
/// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
|
|
/// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
|
|
///
|
|
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
|
|
/// out that the theoretically slower O(n*log(n)) implementation is actually
|
|
/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
|
|
///
|
|
/// The file uses the Depth Based Search algorithm to perform incremental
|
|
/// updates (insertion and deletions). The implemented algorithm is based on
|
|
/// this publication:
|
|
///
|
|
/// An Experimental Study of Dynamic Dominators
|
|
/// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
|
|
/// https://arxiv.org/pdf/1604.02711.pdf
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
|
|
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
|
|
|
|
#include <queue>
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GenericDomTree.h"
|
|
|
|
#define DEBUG_TYPE "dom-tree-builder"
|
|
|
|
namespace llvm {
|
|
namespace DomTreeBuilder {
|
|
|
|
template <typename DomTreeT>
|
|
struct SemiNCAInfo {
|
|
using NodePtr = typename DomTreeT::NodePtr;
|
|
using NodeT = typename DomTreeT::NodeType;
|
|
using TreeNodePtr = DomTreeNodeBase<NodeT> *;
|
|
using RootsT = decltype(DomTreeT::Roots);
|
|
static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
|
|
|
|
// Information record used by Semi-NCA during tree construction.
|
|
struct InfoRec {
|
|
unsigned DFSNum = 0;
|
|
unsigned Parent = 0;
|
|
unsigned Semi = 0;
|
|
NodePtr Label = nullptr;
|
|
NodePtr IDom = nullptr;
|
|
SmallVector<NodePtr, 2> ReverseChildren;
|
|
};
|
|
|
|
// Number to node mapping is 1-based. Initialize the mapping to start with
|
|
// a dummy element.
|
|
std::vector<NodePtr> NumToNode = {nullptr};
|
|
DenseMap<NodePtr, InfoRec> NodeToInfo;
|
|
|
|
using UpdateT = typename DomTreeT::UpdateType;
|
|
using UpdateKind = typename DomTreeT::UpdateKind;
|
|
struct BatchUpdateInfo {
|
|
SmallVector<UpdateT, 4> Updates;
|
|
using NodePtrAndKind = PointerIntPair<NodePtr, 1, UpdateKind>;
|
|
|
|
// In order to be able to walk a CFG that is out of sync with the CFG
|
|
// DominatorTree last knew about, use the list of updates to reconstruct
|
|
// previous CFG versions of the current CFG. For each node, we store a set
|
|
// of its virtually added/deleted future successors and predecessors.
|
|
// Note that these children are from the future relative to what the
|
|
// DominatorTree knows about -- using them to gets us some snapshot of the
|
|
// CFG from the past (relative to the state of the CFG).
|
|
DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FutureSuccessors;
|
|
DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FuturePredecessors;
|
|
// Remembers if the whole tree was recalculated at some point during the
|
|
// current batch update.
|
|
bool IsRecalculated = false;
|
|
};
|
|
|
|
BatchUpdateInfo *BatchUpdates;
|
|
using BatchUpdatePtr = BatchUpdateInfo *;
|
|
|
|
// If BUI is a nullptr, then there's no batch update in progress.
|
|
SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
|
|
|
|
void clear() {
|
|
NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
|
|
NodeToInfo.clear();
|
|
// Don't reset the pointer to BatchUpdateInfo here -- if there's an update
|
|
// in progress, we need this information to continue it.
|
|
}
|
|
|
|
template <bool Inverse>
|
|
struct ChildrenGetter {
|
|
using ResultTy = SmallVector<NodePtr, 8>;
|
|
|
|
static ResultTy Get(NodePtr N, std::integral_constant<bool, false>) {
|
|
auto RChildren = reverse(children<NodePtr>(N));
|
|
return ResultTy(RChildren.begin(), RChildren.end());
|
|
}
|
|
|
|
static ResultTy Get(NodePtr N, std::integral_constant<bool, true>) {
|
|
auto IChildren = inverse_children<NodePtr>(N);
|
|
return ResultTy(IChildren.begin(), IChildren.end());
|
|
}
|
|
|
|
using Tag = std::integral_constant<bool, Inverse>;
|
|
|
|
// The function below is the core part of the batch updater. It allows the
|
|
// Depth Based Search algorithm to perform incremental updates in lockstep
|
|
// with updates to the CFG. We emulated lockstep CFG updates by getting its
|
|
// next snapshots by reverse-applying future updates.
|
|
static ResultTy Get(NodePtr N, BatchUpdatePtr BUI) {
|
|
ResultTy Res = Get(N, Tag());
|
|
// If there's no batch update in progress, simply return node's children.
|
|
if (!BUI) return Res;
|
|
|
|
// CFG children are actually its *most current* children, and we have to
|
|
// reverse-apply the future updates to get the node's children at the
|
|
// point in time the update was performed.
|
|
auto &FutureChildren = (Inverse != IsPostDom) ? BUI->FuturePredecessors
|
|
: BUI->FutureSuccessors;
|
|
auto FCIt = FutureChildren.find(N);
|
|
if (FCIt == FutureChildren.end()) return Res;
|
|
|
|
for (auto ChildAndKind : FCIt->second) {
|
|
const NodePtr Child = ChildAndKind.getPointer();
|
|
const UpdateKind UK = ChildAndKind.getInt();
|
|
|
|
// Reverse-apply the future update.
|
|
if (UK == UpdateKind::Insert) {
|
|
// If there's an insertion in the future, it means that the edge must
|
|
// exist in the current CFG, but was not present in it before.
|
|
assert(llvm::find(Res, Child) != Res.end()
|
|
&& "Expected child not found in the CFG");
|
|
Res.erase(std::remove(Res.begin(), Res.end(), Child), Res.end());
|
|
LLVM_DEBUG(dbgs() << "\tHiding edge " << BlockNamePrinter(N) << " -> "
|
|
<< BlockNamePrinter(Child) << "\n");
|
|
} else {
|
|
// If there's an deletion in the future, it means that the edge cannot
|
|
// exist in the current CFG, but existed in it before.
|
|
assert(llvm::find(Res, Child) == Res.end() &&
|
|
"Unexpected child found in the CFG");
|
|
LLVM_DEBUG(dbgs() << "\tShowing virtual edge " << BlockNamePrinter(N)
|
|
<< " -> " << BlockNamePrinter(Child) << "\n");
|
|
Res.push_back(Child);
|
|
}
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
};
|
|
|
|
NodePtr getIDom(NodePtr BB) const {
|
|
auto InfoIt = NodeToInfo.find(BB);
|
|
if (InfoIt == NodeToInfo.end()) return nullptr;
|
|
|
|
return InfoIt->second.IDom;
|
|
}
|
|
|
|
TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
|
|
if (TreeNodePtr Node = DT.getNode(BB)) return Node;
|
|
|
|
// Haven't calculated this node yet? Get or calculate the node for the
|
|
// immediate dominator.
|
|
NodePtr IDom = getIDom(BB);
|
|
|
|
assert(IDom || DT.DomTreeNodes[nullptr]);
|
|
TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
|
|
|
|
// Add a new tree node for this NodeT, and link it as a child of
|
|
// IDomNode
|
|
return (DT.DomTreeNodes[BB] = IDomNode->addChild(
|
|
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
|
|
.get();
|
|
}
|
|
|
|
static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
|
|
|
|
struct BlockNamePrinter {
|
|
NodePtr N;
|
|
|
|
BlockNamePrinter(NodePtr Block) : N(Block) {}
|
|
BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
|
|
|
|
friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
|
|
if (!BP.N)
|
|
O << "nullptr";
|
|
else
|
|
BP.N->printAsOperand(O, false);
|
|
|
|
return O;
|
|
}
|
|
};
|
|
|
|
// Custom DFS implementation which can skip nodes based on a provided
|
|
// predicate. It also collects ReverseChildren so that we don't have to spend
|
|
// time getting predecessors in SemiNCA.
|
|
//
|
|
// If IsReverse is set to true, the DFS walk will be performed backwards
|
|
// relative to IsPostDom -- using reverse edges for dominators and forward
|
|
// edges for postdominators.
|
|
template <bool IsReverse = false, typename DescendCondition>
|
|
unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
|
|
unsigned AttachToNum) {
|
|
assert(V);
|
|
SmallVector<NodePtr, 64> WorkList = {V};
|
|
if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
|
|
|
|
while (!WorkList.empty()) {
|
|
const NodePtr BB = WorkList.pop_back_val();
|
|
auto &BBInfo = NodeToInfo[BB];
|
|
|
|
// Visited nodes always have positive DFS numbers.
|
|
if (BBInfo.DFSNum != 0) continue;
|
|
BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
|
|
BBInfo.Label = BB;
|
|
NumToNode.push_back(BB);
|
|
|
|
constexpr bool Direction = IsReverse != IsPostDom; // XOR.
|
|
for (const NodePtr Succ :
|
|
ChildrenGetter<Direction>::Get(BB, BatchUpdates)) {
|
|
const auto SIT = NodeToInfo.find(Succ);
|
|
// Don't visit nodes more than once but remember to collect
|
|
// ReverseChildren.
|
|
if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
|
|
if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
|
|
continue;
|
|
}
|
|
|
|
if (!Condition(BB, Succ)) continue;
|
|
|
|
// It's fine to add Succ to the map, because we know that it will be
|
|
// visited later.
|
|
auto &SuccInfo = NodeToInfo[Succ];
|
|
WorkList.push_back(Succ);
|
|
SuccInfo.Parent = LastNum;
|
|
SuccInfo.ReverseChildren.push_back(BB);
|
|
}
|
|
}
|
|
|
|
return LastNum;
|
|
}
|
|
|
|
NodePtr eval(NodePtr VIn, unsigned LastLinked) {
|
|
auto &VInInfo = NodeToInfo[VIn];
|
|
if (VInInfo.DFSNum < LastLinked)
|
|
return VIn;
|
|
|
|
SmallVector<NodePtr, 32> Work;
|
|
SmallPtrSet<NodePtr, 32> Visited;
|
|
|
|
if (VInInfo.Parent >= LastLinked)
|
|
Work.push_back(VIn);
|
|
|
|
while (!Work.empty()) {
|
|
NodePtr V = Work.back();
|
|
auto &VInfo = NodeToInfo[V];
|
|
NodePtr VAncestor = NumToNode[VInfo.Parent];
|
|
|
|
// Process Ancestor first
|
|
if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
|
|
Work.push_back(VAncestor);
|
|
continue;
|
|
}
|
|
Work.pop_back();
|
|
|
|
// Update VInfo based on Ancestor info
|
|
if (VInfo.Parent < LastLinked)
|
|
continue;
|
|
|
|
auto &VAInfo = NodeToInfo[VAncestor];
|
|
NodePtr VAncestorLabel = VAInfo.Label;
|
|
NodePtr VLabel = VInfo.Label;
|
|
if (NodeToInfo[VAncestorLabel].Semi < NodeToInfo[VLabel].Semi)
|
|
VInfo.Label = VAncestorLabel;
|
|
VInfo.Parent = VAInfo.Parent;
|
|
}
|
|
|
|
return VInInfo.Label;
|
|
}
|
|
|
|
// This function requires DFS to be run before calling it.
|
|
void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
|
|
const unsigned NextDFSNum(NumToNode.size());
|
|
// Initialize IDoms to spanning tree parents.
|
|
for (unsigned i = 1; i < NextDFSNum; ++i) {
|
|
const NodePtr V = NumToNode[i];
|
|
auto &VInfo = NodeToInfo[V];
|
|
VInfo.IDom = NumToNode[VInfo.Parent];
|
|
}
|
|
|
|
// Step #1: Calculate the semidominators of all vertices.
|
|
for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
|
|
NodePtr W = NumToNode[i];
|
|
auto &WInfo = NodeToInfo[W];
|
|
|
|
// Initialize the semi dominator to point to the parent node.
|
|
WInfo.Semi = WInfo.Parent;
|
|
for (const auto &N : WInfo.ReverseChildren) {
|
|
if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors.
|
|
continue;
|
|
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
// Skip predecessors whose level is above the subtree we are processing.
|
|
if (TN && TN->getLevel() < MinLevel)
|
|
continue;
|
|
|
|
unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi;
|
|
if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
|
|
}
|
|
}
|
|
|
|
// Step #2: Explicitly define the immediate dominator of each vertex.
|
|
// IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
|
|
// Note that the parents were stored in IDoms and later got invalidated
|
|
// during path compression in Eval.
|
|
for (unsigned i = 2; i < NextDFSNum; ++i) {
|
|
const NodePtr W = NumToNode[i];
|
|
auto &WInfo = NodeToInfo[W];
|
|
const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
|
|
NodePtr WIDomCandidate = WInfo.IDom;
|
|
while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
|
|
WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
|
|
|
|
WInfo.IDom = WIDomCandidate;
|
|
}
|
|
}
|
|
|
|
// PostDominatorTree always has a virtual root that represents a virtual CFG
|
|
// node that serves as a single exit from the function. All the other exits
|
|
// (CFG nodes with terminators and nodes in infinite loops are logically
|
|
// connected to this virtual CFG exit node).
|
|
// This functions maps a nullptr CFG node to the virtual root tree node.
|
|
void addVirtualRoot() {
|
|
assert(IsPostDom && "Only postdominators have a virtual root");
|
|
assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
|
|
|
|
auto &BBInfo = NodeToInfo[nullptr];
|
|
BBInfo.DFSNum = BBInfo.Semi = 1;
|
|
BBInfo.Label = nullptr;
|
|
|
|
NumToNode.push_back(nullptr); // NumToNode[1] = nullptr;
|
|
}
|
|
|
|
// For postdominators, nodes with no forward successors are trivial roots that
|
|
// are always selected as tree roots. Roots with forward successors correspond
|
|
// to CFG nodes within infinite loops.
|
|
static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
|
|
assert(N && "N must be a valid node");
|
|
return !ChildrenGetter<false>::Get(N, BUI).empty();
|
|
}
|
|
|
|
static NodePtr GetEntryNode(const DomTreeT &DT) {
|
|
assert(DT.Parent && "Parent not set");
|
|
return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
|
|
}
|
|
|
|
// Finds all roots without relaying on the set of roots already stored in the
|
|
// tree.
|
|
// We define roots to be some non-redundant set of the CFG nodes
|
|
static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
|
|
assert(DT.Parent && "Parent pointer is not set");
|
|
RootsT Roots;
|
|
|
|
// For dominators, function entry CFG node is always a tree root node.
|
|
if (!IsPostDom) {
|
|
Roots.push_back(GetEntryNode(DT));
|
|
return Roots;
|
|
}
|
|
|
|
SemiNCAInfo SNCA(BUI);
|
|
|
|
// PostDominatorTree always has a virtual root.
|
|
SNCA.addVirtualRoot();
|
|
unsigned Num = 1;
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
|
|
|
|
// Step #1: Find all the trivial roots that are going to will definitely
|
|
// remain tree roots.
|
|
unsigned Total = 0;
|
|
// It may happen that there are some new nodes in the CFG that are result of
|
|
// the ongoing batch update, but we cannot really pretend that they don't
|
|
// exist -- we won't see any outgoing or incoming edges to them, so it's
|
|
// fine to discover them here, as they would end up appearing in the CFG at
|
|
// some point anyway.
|
|
for (const NodePtr N : nodes(DT.Parent)) {
|
|
++Total;
|
|
// If it has no *successors*, it is definitely a root.
|
|
if (!HasForwardSuccessors(N, BUI)) {
|
|
Roots.push_back(N);
|
|
// Run DFS not to walk this part of CFG later.
|
|
Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
|
|
LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
|
|
<< "\n");
|
|
LLVM_DEBUG(dbgs() << "Last visited node: "
|
|
<< BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
|
|
|
|
// Step #2: Find all non-trivial root candidates. Those are CFG nodes that
|
|
// are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
|
|
// nodes in infinite loops).
|
|
bool HasNonTrivialRoots = false;
|
|
// Accounting for the virtual exit, see if we had any reverse-unreachable
|
|
// nodes.
|
|
if (Total + 1 != Num) {
|
|
HasNonTrivialRoots = true;
|
|
// Make another DFS pass over all other nodes to find the
|
|
// reverse-unreachable blocks, and find the furthest paths we'll be able
|
|
// to make.
|
|
// Note that this looks N^2, but it's really 2N worst case, if every node
|
|
// is unreachable. This is because we are still going to only visit each
|
|
// unreachable node once, we may just visit it in two directions,
|
|
// depending on how lucky we get.
|
|
SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
|
|
for (const NodePtr I : nodes(DT.Parent)) {
|
|
if (SNCA.NodeToInfo.count(I) == 0) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
|
|
// Find the furthest away we can get by following successors, then
|
|
// follow them in reverse. This gives us some reasonable answer about
|
|
// the post-dom tree inside any infinite loop. In particular, it
|
|
// guarantees we get to the farthest away point along *some*
|
|
// path. This also matches the GCC's behavior.
|
|
// If we really wanted a totally complete picture of dominance inside
|
|
// this infinite loop, we could do it with SCC-like algorithms to find
|
|
// the lowest and highest points in the infinite loop. In theory, it
|
|
// would be nice to give the canonical backedge for the loop, but it's
|
|
// expensive and does not always lead to a minimal set of roots.
|
|
LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
|
|
|
|
const unsigned NewNum = SNCA.runDFS<true>(I, Num, AlwaysDescend, Num);
|
|
const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
|
|
LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
|
|
<< "(non-trivial root): "
|
|
<< BlockNamePrinter(FurthestAway) << "\n");
|
|
ConnectToExitBlock.insert(FurthestAway);
|
|
Roots.push_back(FurthestAway);
|
|
LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
|
|
<< NewNum << "\n\t\t\tRemoving DFS info\n");
|
|
for (unsigned i = NewNum; i > Num; --i) {
|
|
const NodePtr N = SNCA.NumToNode[i];
|
|
LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
|
|
<< BlockNamePrinter(N) << "\n");
|
|
SNCA.NodeToInfo.erase(N);
|
|
SNCA.NumToNode.pop_back();
|
|
}
|
|
const unsigned PrevNum = Num;
|
|
LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
|
|
Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
|
|
for (unsigned i = PrevNum + 1; i <= Num; ++i)
|
|
LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
|
|
<< BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
|
|
LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
|
|
LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
|
|
<< i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
|
|
|
|
assert((Total + 1 == Num) && "Everything should have been visited");
|
|
|
|
// Step #3: If we found some non-trivial roots, make them non-redundant.
|
|
if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
|
|
|
|
LLVM_DEBUG(dbgs() << "Found roots: ");
|
|
LLVM_DEBUG(for (auto *Root
|
|
: Roots) dbgs()
|
|
<< BlockNamePrinter(Root) << " ");
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
return Roots;
|
|
}
|
|
|
|
// This function only makes sense for postdominators.
|
|
// We define roots to be some set of CFG nodes where (reverse) DFS walks have
|
|
// to start in order to visit all the CFG nodes (including the
|
|
// reverse-unreachable ones).
|
|
// When the search for non-trivial roots is done it may happen that some of
|
|
// the non-trivial roots are reverse-reachable from other non-trivial roots,
|
|
// which makes them redundant. This function removes them from the set of
|
|
// input roots.
|
|
static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
|
|
RootsT &Roots) {
|
|
assert(IsPostDom && "This function is for postdominators only");
|
|
LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
|
|
|
|
SemiNCAInfo SNCA(BUI);
|
|
|
|
for (unsigned i = 0; i < Roots.size(); ++i) {
|
|
auto &Root = Roots[i];
|
|
// Trivial roots are always non-redundant.
|
|
if (!HasForwardSuccessors(Root, BUI)) continue;
|
|
LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
|
|
<< " remains a root\n");
|
|
SNCA.clear();
|
|
// Do a forward walk looking for the other roots.
|
|
const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
|
|
// Skip the start node and begin from the second one (note that DFS uses
|
|
// 1-based indexing).
|
|
for (unsigned x = 2; x <= Num; ++x) {
|
|
const NodePtr N = SNCA.NumToNode[x];
|
|
// If we wound another root in a (forward) DFS walk, remove the current
|
|
// root from the set of roots, as it is reverse-reachable from the other
|
|
// one.
|
|
if (llvm::find(Roots, N) != Roots.end()) {
|
|
LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
|
|
<< BlockNamePrinter(N) << "\n\tRemoving root "
|
|
<< BlockNamePrinter(Root) << "\n");
|
|
std::swap(Root, Roots.back());
|
|
Roots.pop_back();
|
|
|
|
// Root at the back takes the current root's place.
|
|
// Start the next loop iteration with the same index.
|
|
--i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DescendCondition>
|
|
void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
|
|
if (!IsPostDom) {
|
|
assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
|
|
runDFS(DT.Roots[0], 0, DC, 0);
|
|
return;
|
|
}
|
|
|
|
addVirtualRoot();
|
|
unsigned Num = 1;
|
|
for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
|
|
}
|
|
|
|
static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
|
|
auto *Parent = DT.Parent;
|
|
DT.reset();
|
|
DT.Parent = Parent;
|
|
SemiNCAInfo SNCA(nullptr); // Since we are rebuilding the whole tree,
|
|
// there's no point doing it incrementally.
|
|
|
|
// Step #0: Number blocks in depth-first order and initialize variables used
|
|
// in later stages of the algorithm.
|
|
DT.Roots = FindRoots(DT, nullptr);
|
|
SNCA.doFullDFSWalk(DT, AlwaysDescend);
|
|
|
|
SNCA.runSemiNCA(DT);
|
|
if (BUI) {
|
|
BUI->IsRecalculated = true;
|
|
LLVM_DEBUG(
|
|
dbgs() << "DomTree recalculated, skipping future batch updates\n");
|
|
}
|
|
|
|
if (DT.Roots.empty()) return;
|
|
|
|
// Add a node for the root. If the tree is a PostDominatorTree it will be
|
|
// the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
|
|
// all real exits (including multiple exit blocks, infinite loops).
|
|
NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
|
|
|
|
DT.RootNode = (DT.DomTreeNodes[Root] =
|
|
llvm::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
|
|
.get();
|
|
SNCA.attachNewSubtree(DT, DT.RootNode);
|
|
}
|
|
|
|
void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
|
|
// Attach the first unreachable block to AttachTo.
|
|
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
|
|
// Loop over all of the discovered blocks in the function...
|
|
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
|
|
NodePtr W = NumToNode[i];
|
|
LLVM_DEBUG(dbgs() << "\tdiscovered a new reachable node "
|
|
<< BlockNamePrinter(W) << "\n");
|
|
|
|
// Don't replace this with 'count', the insertion side effect is important
|
|
if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
|
|
|
|
NodePtr ImmDom = getIDom(W);
|
|
|
|
// Get or calculate the node for the immediate dominator.
|
|
TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode.
|
|
DT.DomTreeNodes[W] = IDomNode->addChild(
|
|
llvm::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
|
|
}
|
|
}
|
|
|
|
void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
|
|
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
|
|
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
|
|
const NodePtr N = NumToNode[i];
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
assert(TN);
|
|
const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
|
|
TN->setIDom(NewIDom);
|
|
}
|
|
}
|
|
|
|
// Helper struct used during edge insertions.
|
|
struct InsertionInfo {
|
|
using BucketElementTy = std::pair<unsigned, TreeNodePtr>;
|
|
struct DecreasingLevel {
|
|
bool operator()(const BucketElementTy &First,
|
|
const BucketElementTy &Second) const {
|
|
return First.first > Second.first;
|
|
}
|
|
};
|
|
|
|
std::priority_queue<BucketElementTy, SmallVector<BucketElementTy, 8>,
|
|
DecreasingLevel>
|
|
Bucket; // Queue of tree nodes sorted by level in descending order.
|
|
SmallDenseSet<TreeNodePtr, 8> Affected;
|
|
SmallDenseMap<TreeNodePtr, unsigned, 8> Visited;
|
|
SmallVector<TreeNodePtr, 8> AffectedQueue;
|
|
SmallVector<TreeNodePtr, 8> VisitedNotAffectedQueue;
|
|
};
|
|
|
|
static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const NodePtr From, const NodePtr To) {
|
|
assert((From || IsPostDom) &&
|
|
"From has to be a valid CFG node or a virtual root");
|
|
assert(To && "Cannot be a nullptr");
|
|
LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
|
|
<< BlockNamePrinter(To) << "\n");
|
|
TreeNodePtr FromTN = DT.getNode(From);
|
|
|
|
if (!FromTN) {
|
|
// Ignore edges from unreachable nodes for (forward) dominators.
|
|
if (!IsPostDom) return;
|
|
|
|
// The unreachable node becomes a new root -- a tree node for it.
|
|
TreeNodePtr VirtualRoot = DT.getNode(nullptr);
|
|
FromTN =
|
|
(DT.DomTreeNodes[From] = VirtualRoot->addChild(
|
|
llvm::make_unique<DomTreeNodeBase<NodeT>>(From, VirtualRoot)))
|
|
.get();
|
|
DT.Roots.push_back(From);
|
|
}
|
|
|
|
DT.DFSInfoValid = false;
|
|
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
if (!ToTN)
|
|
InsertUnreachable(DT, BUI, FromTN, To);
|
|
else
|
|
InsertReachable(DT, BUI, FromTN, ToTN);
|
|
}
|
|
|
|
// Determines if some existing root becomes reverse-reachable after the
|
|
// insertion. Rebuilds the whole tree if that situation happens.
|
|
static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr From,
|
|
const TreeNodePtr To) {
|
|
assert(IsPostDom && "This function is only for postdominators");
|
|
// Destination node is not attached to the virtual root, so it cannot be a
|
|
// root.
|
|
if (!DT.isVirtualRoot(To->getIDom())) return false;
|
|
|
|
auto RIt = llvm::find(DT.Roots, To->getBlock());
|
|
if (RIt == DT.Roots.end())
|
|
return false; // To is not a root, nothing to update.
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
|
|
<< " is no longer a root\n\t\tRebuilding the tree!!!\n");
|
|
|
|
CalculateFromScratch(DT, BUI);
|
|
return true;
|
|
}
|
|
|
|
// Updates the set of roots after insertion or deletion. This ensures that
|
|
// roots are the same when after a series of updates and when the tree would
|
|
// be built from scratch.
|
|
static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
|
|
assert(IsPostDom && "This function is only for postdominators");
|
|
|
|
// The tree has only trivial roots -- nothing to update.
|
|
if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
|
|
return HasForwardSuccessors(N, BUI);
|
|
}))
|
|
return;
|
|
|
|
// Recalculate the set of roots.
|
|
auto Roots = FindRoots(DT, BUI);
|
|
if (DT.Roots.size() != Roots.size() ||
|
|
!std::is_permutation(DT.Roots.begin(), DT.Roots.end(), Roots.begin())) {
|
|
// The roots chosen in the CFG have changed. This is because the
|
|
// incremental algorithm does not really know or use the set of roots and
|
|
// can make a different (implicit) decision about which node within an
|
|
// infinite loop becomes a root.
|
|
|
|
LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
|
|
<< "The entire tree needs to be rebuilt\n");
|
|
// It may be possible to update the tree without recalculating it, but
|
|
// we do not know yet how to do it, and it happens rarely in practise.
|
|
CalculateFromScratch(DT, BUI);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Handles insertion to a node already in the dominator tree.
|
|
static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr From, const TreeNodePtr To) {
|
|
LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
|
|
<< " -> " << BlockNamePrinter(To->getBlock()) << "\n");
|
|
if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
|
|
// DT.findNCD expects both pointers to be valid. When From is a virtual
|
|
// root, then its CFG block pointer is a nullptr, so we have to 'compute'
|
|
// the NCD manually.
|
|
const NodePtr NCDBlock =
|
|
(From->getBlock() && To->getBlock())
|
|
? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
|
|
: nullptr;
|
|
assert(NCDBlock || DT.isPostDominator());
|
|
const TreeNodePtr NCD = DT.getNode(NCDBlock);
|
|
assert(NCD);
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
|
|
const TreeNodePtr ToIDom = To->getIDom();
|
|
|
|
// Nothing affected -- NCA property holds.
|
|
// (Based on the lemma 2.5 from the second paper.)
|
|
if (NCD == To || NCD == ToIDom) return;
|
|
|
|
// Identify and collect affected nodes.
|
|
InsertionInfo II;
|
|
LLVM_DEBUG(dbgs() << "Marking " << BlockNamePrinter(To)
|
|
<< " as affected\n");
|
|
II.Affected.insert(To);
|
|
const unsigned ToLevel = To->getLevel();
|
|
LLVM_DEBUG(dbgs() << "Putting " << BlockNamePrinter(To)
|
|
<< " into a Bucket\n");
|
|
II.Bucket.push({ToLevel, To});
|
|
|
|
while (!II.Bucket.empty()) {
|
|
const TreeNodePtr CurrentNode = II.Bucket.top().second;
|
|
const unsigned CurrentLevel = CurrentNode->getLevel();
|
|
II.Bucket.pop();
|
|
LLVM_DEBUG(dbgs() << "\tAdding to Visited and AffectedQueue: "
|
|
<< BlockNamePrinter(CurrentNode) << "\n");
|
|
|
|
II.Visited.insert({CurrentNode, CurrentLevel});
|
|
II.AffectedQueue.push_back(CurrentNode);
|
|
|
|
// Discover and collect affected successors of the current node.
|
|
VisitInsertion(DT, BUI, CurrentNode, CurrentLevel, NCD, II);
|
|
}
|
|
|
|
// Finish by updating immediate dominators and levels.
|
|
UpdateInsertion(DT, BUI, NCD, II);
|
|
}
|
|
|
|
// Visits an affected node and collect its affected successors.
|
|
static void VisitInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr TN, const unsigned RootLevel,
|
|
const TreeNodePtr NCD, InsertionInfo &II) {
|
|
const unsigned NCDLevel = NCD->getLevel();
|
|
LLVM_DEBUG(dbgs() << "Visiting " << BlockNamePrinter(TN) << ", RootLevel "
|
|
<< RootLevel << "\n");
|
|
|
|
SmallVector<TreeNodePtr, 8> Stack = {TN};
|
|
assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
|
|
|
|
SmallPtrSet<TreeNodePtr, 8> Processed;
|
|
|
|
do {
|
|
TreeNodePtr Next = Stack.pop_back_val();
|
|
LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(Next) << "\n");
|
|
|
|
for (const NodePtr Succ :
|
|
ChildrenGetter<IsPostDom>::Get(Next->getBlock(), BUI)) {
|
|
const TreeNodePtr SuccTN = DT.getNode(Succ);
|
|
assert(SuccTN && "Unreachable successor found at reachable insertion");
|
|
const unsigned SuccLevel = SuccTN->getLevel();
|
|
|
|
LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
|
|
<< ", level = " << SuccLevel << "\n");
|
|
|
|
// Do not process the same node multiple times.
|
|
if (Processed.count(Next) > 0)
|
|
continue;
|
|
|
|
// Succ dominated by subtree From -- not affected.
|
|
// (Based on the lemma 2.5 from the second paper.)
|
|
if (SuccLevel > RootLevel) {
|
|
LLVM_DEBUG(dbgs() << "\t\tDominated by subtree From\n");
|
|
if (II.Visited.count(SuccTN) != 0) {
|
|
LLVM_DEBUG(dbgs() << "\t\t\talready visited at level "
|
|
<< II.Visited[SuccTN] << "\n\t\t\tcurrent level "
|
|
<< RootLevel << ")\n");
|
|
|
|
// A node can be necessary to visit again if we see it again at
|
|
// a lower level than before.
|
|
if (II.Visited[SuccTN] >= RootLevel)
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
|
|
<< BlockNamePrinter(Succ) << "\n");
|
|
II.Visited.insert({SuccTN, RootLevel});
|
|
II.VisitedNotAffectedQueue.push_back(SuccTN);
|
|
Stack.push_back(SuccTN);
|
|
} else if ((SuccLevel > NCDLevel + 1) &&
|
|
II.Affected.count(SuccTN) == 0) {
|
|
LLVM_DEBUG(dbgs() << "\t\tMarking affected and adding "
|
|
<< BlockNamePrinter(Succ) << " to a Bucket\n");
|
|
II.Affected.insert(SuccTN);
|
|
II.Bucket.push({SuccLevel, SuccTN});
|
|
}
|
|
}
|
|
|
|
Processed.insert(Next);
|
|
} while (!Stack.empty());
|
|
}
|
|
|
|
// Updates immediate dominators and levels after insertion.
|
|
static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr NCD, InsertionInfo &II) {
|
|
LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
|
|
|
|
for (const TreeNodePtr TN : II.AffectedQueue) {
|
|
LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
|
|
<< ") = " << BlockNamePrinter(NCD) << "\n");
|
|
TN->setIDom(NCD);
|
|
}
|
|
|
|
UpdateLevelsAfterInsertion(II);
|
|
if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
|
|
}
|
|
|
|
static void UpdateLevelsAfterInsertion(InsertionInfo &II) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Updating levels for visited but not affected nodes\n");
|
|
|
|
for (const TreeNodePtr TN : II.VisitedNotAffectedQueue) {
|
|
LLVM_DEBUG(dbgs() << "\tlevel(" << BlockNamePrinter(TN) << ") = ("
|
|
<< BlockNamePrinter(TN->getIDom()) << ") "
|
|
<< TN->getIDom()->getLevel() << " + 1\n");
|
|
TN->UpdateLevel();
|
|
}
|
|
}
|
|
|
|
// Handles insertion to previously unreachable nodes.
|
|
static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr From, const NodePtr To) {
|
|
LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
|
|
<< " -> (unreachable) " << BlockNamePrinter(To) << "\n");
|
|
|
|
// Collect discovered edges to already reachable nodes.
|
|
SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
|
|
// Discover and connect nodes that became reachable with the insertion.
|
|
ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
|
|
|
|
LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
|
|
<< " -> (prev unreachable) " << BlockNamePrinter(To)
|
|
<< "\n");
|
|
|
|
// Used the discovered edges and inset discovered connecting (incoming)
|
|
// edges.
|
|
for (const auto &Edge : DiscoveredEdgesToReachable) {
|
|
LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
|
|
<< BlockNamePrinter(Edge.first) << " -> "
|
|
<< BlockNamePrinter(Edge.second) << "\n");
|
|
InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
|
|
}
|
|
}
|
|
|
|
// Connects nodes that become reachable with an insertion.
|
|
static void ComputeUnreachableDominators(
|
|
DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
|
|
const TreeNodePtr Incoming,
|
|
SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
|
|
&DiscoveredConnectingEdges) {
|
|
assert(!DT.getNode(Root) && "Root must not be reachable");
|
|
|
|
// Visit only previously unreachable nodes.
|
|
auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
|
|
NodePtr To) {
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
if (!ToTN) return true;
|
|
|
|
DiscoveredConnectingEdges.push_back({From, ToTN});
|
|
return false;
|
|
};
|
|
|
|
SemiNCAInfo SNCA(BUI);
|
|
SNCA.runDFS(Root, 0, UnreachableDescender, 0);
|
|
SNCA.runSemiNCA(DT);
|
|
SNCA.attachNewSubtree(DT, Incoming);
|
|
|
|
LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
|
|
}
|
|
|
|
static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const NodePtr From, const NodePtr To) {
|
|
assert(From && To && "Cannot disconnect nullptrs");
|
|
LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
|
|
<< BlockNamePrinter(To) << "\n");
|
|
|
|
#ifndef NDEBUG
|
|
// Ensure that the edge was in fact deleted from the CFG before informing
|
|
// the DomTree about it.
|
|
// The check is O(N), so run it only in debug configuration.
|
|
auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
|
|
auto Successors = ChildrenGetter<IsPostDom>::Get(Of, BUI);
|
|
return llvm::find(Successors, SuccCandidate) != Successors.end();
|
|
};
|
|
(void)IsSuccessor;
|
|
assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
|
|
#endif
|
|
|
|
const TreeNodePtr FromTN = DT.getNode(From);
|
|
// Deletion in an unreachable subtree -- nothing to do.
|
|
if (!FromTN) return;
|
|
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
if (!ToTN) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "\tTo (" << BlockNamePrinter(To)
|
|
<< ") already unreachable -- there is no edge to delete\n");
|
|
return;
|
|
}
|
|
|
|
const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
|
|
const TreeNodePtr NCD = DT.getNode(NCDBlock);
|
|
|
|
// If To dominates From -- nothing to do.
|
|
if (ToTN != NCD) {
|
|
DT.DFSInfoValid = false;
|
|
|
|
const TreeNodePtr ToIDom = ToTN->getIDom();
|
|
LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
|
|
<< BlockNamePrinter(ToIDom) << "\n");
|
|
|
|
// To remains reachable after deletion.
|
|
// (Based on the caption under Figure 4. from the second paper.)
|
|
if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
|
|
DeleteReachable(DT, BUI, FromTN, ToTN);
|
|
else
|
|
DeleteUnreachable(DT, BUI, ToTN);
|
|
}
|
|
|
|
if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
|
|
}
|
|
|
|
// Handles deletions that leave destination nodes reachable.
|
|
static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr FromTN,
|
|
const TreeNodePtr ToTN) {
|
|
LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
|
|
<< " -> " << BlockNamePrinter(ToTN) << "\n");
|
|
LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
|
|
|
|
// Find the top of the subtree that needs to be rebuilt.
|
|
// (Based on the lemma 2.6 from the second paper.)
|
|
const NodePtr ToIDom =
|
|
DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
|
|
assert(ToIDom || DT.isPostDominator());
|
|
const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
|
|
assert(ToIDomTN);
|
|
const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
|
|
// Top of the subtree to rebuild is the root node. Rebuild the tree from
|
|
// scratch.
|
|
if (!PrevIDomSubTree) {
|
|
LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
|
|
CalculateFromScratch(DT, BUI);
|
|
return;
|
|
}
|
|
|
|
// Only visit nodes in the subtree starting at To.
|
|
const unsigned Level = ToIDomTN->getLevel();
|
|
auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
|
|
return DT.getNode(To)->getLevel() > Level;
|
|
};
|
|
|
|
LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
|
|
<< "\n");
|
|
|
|
SemiNCAInfo SNCA(BUI);
|
|
SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
|
|
LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
|
|
SNCA.runSemiNCA(DT, Level);
|
|
SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
|
|
}
|
|
|
|
// Checks if a node has proper support, as defined on the page 3 and later
|
|
// explained on the page 7 of the second paper.
|
|
static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr TN) {
|
|
LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
|
|
<< "\n");
|
|
for (const NodePtr Pred :
|
|
ChildrenGetter<!IsPostDom>::Get(TN->getBlock(), BUI)) {
|
|
LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
|
|
if (!DT.getNode(Pred)) continue;
|
|
|
|
const NodePtr Support =
|
|
DT.findNearestCommonDominator(TN->getBlock(), Pred);
|
|
LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
|
|
if (Support != TN->getBlock()) {
|
|
LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
|
|
<< " is reachable from support "
|
|
<< BlockNamePrinter(Support) << "\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Handle deletions that make destination node unreachable.
|
|
// (Based on the lemma 2.7 from the second paper.)
|
|
static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr ToTN) {
|
|
LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
|
|
<< BlockNamePrinter(ToTN) << "\n");
|
|
assert(ToTN);
|
|
assert(ToTN->getBlock());
|
|
|
|
if (IsPostDom) {
|
|
// Deletion makes a region reverse-unreachable and creates a new root.
|
|
// Simulate that by inserting an edge from the virtual root to ToTN and
|
|
// adding it as a new root.
|
|
LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
|
|
LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
|
|
<< "\n");
|
|
DT.Roots.push_back(ToTN->getBlock());
|
|
InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
|
|
return;
|
|
}
|
|
|
|
SmallVector<NodePtr, 16> AffectedQueue;
|
|
const unsigned Level = ToTN->getLevel();
|
|
|
|
// Traverse destination node's descendants with greater level in the tree
|
|
// and collect visited nodes.
|
|
auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
|
|
const TreeNodePtr TN = DT.getNode(To);
|
|
assert(TN);
|
|
if (TN->getLevel() > Level) return true;
|
|
if (llvm::find(AffectedQueue, To) == AffectedQueue.end())
|
|
AffectedQueue.push_back(To);
|
|
|
|
return false;
|
|
};
|
|
|
|
SemiNCAInfo SNCA(BUI);
|
|
unsigned LastDFSNum =
|
|
SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
|
|
|
|
TreeNodePtr MinNode = ToTN;
|
|
|
|
// Identify the top of the subtree to rebuild by finding the NCD of all
|
|
// the affected nodes.
|
|
for (const NodePtr N : AffectedQueue) {
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
const NodePtr NCDBlock =
|
|
DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
|
|
assert(NCDBlock || DT.isPostDominator());
|
|
const TreeNodePtr NCD = DT.getNode(NCDBlock);
|
|
assert(NCD);
|
|
|
|
LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
|
|
<< " with NCD = " << BlockNamePrinter(NCD)
|
|
<< ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
|
|
if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
|
|
}
|
|
|
|
// Root reached, rebuild the whole tree from scratch.
|
|
if (!MinNode->getIDom()) {
|
|
LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
|
|
CalculateFromScratch(DT, BUI);
|
|
return;
|
|
}
|
|
|
|
// Erase the unreachable subtree in reverse preorder to process all children
|
|
// before deleting their parent.
|
|
for (unsigned i = LastDFSNum; i > 0; --i) {
|
|
const NodePtr N = SNCA.NumToNode[i];
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
|
|
|
|
EraseNode(DT, TN);
|
|
}
|
|
|
|
// The affected subtree start at the To node -- there's no extra work to do.
|
|
if (MinNode == ToTN) return;
|
|
|
|
LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
|
|
<< BlockNamePrinter(MinNode) << "\n");
|
|
const unsigned MinLevel = MinNode->getLevel();
|
|
const TreeNodePtr PrevIDom = MinNode->getIDom();
|
|
assert(PrevIDom);
|
|
SNCA.clear();
|
|
|
|
// Identify nodes that remain in the affected subtree.
|
|
auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
return ToTN && ToTN->getLevel() > MinLevel;
|
|
};
|
|
SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
|
|
|
|
LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
|
|
<< BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
|
|
|
|
// Rebuild the remaining part of affected subtree.
|
|
SNCA.runSemiNCA(DT, MinLevel);
|
|
SNCA.reattachExistingSubtree(DT, PrevIDom);
|
|
}
|
|
|
|
// Removes leaf tree nodes from the dominator tree.
|
|
static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
|
|
assert(TN);
|
|
assert(TN->getNumChildren() == 0 && "Not a tree leaf");
|
|
|
|
const TreeNodePtr IDom = TN->getIDom();
|
|
assert(IDom);
|
|
|
|
auto ChIt = llvm::find(IDom->Children, TN);
|
|
assert(ChIt != IDom->Children.end());
|
|
std::swap(*ChIt, IDom->Children.back());
|
|
IDom->Children.pop_back();
|
|
|
|
DT.DomTreeNodes.erase(TN->getBlock());
|
|
}
|
|
|
|
//~~
|
|
//===--------------------- DomTree Batch Updater --------------------------===
|
|
//~~
|
|
|
|
static void ApplyUpdates(DomTreeT &DT, ArrayRef<UpdateT> Updates) {
|
|
const size_t NumUpdates = Updates.size();
|
|
if (NumUpdates == 0)
|
|
return;
|
|
|
|
// Take the fast path for a single update and avoid running the batch update
|
|
// machinery.
|
|
if (NumUpdates == 1) {
|
|
const auto &Update = Updates.front();
|
|
if (Update.getKind() == UpdateKind::Insert)
|
|
DT.insertEdge(Update.getFrom(), Update.getTo());
|
|
else
|
|
DT.deleteEdge(Update.getFrom(), Update.getTo());
|
|
|
|
return;
|
|
}
|
|
|
|
BatchUpdateInfo BUI;
|
|
LLVM_DEBUG(dbgs() << "Legalizing " << BUI.Updates.size() << " updates\n");
|
|
cfg::LegalizeUpdates<NodePtr>(Updates, BUI.Updates, IsPostDom);
|
|
|
|
const size_t NumLegalized = BUI.Updates.size();
|
|
BUI.FutureSuccessors.reserve(NumLegalized);
|
|
BUI.FuturePredecessors.reserve(NumLegalized);
|
|
|
|
// Use the legalized future updates to initialize future successors and
|
|
// predecessors. Note that these sets will only decrease size over time, as
|
|
// the next CFG snapshots slowly approach the actual (current) CFG.
|
|
for (UpdateT &U : BUI.Updates) {
|
|
BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
|
|
BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "About to apply " << NumLegalized << " updates\n");
|
|
LLVM_DEBUG(if (NumLegalized < 32) for (const auto &U
|
|
: reverse(BUI.Updates)) {
|
|
dbgs() << "\t";
|
|
U.dump();
|
|
dbgs() << "\n";
|
|
});
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
// Recalculate the DominatorTree when the number of updates
|
|
// exceeds a threshold, which usually makes direct updating slower than
|
|
// recalculation. We select this threshold proportional to the
|
|
// size of the DominatorTree. The constant is selected
|
|
// by choosing the one with an acceptable performance on some real-world
|
|
// inputs.
|
|
|
|
// Make unittests of the incremental algorithm work
|
|
if (DT.DomTreeNodes.size() <= 100) {
|
|
if (NumLegalized > DT.DomTreeNodes.size())
|
|
CalculateFromScratch(DT, &BUI);
|
|
} else if (NumLegalized > DT.DomTreeNodes.size() / 40)
|
|
CalculateFromScratch(DT, &BUI);
|
|
|
|
// If the DominatorTree was recalculated at some point, stop the batch
|
|
// updates. Full recalculations ignore batch updates and look at the actual
|
|
// CFG.
|
|
for (size_t i = 0; i < NumLegalized && !BUI.IsRecalculated; ++i)
|
|
ApplyNextUpdate(DT, BUI);
|
|
}
|
|
|
|
static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
|
|
assert(!BUI.Updates.empty() && "No updates to apply!");
|
|
UpdateT CurrentUpdate = BUI.Updates.pop_back_val();
|
|
LLVM_DEBUG(dbgs() << "Applying update: ");
|
|
LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
|
|
|
|
// Move to the next snapshot of the CFG by removing the reverse-applied
|
|
// current update. Since updates are performed in the same order they are
|
|
// legalized it's sufficient to pop the last item here.
|
|
auto &FS = BUI.FutureSuccessors[CurrentUpdate.getFrom()];
|
|
assert(FS.back().getPointer() == CurrentUpdate.getTo() &&
|
|
FS.back().getInt() == CurrentUpdate.getKind());
|
|
FS.pop_back();
|
|
if (FS.empty()) BUI.FutureSuccessors.erase(CurrentUpdate.getFrom());
|
|
|
|
auto &FP = BUI.FuturePredecessors[CurrentUpdate.getTo()];
|
|
assert(FP.back().getPointer() == CurrentUpdate.getFrom() &&
|
|
FP.back().getInt() == CurrentUpdate.getKind());
|
|
FP.pop_back();
|
|
if (FP.empty()) BUI.FuturePredecessors.erase(CurrentUpdate.getTo());
|
|
|
|
if (CurrentUpdate.getKind() == UpdateKind::Insert)
|
|
InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
|
|
else
|
|
DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
|
|
}
|
|
|
|
//~~
|
|
//===--------------- DomTree correctness verification ---------------------===
|
|
//~~
|
|
|
|
// Check if the tree has correct roots. A DominatorTree always has a single
|
|
// root which is the function's entry node. A PostDominatorTree can have
|
|
// multiple roots - one for each node with no successors and for infinite
|
|
// loops.
|
|
// Running time: O(N).
|
|
bool verifyRoots(const DomTreeT &DT) {
|
|
if (!DT.Parent && !DT.Roots.empty()) {
|
|
errs() << "Tree has no parent but has roots!\n";
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
|
|
if (!IsPostDom) {
|
|
if (DT.Roots.empty()) {
|
|
errs() << "Tree doesn't have a root!\n";
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
|
|
if (DT.getRoot() != GetEntryNode(DT)) {
|
|
errs() << "Tree's root is not its parent's entry node!\n";
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
RootsT ComputedRoots = FindRoots(DT, nullptr);
|
|
if (DT.Roots.size() != ComputedRoots.size() ||
|
|
!std::is_permutation(DT.Roots.begin(), DT.Roots.end(),
|
|
ComputedRoots.begin())) {
|
|
errs() << "Tree has different roots than freshly computed ones!\n";
|
|
errs() << "\tPDT roots: ";
|
|
for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
|
|
errs() << "\n\tComputed roots: ";
|
|
for (const NodePtr N : ComputedRoots)
|
|
errs() << BlockNamePrinter(N) << ", ";
|
|
errs() << "\n";
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Checks if the tree contains all reachable nodes in the input graph.
|
|
// Running time: O(N).
|
|
bool verifyReachability(const DomTreeT &DT) {
|
|
clear();
|
|
doFullDFSWalk(DT, AlwaysDescend);
|
|
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
|
|
// Virtual root has a corresponding virtual CFG node.
|
|
if (DT.isVirtualRoot(TN)) continue;
|
|
|
|
if (NodeToInfo.count(BB) == 0) {
|
|
errs() << "DomTree node " << BlockNamePrinter(BB)
|
|
<< " not found by DFS walk!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (const NodePtr N : NumToNode) {
|
|
if (N && !DT.getNode(N)) {
|
|
errs() << "CFG node " << BlockNamePrinter(N)
|
|
<< " not found in the DomTree!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if for every parent with a level L in the tree all of its children
|
|
// have level L + 1.
|
|
// Running time: O(N).
|
|
static bool VerifyLevels(const DomTreeT &DT) {
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
if (!BB) continue;
|
|
|
|
const TreeNodePtr IDom = TN->getIDom();
|
|
if (!IDom && TN->getLevel() != 0) {
|
|
errs() << "Node without an IDom " << BlockNamePrinter(BB)
|
|
<< " has a nonzero level " << TN->getLevel() << "!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
|
|
if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
|
|
errs() << "Node " << BlockNamePrinter(BB) << " has level "
|
|
<< TN->getLevel() << " while its IDom "
|
|
<< BlockNamePrinter(IDom->getBlock()) << " has level "
|
|
<< IDom->getLevel() << "!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if the computed DFS numbers are correct. Note that DFS info may not
|
|
// be valid, and when that is the case, we don't verify the numbers.
|
|
// Running time: O(N log(N)).
|
|
static bool VerifyDFSNumbers(const DomTreeT &DT) {
|
|
if (!DT.DFSInfoValid || !DT.Parent)
|
|
return true;
|
|
|
|
const NodePtr RootBB = IsPostDom ? nullptr : DT.getRoots()[0];
|
|
const TreeNodePtr Root = DT.getNode(RootBB);
|
|
|
|
auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
|
|
errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
|
|
<< TN->getDFSNumOut() << '}';
|
|
};
|
|
|
|
// Verify the root's DFS In number. Although DFS numbering would also work
|
|
// if we started from some other value, we assume 0-based numbering.
|
|
if (Root->getDFSNumIn() != 0) {
|
|
errs() << "DFSIn number for the tree root is not:\n\t";
|
|
PrintNodeAndDFSNums(Root);
|
|
errs() << '\n';
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
|
|
// For each tree node verify if children's DFS numbers cover their parent's
|
|
// DFS numbers with no gaps.
|
|
for (const auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr Node = NodeToTN.second.get();
|
|
|
|
// Handle tree leaves.
|
|
if (Node->getChildren().empty()) {
|
|
if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
|
|
errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
|
|
PrintNodeAndDFSNums(Node);
|
|
errs() << '\n';
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Make a copy and sort it such that it is possible to check if there are
|
|
// no gaps between DFS numbers of adjacent children.
|
|
SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
|
|
llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
|
|
return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
|
|
});
|
|
|
|
auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
|
|
const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
|
|
assert(FirstCh);
|
|
|
|
errs() << "Incorrect DFS numbers for:\n\tParent ";
|
|
PrintNodeAndDFSNums(Node);
|
|
|
|
errs() << "\n\tChild ";
|
|
PrintNodeAndDFSNums(FirstCh);
|
|
|
|
if (SecondCh) {
|
|
errs() << "\n\tSecond child ";
|
|
PrintNodeAndDFSNums(SecondCh);
|
|
}
|
|
|
|
errs() << "\nAll children: ";
|
|
for (const TreeNodePtr Ch : Children) {
|
|
PrintNodeAndDFSNums(Ch);
|
|
errs() << ", ";
|
|
}
|
|
|
|
errs() << '\n';
|
|
errs().flush();
|
|
};
|
|
|
|
if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
|
|
PrintChildrenError(Children.front(), nullptr);
|
|
return false;
|
|
}
|
|
|
|
if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
|
|
PrintChildrenError(Children.back(), nullptr);
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
|
|
if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
|
|
PrintChildrenError(Children[i], Children[i + 1]);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// The below routines verify the correctness of the dominator tree relative to
|
|
// the CFG it's coming from. A tree is a dominator tree iff it has two
|
|
// properties, called the parent property and the sibling property. Tarjan
|
|
// and Lengauer prove (but don't explicitly name) the properties as part of
|
|
// the proofs in their 1972 paper, but the proofs are mostly part of proving
|
|
// things about semidominators and idoms, and some of them are simply asserted
|
|
// based on even earlier papers (see, e.g., lemma 2). Some papers refer to
|
|
// these properties as "valid" and "co-valid". See, e.g., "Dominators,
|
|
// directed bipolar orders, and independent spanning trees" by Loukas
|
|
// Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
|
|
// and Vertex-Disjoint Paths " by the same authors.
|
|
|
|
// A very simple and direct explanation of these properties can be found in
|
|
// "An Experimental Study of Dynamic Dominators", found at
|
|
// https://arxiv.org/abs/1604.02711
|
|
|
|
// The easiest way to think of the parent property is that it's a requirement
|
|
// of being a dominator. Let's just take immediate dominators. For PARENT to
|
|
// be an immediate dominator of CHILD, all paths in the CFG must go through
|
|
// PARENT before they hit CHILD. This implies that if you were to cut PARENT
|
|
// out of the CFG, there should be no paths to CHILD that are reachable. If
|
|
// there are, then you now have a path from PARENT to CHILD that goes around
|
|
// PARENT and still reaches CHILD, which by definition, means PARENT can't be
|
|
// a dominator of CHILD (let alone an immediate one).
|
|
|
|
// The sibling property is similar. It says that for each pair of sibling
|
|
// nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
|
|
// other. If sibling LEFT dominated sibling RIGHT, it means there are no
|
|
// paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
|
|
// LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
|
|
// RIGHT, not a sibling.
|
|
|
|
// It is possible to verify the parent and sibling properties in
|
|
// linear time, but the algorithms are complex. Instead, we do it in a
|
|
// straightforward N^2 and N^3 way below, using direct path reachability.
|
|
|
|
// Checks if the tree has the parent property: if for all edges from V to W in
|
|
// the input graph, such that V is reachable, the parent of W in the tree is
|
|
// an ancestor of V in the tree.
|
|
// Running time: O(N^2).
|
|
//
|
|
// This means that if a node gets disconnected from the graph, then all of
|
|
// the nodes it dominated previously will now become unreachable.
|
|
bool verifyParentProperty(const DomTreeT &DT) {
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
if (!BB || TN->getChildren().empty()) continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Verifying parent property of node "
|
|
<< BlockNamePrinter(TN) << "\n");
|
|
clear();
|
|
doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
|
|
return From != BB && To != BB;
|
|
});
|
|
|
|
for (TreeNodePtr Child : TN->getChildren())
|
|
if (NodeToInfo.count(Child->getBlock()) != 0) {
|
|
errs() << "Child " << BlockNamePrinter(Child)
|
|
<< " reachable after its parent " << BlockNamePrinter(BB)
|
|
<< " is removed!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if the tree has sibling property: if a node V does not dominate a
|
|
// node W for all siblings V and W in the tree.
|
|
// Running time: O(N^3).
|
|
//
|
|
// This means that if a node gets disconnected from the graph, then all of its
|
|
// siblings will now still be reachable.
|
|
bool verifySiblingProperty(const DomTreeT &DT) {
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
if (!BB || TN->getChildren().empty()) continue;
|
|
|
|
const auto &Siblings = TN->getChildren();
|
|
for (const TreeNodePtr N : Siblings) {
|
|
clear();
|
|
NodePtr BBN = N->getBlock();
|
|
doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
|
|
return From != BBN && To != BBN;
|
|
});
|
|
|
|
for (const TreeNodePtr S : Siblings) {
|
|
if (S == N) continue;
|
|
|
|
if (NodeToInfo.count(S->getBlock()) == 0) {
|
|
errs() << "Node " << BlockNamePrinter(S)
|
|
<< " not reachable when its sibling " << BlockNamePrinter(N)
|
|
<< " is removed!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if the given tree is the same as a freshly computed one for the same
|
|
// Parent.
|
|
// Running time: O(N^2), but faster in practise (same as tree construction).
|
|
//
|
|
// Note that this does not check if that the tree construction algorithm is
|
|
// correct and should be only used for fast (but possibly unsound)
|
|
// verification.
|
|
static bool IsSameAsFreshTree(const DomTreeT &DT) {
|
|
DomTreeT FreshTree;
|
|
FreshTree.recalculate(*DT.Parent);
|
|
const bool Different = DT.compare(FreshTree);
|
|
|
|
if (Different) {
|
|
errs() << (DT.isPostDominator() ? "Post" : "")
|
|
<< "DominatorTree is different than a freshly computed one!\n"
|
|
<< "\tCurrent:\n";
|
|
DT.print(errs());
|
|
errs() << "\n\tFreshly computed tree:\n";
|
|
FreshTree.print(errs());
|
|
errs().flush();
|
|
}
|
|
|
|
return !Different;
|
|
}
|
|
};
|
|
|
|
template <class DomTreeT>
|
|
void Calculate(DomTreeT &DT) {
|
|
SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
|
|
}
|
|
|
|
template <typename DomTreeT>
|
|
void CalculateWithUpdates(DomTreeT &DT,
|
|
ArrayRef<typename DomTreeT::UpdateType> Updates) {
|
|
// TODO: Move BUI creation in common method, reuse in ApplyUpdates.
|
|
typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI;
|
|
LLVM_DEBUG(dbgs() << "Legalizing " << BUI.Updates.size() << " updates\n");
|
|
cfg::LegalizeUpdates<typename DomTreeT::NodePtr>(Updates, BUI.Updates,
|
|
DomTreeT::IsPostDominator);
|
|
const size_t NumLegalized = BUI.Updates.size();
|
|
BUI.FutureSuccessors.reserve(NumLegalized);
|
|
BUI.FuturePredecessors.reserve(NumLegalized);
|
|
for (auto &U : BUI.Updates) {
|
|
BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
|
|
BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
|
|
}
|
|
|
|
SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
|
|
}
|
|
|
|
template <class DomTreeT>
|
|
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
|
|
typename DomTreeT::NodePtr To) {
|
|
if (DT.isPostDominator()) std::swap(From, To);
|
|
SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
|
|
}
|
|
|
|
template <class DomTreeT>
|
|
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
|
|
typename DomTreeT::NodePtr To) {
|
|
if (DT.isPostDominator()) std::swap(From, To);
|
|
SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
|
|
}
|
|
|
|
template <class DomTreeT>
|
|
void ApplyUpdates(DomTreeT &DT,
|
|
ArrayRef<typename DomTreeT::UpdateType> Updates) {
|
|
SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, Updates);
|
|
}
|
|
|
|
template <class DomTreeT>
|
|
bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
|
|
SemiNCAInfo<DomTreeT> SNCA(nullptr);
|
|
|
|
// Simplist check is to compare against a new tree. This will also
|
|
// usefully print the old and new trees, if they are different.
|
|
if (!SNCA.IsSameAsFreshTree(DT))
|
|
return false;
|
|
|
|
// Common checks to verify the properties of the tree. O(N log N) at worst
|
|
if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
|
|
!SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
|
|
return false;
|
|
|
|
// Extra checks depending on VerificationLevel. Up to O(N^3)
|
|
if (VL == DomTreeT::VerificationLevel::Basic ||
|
|
VL == DomTreeT::VerificationLevel::Full)
|
|
if (!SNCA.verifyParentProperty(DT))
|
|
return false;
|
|
if (VL == DomTreeT::VerificationLevel::Full)
|
|
if (!SNCA.verifySiblingProperty(DT))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace DomTreeBuilder
|
|
} // namespace llvm
|
|
|
|
#undef DEBUG_TYPE
|
|
|
|
#endif
|