llvm-mirror/lib/Target/Hexagon/Disassembler/HexagonDisassembler.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

803 lines
32 KiB
C++

//===- HexagonDisassembler.cpp - Disassembler for Hexagon ISA -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "hexagon-disassembler"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCChecker.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
using namespace llvm;
using namespace Hexagon;
using DecodeStatus = MCDisassembler::DecodeStatus;
namespace {
/// Hexagon disassembler for all Hexagon platforms.
class HexagonDisassembler : public MCDisassembler {
public:
std::unique_ptr<MCInstrInfo const> const MCII;
std::unique_ptr<MCInst *> CurrentBundle;
mutable MCInst const *CurrentExtender;
HexagonDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
MCInstrInfo const *MCII)
: MCDisassembler(STI, Ctx), MCII(MCII), CurrentBundle(new MCInst *),
CurrentExtender(nullptr) {}
DecodeStatus getSingleInstruction(MCInst &Instr, MCInst &MCB,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &VStream, raw_ostream &CStream,
bool &Complete) const;
DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &VStream,
raw_ostream &CStream) const override;
void remapInstruction(MCInst &Instr) const;
};
static uint64_t fullValue(HexagonDisassembler const &Disassembler, MCInst &MI,
int64_t Value) {
MCInstrInfo MCII = *Disassembler.MCII;
if (!Disassembler.CurrentExtender ||
MI.size() != HexagonMCInstrInfo::getExtendableOp(MCII, MI))
return Value;
unsigned Alignment = HexagonMCInstrInfo::getExtentAlignment(MCII, MI);
uint32_t Lower6 = static_cast<uint32_t>(Value >> Alignment) & 0x3f;
int64_t Bits;
bool Success =
Disassembler.CurrentExtender->getOperand(0).getExpr()->evaluateAsAbsolute(
Bits);
assert(Success);
(void)Success;
uint64_t Upper26 = static_cast<uint64_t>(Bits);
uint64_t Operand = Upper26 | Lower6;
return Operand;
}
static HexagonDisassembler const &disassembler(void const *Decoder) {
return *static_cast<HexagonDisassembler const *>(Decoder);
}
template <size_t T>
static void signedDecoder(MCInst &MI, unsigned tmp, const void *Decoder) {
HexagonDisassembler const &Disassembler = disassembler(Decoder);
int64_t FullValue = fullValue(Disassembler, MI, SignExtend64<T>(tmp));
int64_t Extended = SignExtend64<32>(FullValue);
HexagonMCInstrInfo::addConstant(MI, Extended, Disassembler.getContext());
}
}
// Forward declare these because the auto-generated code will reference them.
// Definitions are further down.
static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeGeneralSubRegsRegisterClass(MCInst &Inst,
unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeIntRegsLow8RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeHvxVRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus
DecodeGeneralDoubleLow8RegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeHvxWRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeHvxVQRRegisterClass(MCInst &Inst,
unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeHvxQRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeGuestRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeGuestRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus unsignedImmDecoder(MCInst &MI, unsigned tmp,
uint64_t Address, const void *Decoder);
static DecodeStatus s32_0ImmDecoder(MCInst &MI, unsigned tmp,
uint64_t /*Address*/, const void *Decoder);
static DecodeStatus brtargetDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
const void *Decoder);
#include "HexagonDepDecoders.h"
#include "HexagonGenDisassemblerTables.inc"
static MCDisassembler *createHexagonDisassembler(const Target &T,
const MCSubtargetInfo &STI,
MCContext &Ctx) {
return new HexagonDisassembler(STI, Ctx, T.createMCInstrInfo());
}
extern "C" void LLVMInitializeHexagonDisassembler() {
TargetRegistry::RegisterMCDisassembler(getTheHexagonTarget(),
createHexagonDisassembler);
}
DecodeStatus HexagonDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
ArrayRef<uint8_t> Bytes,
uint64_t Address,
raw_ostream &os,
raw_ostream &cs) const {
DecodeStatus Result = DecodeStatus::Success;
bool Complete = false;
Size = 0;
*CurrentBundle = &MI;
MI.setOpcode(Hexagon::BUNDLE);
MI.addOperand(MCOperand::createImm(0));
while (Result == Success && !Complete) {
if (Bytes.size() < HEXAGON_INSTR_SIZE)
return MCDisassembler::Fail;
MCInst *Inst = new (getContext()) MCInst;
Result = getSingleInstruction(*Inst, MI, Bytes, Address, os, cs, Complete);
MI.addOperand(MCOperand::createInst(Inst));
Size += HEXAGON_INSTR_SIZE;
Bytes = Bytes.slice(HEXAGON_INSTR_SIZE);
}
if (Result == MCDisassembler::Fail)
return Result;
if (Size > HEXAGON_MAX_PACKET_SIZE)
return MCDisassembler::Fail;
HexagonMCChecker Checker(getContext(), *MCII, STI, MI,
*getContext().getRegisterInfo(), false);
if (!Checker.check())
return MCDisassembler::Fail;
remapInstruction(MI);
return MCDisassembler::Success;
}
void HexagonDisassembler::remapInstruction(MCInst &Instr) const {
for (auto I: HexagonMCInstrInfo::bundleInstructions(Instr)) {
auto &MI = const_cast<MCInst &>(*I.getInst());
switch (MI.getOpcode()) {
case Hexagon::S2_allocframe:
if (MI.getOperand(0).getReg() == Hexagon::R29) {
MI.setOpcode(Hexagon::S6_allocframe_to_raw);
MI.erase(MI.begin () + 1);
MI.erase(MI.begin ());
}
break;
case Hexagon::L2_deallocframe:
if (MI.getOperand(0).getReg() == Hexagon::D15 &&
MI.getOperand(1).getReg() == Hexagon::R30) {
MI.setOpcode(L6_deallocframe_map_to_raw);
MI.erase(MI.begin () + 1);
MI.erase(MI.begin ());
}
break;
case Hexagon::L4_return:
if (MI.getOperand(0).getReg() == Hexagon::D15 &&
MI.getOperand(1).getReg() == Hexagon::R30) {
MI.setOpcode(L6_return_map_to_raw);
MI.erase(MI.begin () + 1);
MI.erase(MI.begin ());
}
break;
case Hexagon::L4_return_t:
if (MI.getOperand(0).getReg() == Hexagon::D15 &&
MI.getOperand(2).getReg() == Hexagon::R30) {
MI.setOpcode(L4_return_map_to_raw_t);
MI.erase(MI.begin () + 2);
MI.erase(MI.begin ());
}
break;
case Hexagon::L4_return_f:
if (MI.getOperand(0).getReg() == Hexagon::D15 &&
MI.getOperand(2).getReg() == Hexagon::R30) {
MI.setOpcode(L4_return_map_to_raw_f);
MI.erase(MI.begin () + 2);
MI.erase(MI.begin ());
}
break;
case Hexagon::L4_return_tnew_pt:
if (MI.getOperand(0).getReg() == Hexagon::D15 &&
MI.getOperand(2).getReg() == Hexagon::R30) {
MI.setOpcode(L4_return_map_to_raw_tnew_pt);
MI.erase(MI.begin () + 2);
MI.erase(MI.begin ());
}
break;
case Hexagon::L4_return_fnew_pt:
if (MI.getOperand(0).getReg() == Hexagon::D15 &&
MI.getOperand(2).getReg() == Hexagon::R30) {
MI.setOpcode(L4_return_map_to_raw_fnew_pt);
MI.erase(MI.begin () + 2);
MI.erase(MI.begin ());
}
break;
case Hexagon::L4_return_tnew_pnt:
if (MI.getOperand(0).getReg() == Hexagon::D15 &&
MI.getOperand(2).getReg() == Hexagon::R30) {
MI.setOpcode(L4_return_map_to_raw_tnew_pnt);
MI.erase(MI.begin () + 2);
MI.erase(MI.begin ());
}
break;
case Hexagon::L4_return_fnew_pnt:
if (MI.getOperand(0).getReg() == Hexagon::D15 &&
MI.getOperand(2).getReg() == Hexagon::R30) {
MI.setOpcode(L4_return_map_to_raw_fnew_pnt);
MI.erase(MI.begin () + 2);
MI.erase(MI.begin ());
}
break;
}
}
}
static void adjustDuplex(MCInst &MI, MCContext &Context) {
switch (MI.getOpcode()) {
case Hexagon::SA1_setin1:
MI.insert(MI.begin() + 1,
MCOperand::createExpr(MCConstantExpr::create(-1, Context)));
break;
case Hexagon::SA1_dec:
MI.insert(MI.begin() + 2,
MCOperand::createExpr(MCConstantExpr::create(-1, Context)));
break;
default:
break;
}
}
DecodeStatus HexagonDisassembler::getSingleInstruction(
MCInst &MI, MCInst &MCB, ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &os, raw_ostream &cs, bool &Complete) const {
assert(Bytes.size() >= HEXAGON_INSTR_SIZE);
uint32_t Instruction = support::endian::read32le(Bytes.data());
auto BundleSize = HexagonMCInstrInfo::bundleSize(MCB);
if ((Instruction & HexagonII::INST_PARSE_MASK) ==
HexagonII::INST_PARSE_LOOP_END) {
if (BundleSize == 0)
HexagonMCInstrInfo::setInnerLoop(MCB);
else if (BundleSize == 1)
HexagonMCInstrInfo::setOuterLoop(MCB);
else
return DecodeStatus::Fail;
}
CurrentExtender = HexagonMCInstrInfo::extenderForIndex(
MCB, HexagonMCInstrInfo::bundleSize(MCB));
DecodeStatus Result = DecodeStatus::Fail;
if ((Instruction & HexagonII::INST_PARSE_MASK) ==
HexagonII::INST_PARSE_DUPLEX) {
unsigned duplexIClass;
uint8_t const *DecodeLow, *DecodeHigh;
duplexIClass = ((Instruction >> 28) & 0xe) | ((Instruction >> 13) & 0x1);
switch (duplexIClass) {
default:
return MCDisassembler::Fail;
case 0:
DecodeLow = DecoderTableSUBINSN_L132;
DecodeHigh = DecoderTableSUBINSN_L132;
break;
case 1:
DecodeLow = DecoderTableSUBINSN_L232;
DecodeHigh = DecoderTableSUBINSN_L132;
break;
case 2:
DecodeLow = DecoderTableSUBINSN_L232;
DecodeHigh = DecoderTableSUBINSN_L232;
break;
case 3:
DecodeLow = DecoderTableSUBINSN_A32;
DecodeHigh = DecoderTableSUBINSN_A32;
break;
case 4:
DecodeLow = DecoderTableSUBINSN_L132;
DecodeHigh = DecoderTableSUBINSN_A32;
break;
case 5:
DecodeLow = DecoderTableSUBINSN_L232;
DecodeHigh = DecoderTableSUBINSN_A32;
break;
case 6:
DecodeLow = DecoderTableSUBINSN_S132;
DecodeHigh = DecoderTableSUBINSN_A32;
break;
case 7:
DecodeLow = DecoderTableSUBINSN_S232;
DecodeHigh = DecoderTableSUBINSN_A32;
break;
case 8:
DecodeLow = DecoderTableSUBINSN_S132;
DecodeHigh = DecoderTableSUBINSN_L132;
break;
case 9:
DecodeLow = DecoderTableSUBINSN_S132;
DecodeHigh = DecoderTableSUBINSN_L232;
break;
case 10:
DecodeLow = DecoderTableSUBINSN_S132;
DecodeHigh = DecoderTableSUBINSN_S132;
break;
case 11:
DecodeLow = DecoderTableSUBINSN_S232;
DecodeHigh = DecoderTableSUBINSN_S132;
break;
case 12:
DecodeLow = DecoderTableSUBINSN_S232;
DecodeHigh = DecoderTableSUBINSN_L132;
break;
case 13:
DecodeLow = DecoderTableSUBINSN_S232;
DecodeHigh = DecoderTableSUBINSN_L232;
break;
case 14:
DecodeLow = DecoderTableSUBINSN_S232;
DecodeHigh = DecoderTableSUBINSN_S232;
break;
}
MI.setOpcode(Hexagon::DuplexIClass0 + duplexIClass);
MCInst *MILow = new (getContext()) MCInst;
MCInst *MIHigh = new (getContext()) MCInst;
auto TmpExtender = CurrentExtender;
CurrentExtender =
nullptr; // constant extenders in duplex must always be in slot 1
Result = decodeInstruction(DecodeLow, *MILow, Instruction & 0x1fff, Address,
this, STI);
CurrentExtender = TmpExtender;
if (Result != DecodeStatus::Success)
return DecodeStatus::Fail;
adjustDuplex(*MILow, getContext());
Result = decodeInstruction(
DecodeHigh, *MIHigh, (Instruction >> 16) & 0x1fff, Address, this, STI);
if (Result != DecodeStatus::Success)
return DecodeStatus::Fail;
adjustDuplex(*MIHigh, getContext());
MCOperand OPLow = MCOperand::createInst(MILow);
MCOperand OPHigh = MCOperand::createInst(MIHigh);
MI.addOperand(OPLow);
MI.addOperand(OPHigh);
Complete = true;
} else {
if ((Instruction & HexagonII::INST_PARSE_MASK) ==
HexagonII::INST_PARSE_PACKET_END)
Complete = true;
if (CurrentExtender != nullptr)
Result = decodeInstruction(DecoderTableMustExtend32, MI, Instruction,
Address, this, STI);
if (Result != MCDisassembler::Success)
Result = decodeInstruction(DecoderTable32, MI, Instruction, Address, this,
STI);
if (Result != MCDisassembler::Success &&
STI.getFeatureBits()[Hexagon::ExtensionHVX])
Result = decodeInstruction(DecoderTableEXT_mmvec32, MI, Instruction,
Address, this, STI);
}
switch (MI.getOpcode()) {
case Hexagon::J4_cmpeqn1_f_jumpnv_nt:
case Hexagon::J4_cmpeqn1_f_jumpnv_t:
case Hexagon::J4_cmpeqn1_fp0_jump_nt:
case Hexagon::J4_cmpeqn1_fp0_jump_t:
case Hexagon::J4_cmpeqn1_fp1_jump_nt:
case Hexagon::J4_cmpeqn1_fp1_jump_t:
case Hexagon::J4_cmpeqn1_t_jumpnv_nt:
case Hexagon::J4_cmpeqn1_t_jumpnv_t:
case Hexagon::J4_cmpeqn1_tp0_jump_nt:
case Hexagon::J4_cmpeqn1_tp0_jump_t:
case Hexagon::J4_cmpeqn1_tp1_jump_nt:
case Hexagon::J4_cmpeqn1_tp1_jump_t:
case Hexagon::J4_cmpgtn1_f_jumpnv_nt:
case Hexagon::J4_cmpgtn1_f_jumpnv_t:
case Hexagon::J4_cmpgtn1_fp0_jump_nt:
case Hexagon::J4_cmpgtn1_fp0_jump_t:
case Hexagon::J4_cmpgtn1_fp1_jump_nt:
case Hexagon::J4_cmpgtn1_fp1_jump_t:
case Hexagon::J4_cmpgtn1_t_jumpnv_nt:
case Hexagon::J4_cmpgtn1_t_jumpnv_t:
case Hexagon::J4_cmpgtn1_tp0_jump_nt:
case Hexagon::J4_cmpgtn1_tp0_jump_t:
case Hexagon::J4_cmpgtn1_tp1_jump_nt:
case Hexagon::J4_cmpgtn1_tp1_jump_t:
MI.insert(MI.begin() + 1,
MCOperand::createExpr(MCConstantExpr::create(-1, getContext())));
break;
default:
break;
}
if (HexagonMCInstrInfo::isNewValue(*MCII, MI)) {
unsigned OpIndex = HexagonMCInstrInfo::getNewValueOp(*MCII, MI);
MCOperand &MCO = MI.getOperand(OpIndex);
assert(MCO.isReg() && "New value consumers must be registers");
unsigned Register =
getContext().getRegisterInfo()->getEncodingValue(MCO.getReg());
if ((Register & 0x6) == 0)
// HexagonPRM 10.11 Bit 1-2 == 0 is reserved
return MCDisassembler::Fail;
unsigned Lookback = (Register & 0x6) >> 1;
unsigned Offset = 1;
bool Vector = HexagonMCInstrInfo::isVector(*MCII, MI);
bool PrevVector = false;
auto Instructions = HexagonMCInstrInfo::bundleInstructions(**CurrentBundle);
auto i = Instructions.end() - 1;
for (auto n = Instructions.begin() - 1;; --i, ++Offset) {
if (i == n)
// Couldn't find producer
return MCDisassembler::Fail;
bool CurrentVector = HexagonMCInstrInfo::isVector(*MCII, *i->getInst());
if (Vector && !CurrentVector)
// Skip scalars when calculating distances for vectors
++Lookback;
if (HexagonMCInstrInfo::isImmext(*i->getInst()) && (Vector == PrevVector))
++Lookback;
PrevVector = CurrentVector;
if (Offset == Lookback)
break;
}
auto const &Inst = *i->getInst();
bool SubregBit = (Register & 0x1) != 0;
if (HexagonMCInstrInfo::hasNewValue2(*MCII, Inst)) {
// If subreg bit is set we're selecting the second produced newvalue
unsigned Producer = SubregBit ?
HexagonMCInstrInfo::getNewValueOperand(*MCII, Inst).getReg() :
HexagonMCInstrInfo::getNewValueOperand2(*MCII, Inst).getReg();
assert(Producer != Hexagon::NoRegister);
MCO.setReg(Producer);
} else if (HexagonMCInstrInfo::hasNewValue(*MCII, Inst)) {
unsigned Producer =
HexagonMCInstrInfo::getNewValueOperand(*MCII, Inst).getReg();
if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
Producer = ((Producer - Hexagon::W0) << 1) + SubregBit + Hexagon::V0;
else if (SubregBit)
// Hexagon PRM 10.11 New-value operands
// Nt[0] is reserved and should always be encoded as zero.
return MCDisassembler::Fail;
assert(Producer != Hexagon::NoRegister);
MCO.setReg(Producer);
} else
return MCDisassembler::Fail;
}
if (CurrentExtender != nullptr) {
MCInst const &Inst = HexagonMCInstrInfo::isDuplex(*MCII, MI)
? *MI.getOperand(1).getInst()
: MI;
if (!HexagonMCInstrInfo::isExtendable(*MCII, Inst) &&
!HexagonMCInstrInfo::isExtended(*MCII, Inst))
return MCDisassembler::Fail;
}
return Result;
}
static DecodeStatus DecodeRegisterClass(MCInst &Inst, unsigned RegNo,
ArrayRef<MCPhysReg> Table) {
if (RegNo < Table.size()) {
Inst.addOperand(MCOperand::createReg(Table[RegNo]));
return MCDisassembler::Success;
}
return MCDisassembler::Fail;
}
static DecodeStatus DecodeIntRegsLow8RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder) {
return DecodeIntRegsRegisterClass(Inst, RegNo, Address, Decoder);
}
static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder) {
static const MCPhysReg IntRegDecoderTable[] = {
Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
Hexagon::R5, Hexagon::R6, Hexagon::R7, Hexagon::R8, Hexagon::R9,
Hexagon::R10, Hexagon::R11, Hexagon::R12, Hexagon::R13, Hexagon::R14,
Hexagon::R15, Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23, Hexagon::R24,
Hexagon::R25, Hexagon::R26, Hexagon::R27, Hexagon::R28, Hexagon::R29,
Hexagon::R30, Hexagon::R31};
return DecodeRegisterClass(Inst, RegNo, IntRegDecoderTable);
}
static DecodeStatus DecodeGeneralSubRegsRegisterClass(MCInst &Inst,
unsigned RegNo,
uint64_t Address,
const void *Decoder) {
static const MCPhysReg GeneralSubRegDecoderTable[] = {
Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3,
Hexagon::R4, Hexagon::R5, Hexagon::R6, Hexagon::R7,
Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23,
};
return DecodeRegisterClass(Inst, RegNo, GeneralSubRegDecoderTable);
}
static DecodeStatus DecodeHvxVRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const MCPhysReg HvxVRDecoderTable[] = {
Hexagon::V0, Hexagon::V1, Hexagon::V2, Hexagon::V3, Hexagon::V4,
Hexagon::V5, Hexagon::V6, Hexagon::V7, Hexagon::V8, Hexagon::V9,
Hexagon::V10, Hexagon::V11, Hexagon::V12, Hexagon::V13, Hexagon::V14,
Hexagon::V15, Hexagon::V16, Hexagon::V17, Hexagon::V18, Hexagon::V19,
Hexagon::V20, Hexagon::V21, Hexagon::V22, Hexagon::V23, Hexagon::V24,
Hexagon::V25, Hexagon::V26, Hexagon::V27, Hexagon::V28, Hexagon::V29,
Hexagon::V30, Hexagon::V31};
return DecodeRegisterClass(Inst, RegNo, HvxVRDecoderTable);
}
static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const MCPhysReg DoubleRegDecoderTable[] = {
Hexagon::D0, Hexagon::D1, Hexagon::D2, Hexagon::D3,
Hexagon::D4, Hexagon::D5, Hexagon::D6, Hexagon::D7,
Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11,
Hexagon::D12, Hexagon::D13, Hexagon::D14, Hexagon::D15};
return DecodeRegisterClass(Inst, RegNo >> 1, DoubleRegDecoderTable);
}
static DecodeStatus DecodeGeneralDoubleLow8RegsRegisterClass(
MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) {
static const MCPhysReg GeneralDoubleLow8RegDecoderTable[] = {
Hexagon::D0, Hexagon::D1, Hexagon::D2, Hexagon::D3,
Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11};
return DecodeRegisterClass(Inst, RegNo, GeneralDoubleLow8RegDecoderTable);
}
static DecodeStatus DecodeHvxWRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const MCPhysReg HvxWRDecoderTable[] = {
Hexagon::W0, Hexagon::W1, Hexagon::W2, Hexagon::W3,
Hexagon::W4, Hexagon::W5, Hexagon::W6, Hexagon::W7,
Hexagon::W8, Hexagon::W9, Hexagon::W10, Hexagon::W11,
Hexagon::W12, Hexagon::W13, Hexagon::W14, Hexagon::W15};
return (DecodeRegisterClass(Inst, RegNo >> 1, HvxWRDecoderTable));
}
LLVM_ATTRIBUTE_UNUSED // Suppress warning temporarily.
static DecodeStatus DecodeHvxVQRRegisterClass(MCInst &Inst,
unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const MCPhysReg HvxVQRDecoderTable[] = {
Hexagon::VQ0, Hexagon::VQ1, Hexagon::VQ2, Hexagon::VQ3,
Hexagon::VQ4, Hexagon::VQ5, Hexagon::VQ6, Hexagon::VQ7};
return DecodeRegisterClass(Inst, RegNo >> 2, HvxVQRDecoderTable);
}
static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const MCPhysReg PredRegDecoderTable[] = {Hexagon::P0, Hexagon::P1,
Hexagon::P2, Hexagon::P3};
return DecodeRegisterClass(Inst, RegNo, PredRegDecoderTable);
}
static DecodeStatus DecodeHvxQRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const MCPhysReg HvxQRDecoderTable[] = {Hexagon::Q0, Hexagon::Q1,
Hexagon::Q2, Hexagon::Q3};
return DecodeRegisterClass(Inst, RegNo, HvxQRDecoderTable);
}
static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
using namespace Hexagon;
static const MCPhysReg CtrlRegDecoderTable[] = {
/* 0 */ SA0, LC0, SA1, LC1,
/* 4 */ P3_0, C5, M0, M1,
/* 8 */ USR, PC, UGP, GP,
/* 12 */ CS0, CS1, UPCYCLELO, UPCYCLEHI,
/* 16 */ FRAMELIMIT, FRAMEKEY, PKTCOUNTLO, PKTCOUNTHI,
/* 20 */ 0, 0, 0, 0,
/* 24 */ 0, 0, 0, 0,
/* 28 */ 0, 0, UTIMERLO, UTIMERHI
};
if (RegNo >= array_lengthof(CtrlRegDecoderTable))
return MCDisassembler::Fail;
static_assert(NoRegister == 0, "Expecting NoRegister to be 0");
if (CtrlRegDecoderTable[RegNo] == NoRegister)
return MCDisassembler::Fail;
unsigned Register = CtrlRegDecoderTable[RegNo];
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
using namespace Hexagon;
static const MCPhysReg CtrlReg64DecoderTable[] = {
/* 0 */ C1_0, 0, C3_2, 0,
/* 4 */ C5_4, 0, C7_6, 0,
/* 8 */ C9_8, 0, C11_10, 0,
/* 12 */ CS, 0, UPCYCLE, 0,
/* 16 */ C17_16, 0, PKTCOUNT, 0,
/* 20 */ 0, 0, 0, 0,
/* 24 */ 0, 0, 0, 0,
/* 28 */ 0, 0, UTIMER, 0
};
if (RegNo >= array_lengthof(CtrlReg64DecoderTable))
return MCDisassembler::Fail;
static_assert(NoRegister == 0, "Expecting NoRegister to be 0");
if (CtrlReg64DecoderTable[RegNo] == NoRegister)
return MCDisassembler::Fail;
unsigned Register = CtrlReg64DecoderTable[RegNo];
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
unsigned Register = 0;
switch (RegNo) {
case 0:
Register = Hexagon::M0;
break;
case 1:
Register = Hexagon::M1;
break;
default:
return MCDisassembler::Fail;
}
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus unsignedImmDecoder(MCInst &MI, unsigned tmp,
uint64_t /*Address*/,
const void *Decoder) {
HexagonDisassembler const &Disassembler = disassembler(Decoder);
int64_t FullValue = fullValue(Disassembler, MI, tmp);
assert(FullValue >= 0 && "Negative in unsigned decoder");
HexagonMCInstrInfo::addConstant(MI, FullValue, Disassembler.getContext());
return MCDisassembler::Success;
}
static DecodeStatus s32_0ImmDecoder(MCInst &MI, unsigned tmp,
uint64_t /*Address*/, const void *Decoder) {
HexagonDisassembler const &Disassembler = disassembler(Decoder);
unsigned Bits = HexagonMCInstrInfo::getExtentBits(*Disassembler.MCII, MI);
tmp = SignExtend64(tmp, Bits);
signedDecoder<32>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
// custom decoder for various jump/call immediates
static DecodeStatus brtargetDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
const void *Decoder) {
HexagonDisassembler const &Disassembler = disassembler(Decoder);
unsigned Bits = HexagonMCInstrInfo::getExtentBits(*Disassembler.MCII, MI);
// r13_2 is not extendable, so if there are no extent bits, it's r13_2
if (Bits == 0)
Bits = 15;
uint64_t FullValue = fullValue(Disassembler, MI, SignExtend64(tmp, Bits));
uint32_t Extended = FullValue + Address;
if (!Disassembler.tryAddingSymbolicOperand(MI, Extended, Address, true, 0, 4))
HexagonMCInstrInfo::addConstant(MI, Extended, Disassembler.getContext());
return MCDisassembler::Success;
}
static DecodeStatus DecodeGuestRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
using namespace Hexagon;
static const MCPhysReg GuestRegDecoderTable[] = {
/* 0 */ GELR, GSR, GOSP, G3,
/* 4 */ G4, G5, G6, G7,
/* 8 */ G8, G9, G10, G11,
/* 12 */ G12, G13, G14, G15,
/* 16 */ GPMUCNT4, GPMUCNT5, GPMUCNT6, GPMUCNT7,
/* 20 */ G20, G21, G22, G23,
/* 24 */ GPCYCLELO, GPCYCLEHI, GPMUCNT0, GPMUCNT1,
/* 28 */ GPMUCNT2, GPMUCNT3, G30, G31
};
if (RegNo >= array_lengthof(GuestRegDecoderTable))
return MCDisassembler::Fail;
if (GuestRegDecoderTable[RegNo] == Hexagon::NoRegister)
return MCDisassembler::Fail;
unsigned Register = GuestRegDecoderTable[RegNo];
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeGuestRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
using namespace Hexagon;
static const MCPhysReg GuestReg64DecoderTable[] = {
/* 0 */ G1_0, 0, G3_2, 0,
/* 4 */ G5_4, 0, G7_6, 0,
/* 8 */ G9_8, 0, G11_10, 0,
/* 12 */ G13_12, 0, G15_14, 0,
/* 16 */ G17_16, 0, G19_18, 0,
/* 20 */ G21_20, 0, G23_22, 0,
/* 24 */ G25_24, 0, G27_26, 0,
/* 28 */ G29_28, 0, G31_30, 0
};
if (RegNo >= array_lengthof(GuestReg64DecoderTable))
return MCDisassembler::Fail;
if (GuestReg64DecoderTable[RegNo] == Hexagon::NoRegister)
return MCDisassembler::Fail;
unsigned Register = GuestReg64DecoderTable[RegNo];
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}