mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-14 15:38:57 +00:00
266206caed
llvm-svn: 11627
359 lines
14 KiB
C++
359 lines
14 KiB
C++
//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LiveVariable analysis pass. For each machine
|
|
// instruction in the function, this pass calculates the set of registers that
|
|
// are immediately dead after the instruction (i.e., the instruction calculates
|
|
// the value, but it is never used) and the set of registers that are used by
|
|
// the instruction, but are never used after the instruction (i.e., they are
|
|
// killed).
|
|
//
|
|
// This class computes live variables using are sparse implementation based on
|
|
// the machine code SSA form. This class computes live variable information for
|
|
// each virtual and _register allocatable_ physical register in a function. It
|
|
// uses the dominance properties of SSA form to efficiently compute live
|
|
// variables for virtual registers, and assumes that physical registers are only
|
|
// live within a single basic block (allowing it to do a single local analysis
|
|
// to resolve physical register lifetimes in each basic block). If a physical
|
|
// register is not register allocatable, it is not tracked. This is useful for
|
|
// things like the stack pointer and condition codes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "Support/DepthFirstIterator.h"
|
|
#include "Support/STLExtras.h"
|
|
using namespace llvm;
|
|
|
|
static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
|
|
|
|
const std::pair<MachineBasicBlock*, unsigned> &
|
|
LiveVariables::getMachineBasicBlockInfo(MachineBasicBlock *MBB) const{
|
|
return BBMap.find(MBB->getBasicBlock())->second;
|
|
}
|
|
|
|
/// getIndexMachineBasicBlock() - Given a block index, return the
|
|
/// MachineBasicBlock corresponding to it.
|
|
MachineBasicBlock *LiveVariables::getIndexMachineBasicBlock(unsigned Idx) {
|
|
if (BBIdxMap.empty()) {
|
|
BBIdxMap.resize(BBMap.size());
|
|
for (std::map<const BasicBlock*, std::pair<MachineBasicBlock*, unsigned> >
|
|
::iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) {
|
|
assert(BBIdxMap.size() > I->second.second &&"Indices are not sequential");
|
|
assert(BBIdxMap[I->second.second] == 0 && "Multiple idx collision!");
|
|
BBIdxMap[I->second.second] = I->second.first;
|
|
}
|
|
}
|
|
assert(Idx < BBIdxMap.size() && "BB Index out of range!");
|
|
return BBIdxMap[Idx];
|
|
}
|
|
|
|
LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
|
|
assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
|
|
"getVarInfo: not a virtual register!");
|
|
RegIdx -= MRegisterInfo::FirstVirtualRegister;
|
|
if (RegIdx >= VirtRegInfo.size()) {
|
|
if (RegIdx >= 2*VirtRegInfo.size())
|
|
VirtRegInfo.resize(RegIdx*2);
|
|
else
|
|
VirtRegInfo.resize(2*VirtRegInfo.size());
|
|
}
|
|
return VirtRegInfo[RegIdx];
|
|
}
|
|
|
|
|
|
|
|
void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
|
|
const BasicBlock *BB) {
|
|
const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second;
|
|
MachineBasicBlock *MBB = Info.first;
|
|
unsigned BBNum = Info.second;
|
|
|
|
// Check to see if this basic block is one of the killing blocks. If so,
|
|
// remove it...
|
|
for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
|
|
if (VRInfo.Kills[i].first == MBB) {
|
|
VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
|
|
break;
|
|
}
|
|
|
|
if (MBB == VRInfo.DefBlock) return; // Terminate recursion
|
|
|
|
if (VRInfo.AliveBlocks.size() <= BBNum)
|
|
VRInfo.AliveBlocks.resize(BBNum+1); // Make space...
|
|
|
|
if (VRInfo.AliveBlocks[BBNum])
|
|
return; // We already know the block is live
|
|
|
|
// Mark the variable known alive in this bb
|
|
VRInfo.AliveBlocks[BBNum] = true;
|
|
|
|
for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
|
MarkVirtRegAliveInBlock(VRInfo, *PI);
|
|
}
|
|
|
|
void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
|
|
MachineInstr *MI) {
|
|
// Check to see if this basic block is already a kill block...
|
|
if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) {
|
|
// Yes, this register is killed in this basic block already. Increase the
|
|
// live range by updating the kill instruction.
|
|
VRInfo.Kills.back().second = MI;
|
|
return;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
|
|
assert(VRInfo.Kills[i].first != MBB && "entry should be at end!");
|
|
#endif
|
|
|
|
assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!");
|
|
|
|
// Add a new kill entry for this basic block.
|
|
VRInfo.Kills.push_back(std::make_pair(MBB, MI));
|
|
|
|
// Update all dominating blocks to mark them known live.
|
|
const BasicBlock *BB = MBB->getBasicBlock();
|
|
for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB);
|
|
PI != E; ++PI)
|
|
MarkVirtRegAliveInBlock(VRInfo, *PI);
|
|
}
|
|
|
|
void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
|
|
PhysRegInfo[Reg] = MI;
|
|
PhysRegUsed[Reg] = true;
|
|
}
|
|
|
|
void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
|
|
// Does this kill a previous version of this register?
|
|
if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
|
|
if (PhysRegUsed[Reg])
|
|
RegistersKilled.insert(std::make_pair(LastUse, Reg));
|
|
else
|
|
RegistersDead.insert(std::make_pair(LastUse, Reg));
|
|
}
|
|
PhysRegInfo[Reg] = MI;
|
|
PhysRegUsed[Reg] = false;
|
|
|
|
for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
|
|
*AliasSet; ++AliasSet) {
|
|
unsigned Alias = *AliasSet;
|
|
if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
|
|
if (PhysRegUsed[Alias])
|
|
RegistersKilled.insert(std::make_pair(LastUse, Alias));
|
|
else
|
|
RegistersDead.insert(std::make_pair(LastUse, Alias));
|
|
}
|
|
PhysRegInfo[Alias] = MI;
|
|
PhysRegUsed[Alias] = false;
|
|
}
|
|
}
|
|
|
|
bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
|
|
const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
|
|
RegInfo = MF.getTarget().getRegisterInfo();
|
|
assert(RegInfo && "Target doesn't have register information?");
|
|
|
|
// First time though, initialize AllocatablePhysicalRegisters for the target
|
|
if (AllocatablePhysicalRegisters.empty()) {
|
|
// Make space, initializing to false...
|
|
AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs());
|
|
|
|
// Loop over all of the register classes...
|
|
for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(),
|
|
E = RegInfo->regclass_end(); RCI != E; ++RCI)
|
|
// Loop over all of the allocatable registers in the function...
|
|
for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF),
|
|
E = (*RCI)->allocation_order_end(MF); I != E; ++I)
|
|
AllocatablePhysicalRegisters[*I] = true; // The reg is allocatable!
|
|
}
|
|
|
|
// Build BBMap...
|
|
unsigned BBNum = 0;
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
|
BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++);
|
|
|
|
// PhysRegInfo - Keep track of which instruction was the last use of a
|
|
// physical register. This is a purely local property, because all physical
|
|
// register references as presumed dead across basic blocks.
|
|
//
|
|
MachineInstr *PhysRegInfoA[RegInfo->getNumRegs()];
|
|
bool PhysRegUsedA[RegInfo->getNumRegs()];
|
|
std::fill(PhysRegInfoA, PhysRegInfoA+RegInfo->getNumRegs(), (MachineInstr*)0);
|
|
PhysRegInfo = PhysRegInfoA;
|
|
PhysRegUsed = PhysRegUsedA;
|
|
|
|
/// Get some space for a respectable number of registers...
|
|
VirtRegInfo.resize(64);
|
|
|
|
// Calculate live variable information in depth first order on the CFG of the
|
|
// function. This guarantees that we will see the definition of a virtual
|
|
// register before its uses due to dominance properties of SSA (except for PHI
|
|
// nodes, which are treated as a special case).
|
|
//
|
|
const BasicBlock *Entry = MF.getFunction()->begin();
|
|
for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry);
|
|
DFI != E; ++DFI) {
|
|
const BasicBlock *BB = *DFI;
|
|
std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second;
|
|
MachineBasicBlock *MBB = BBRec.first;
|
|
unsigned BBNum = BBRec.second;
|
|
|
|
// Loop over all of the instructions, processing them.
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
|
|
I != E; ++I) {
|
|
MachineInstr *MI = I;
|
|
const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
|
|
|
|
// Process all of the operands of the instruction...
|
|
unsigned NumOperandsToProcess = MI->getNumOperands();
|
|
|
|
// Unless it is a PHI node. In this case, ONLY process the DEF, not any
|
|
// of the uses. They will be handled in other basic blocks.
|
|
if (MI->getOpcode() == TargetInstrInfo::PHI)
|
|
NumOperandsToProcess = 1;
|
|
|
|
// Loop over implicit uses, using them.
|
|
for (const unsigned *ImplicitUses = MID.ImplicitUses;
|
|
*ImplicitUses; ++ImplicitUses)
|
|
HandlePhysRegUse(*ImplicitUses, MI);
|
|
|
|
// Process all explicit uses...
|
|
for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isUse() && MO.isRegister()) {
|
|
if (MRegisterInfo::isVirtualRegister(MO.getReg())){
|
|
HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
|
|
} else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
|
|
AllocatablePhysicalRegisters[MO.getReg()]) {
|
|
HandlePhysRegUse(MO.getReg(), MI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Loop over implicit defs, defining them.
|
|
for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
|
|
*ImplicitDefs; ++ImplicitDefs)
|
|
HandlePhysRegDef(*ImplicitDefs, MI);
|
|
|
|
// Process all explicit defs...
|
|
for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isDef() && MO.isRegister()) {
|
|
if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
|
|
VarInfo &VRInfo = getVarInfo(MO.getReg());
|
|
|
|
assert(VRInfo.DefBlock == 0 && "Variable multiply defined!");
|
|
VRInfo.DefBlock = MBB; // Created here...
|
|
VRInfo.DefInst = MI;
|
|
VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead
|
|
} else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
|
|
AllocatablePhysicalRegisters[MO.getReg()]) {
|
|
HandlePhysRegDef(MO.getReg(), MI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle any virtual assignments from PHI nodes which might be at the
|
|
// bottom of this basic block. We check all of our successor blocks to see
|
|
// if they have PHI nodes, and if so, we simulate an assignment at the end
|
|
// of the current block.
|
|
for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB);
|
|
SI != E; ++SI) {
|
|
MachineBasicBlock *Succ = BBMap.find(*SI)->second.first;
|
|
|
|
// PHI nodes are guaranteed to be at the top of the block...
|
|
for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end();
|
|
MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) {
|
|
for (unsigned i = 1; ; i += 2)
|
|
if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.getVRegValueOrNull()) {
|
|
VarInfo &VRInfo = getVarInfo(MO.getReg());
|
|
|
|
// Only mark it alive only in the block we are representing...
|
|
MarkVirtRegAliveInBlock(VRInfo, BB);
|
|
break; // Found the PHI entry for this block...
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Loop over PhysRegInfo, killing any registers that are available at the
|
|
// end of the basic block. This also resets the PhysRegInfo map.
|
|
for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
|
|
if (PhysRegInfo[i])
|
|
HandlePhysRegDef(i, 0);
|
|
}
|
|
|
|
// Convert the information we have gathered into VirtRegInfo and transform it
|
|
// into a form usable by RegistersKilled.
|
|
//
|
|
for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
|
|
for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
|
|
if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst)
|
|
RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
|
|
i + MRegisterInfo::FirstVirtualRegister));
|
|
|
|
else
|
|
RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
|
|
i + MRegisterInfo::FirstVirtualRegister));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// instructionChanged - When the address of an instruction changes, this
|
|
/// method should be called so that live variables can update its internal
|
|
/// data structures. This removes the records for OldMI, transfering them to
|
|
/// the records for NewMI.
|
|
void LiveVariables::instructionChanged(MachineInstr *OldMI,
|
|
MachineInstr *NewMI) {
|
|
// If the instruction defines any virtual registers, update the VarInfo for
|
|
// the instruction.
|
|
for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = NewMI->getOperand(i);
|
|
if (MO.isRegister() && MO.isDef() &&
|
|
MRegisterInfo::isVirtualRegister(MO.getReg())) {
|
|
unsigned Reg = MO.getReg();
|
|
VarInfo &VI = getVarInfo(Reg);
|
|
if (VI.DefInst == OldMI)
|
|
VI.DefInst = NewMI;
|
|
}
|
|
}
|
|
|
|
// Move the killed information over...
|
|
killed_iterator I, E;
|
|
tie(I, E) = killed_range(OldMI);
|
|
std::vector<unsigned> Regs;
|
|
for (killed_iterator A = I; A != E; ++A)
|
|
Regs.push_back(A->second);
|
|
RegistersKilled.erase(I, E);
|
|
|
|
for (unsigned i = 0, e = Regs.size(); i != e; ++i)
|
|
RegistersKilled.insert(std::make_pair(NewMI, Regs[i]));
|
|
Regs.clear();
|
|
|
|
|
|
// Move the dead information over...
|
|
tie(I, E) = dead_range(OldMI);
|
|
for (killed_iterator A = I; A != E; ++A)
|
|
Regs.push_back(A->second);
|
|
RegistersDead.erase(I, E);
|
|
|
|
for (unsigned i = 0, e = Regs.size(); i != e; ++i)
|
|
RegistersDead.insert(std::make_pair(NewMI, Regs[i]));
|
|
}
|